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Energy usage: reduced by 7-20% from 802.11 PSM.
Average latency 1.02x that of 802.11 PSM. For details, see paper, and below:

We showcase an original online learning algorithm, in an application to energy
management in wireless networks. The goal is to manage an energy / performance Pt (Q)
tradeoff in IEEE 802.11 devices, using real-time prediction. The algorithm adapts to
changing observations by tracking periods of stationarity, and simultaneously
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1. Access to data is one-at-a-time only. § Fixed-share(a) alg § Y B
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We operate in the non-stochastic setting: no assumptions on the observations.
Could even be generated online, by an adaptive adversary! ' . . . | 2 e
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Transition dynamics: model of how the current best expert can change over time: Apply Learn-a to adapt sleep duration, T}, to changes in B each[; = {i 21t 7:} - This poster is based on work in several papers, and the first author's PhD thesis.
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Define a set of meta-experts, each updating with a different value of . 10 experts, each a fixed polling time from 100-10007s, Normalize P, ; |
Algorithm Learn-a maintains a distribution over «-experts, and uses Bayesian in multiples of 100ms. PollTime[j] <« > 7, pey1.i(7) T C. Monteleoni, H. Balakrishnan, N. Feamster, and T. Jaakkola, "Managing the 802.11
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Loss function: Goto sleep for 7, ms. C. Monteleoni and T. Jaakkola, “Online Learning of Non-stationary Sequences,” in
Optimize tradeoff by minimizing a function convex in both Advances in Neural Information Processing Systems (NIPS) 16, 2003.
latency and energy. Algorithm is modular w.r.t. loss.
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