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Application to wireless:
Energy/Latency tradeoff for IEEE 802.11 wireless nodes:
    Awake state consumes too much energy.
    Sleep state cannot receive packets.

IEEE 802.11 Power Saving Mode:
    Base station buffers packets for sleeping node.
    Node wakes at regular intervals (T = 100ms) to process         

buffered packets, It. 
    Latency is introduced due to buffering.

Apply Learn-α  to adapt sleep duration, Tt, to changes in 
network activity.

Simultaneously learn change rate (non-stationarity) online.

Experts: 
    10 experts, each a fixed  polling time from 100-1000ms,
        in multiples of 100ms. 
    For example, the 802.11 protocol of 100ms, is one expert.

Loss function:
Optimize tradeoff by minimizing a function convex in both 
latency and energy.  Algorithm is modular w.r.t. loss.
    For example:

First term: average latency for buffering It bytes.
Second term: energy usage relates inversely to sleep time.

Abstract:
We showcase an original online learning algorithm, in an application to energy 
management in wireless networks.  The goal is to manage an energy/performance 
tradeoff in IEEE 802.11 devices, using real-time prediction.  The algorithm adapts to 
changing observations by tracking periods of stationarity, and simultaneously 
learning the level of non-stationarity (e.g. burstiness), online.  Network properties 
can vary both with time and location, making this an appropriate application.  We 
simulate our algorithm on a mobile wireless 802.11 node, yielding encouraging 
empirical results.

Algorithms:
We give a general online learning algorithm for regression/estimation, or 
classification: - data need not be perfectly separable
                         - works for learning many hypothesis classes

We operate in the non-stochastic setting: no assumptions on the observations.
     Could even be generated online,  by an adaptive adversary!

Consider an algorithm that observes the predictions of a set of "experts," and
predicts based on a probability distribution pt(i) over experts,  representing how 
well each expert has been performing recently.
    Prediction loss of expert i, L(i, t), defined based on problem objective (modular).
    Perform Bayesian updates: pt+1(i) ∝ pt(i)e

−L(i,t).

To model changing regimes (non-stationarity), maintain probability distribution via 
an HMM, with the identity of the current best expert as the hidden state.
    Equate L(i, t) with neg. log-likelihood of observation, given expert's prediction.
    Then perform Bayesian updates:

Transition dynamics: model of how the current best expert can change over time:     

Learn level of non-stationarity, α , online, while performing original learning task!
    Define a set of meta-experts, each updating with a different value of α .
    Algorithm Learn-α  maintains a distribution over  α -experts, and uses Bayesian   
updates to track the best fixed α .  pt(αj) ∝ pt−1(αj)e

−L(αj ,t)
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Results:
Energy usage: reduced by 7-20% from 802.11 PSM. 
Average latency 1.02x that of 802.11 PSM.  For details, see paper, and below:
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Online learning:
A useful model for many settings:
     Forecasting and real-time predictions (e.g. stock market, internet).
     Online classification (e.g. spam filtering, fraud detection).
     Streaming applications (e.g. high-dimensional, or real-time data).
     Resource-constrained learning (e.g. on small devices).

Online learning framework:
    1. Access to data is one-at-a-time only.
        Once a data point is seen, it might not be seen again.
        Predictions are required in real-time (no training period).
    2. Time and memory use must not scale with the data.
        Computation must be cheap, and light-weight: 
        Must not store all the data seen so far, to use a "batch" method.
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