
Claire Monteleoni (UCSD), Hari Balakrishnan (MIT), Nick Feamster (Georgia Tech), and Tommi Jaakkola (MIT)*

Real-time prediction using online learning:
Application to energy management in wireless networks

References:
This poster is based on work in several papers, and the first author's PhD thesis.
For further reading, please see:

C.E. Monteleoni, "Learning with Online Constraints: Shifting Concepts and Active
Learning," PhD Thesis in Computer Science, MIT, 2006.

C. Monteleoni, H. Balakrishnan, N. Feamster, and T. Jaakkola, "Managing the 802.11
Energy/Performance Tradeoff with Machine Learning." MIT-LCS-TR-971, 2004.

C. Monteleoni and T. Jaakkola, “Online Learning of Non-stationary Sequences,” in
Advances in Neural Information Processing Systems (NIPS) 16, 2003.

C.E. Monteleoni, "Online Learning of Non-stationary Sequences," SM Thesis in
Computer Science, MIT, 2003.

Available at: http://people.csail.mit.edu/cmontel

Acknowledgments:
* Work done while all the authors were at the MIT Computer Science and Artificial
Intelligence Laboratory.

t;
p (i)

Algorithm Learn!!

!

p ()!
t

...

...

!!experts 1 . . . m

Experts i=1 . . . n

i

y
t+1

y
t

p (i) = P(i|y ,...,y)
t+1 1 t

p(i |i)tt+1

p(y |i,y ,...,y) = e
1t+1

−L(i,t+1)
t

def

t+1it

Application to wireless:
Energy/Latency tradeoff for IEEE 802.11 wireless nodes:
 Awake state consumes too much energy.
 Sleep state cannot receive packets.

IEEE 802.11 Power Saving Mode:
 Base station buffers packets for sleeping node.
 Node wakes at regular intervals (T = 100ms) to process

buffered packets, It.
 Latency is introduced due to buffering.

Apply Learn-α to adapt sleep duration, Tt, to changes in
network activity.

Simultaneously learn change rate (non-stationarity) online.

Experts:
 10 experts, each a fixed polling time from 100-1000ms,
 in multiples of 100ms.
 For example, the 802.11 protocol of 100ms, is one expert.

Loss function:
Optimize tradeoff by minimizing a function convex in both
latency and energy. Algorithm is modular w.r.t. loss.
 For example:

First term: average latency for buffering It bytes.
Second term: energy usage relates inversely to sleep time.

Abstract:
We showcase an original online learning algorithm, in an application to energy
management in wireless networks. The goal is to manage an energy/performance
tradeoff in IEEE 802.11 devices, using real-time prediction. The algorithm adapts to
changing observations by tracking periods of stationarity, and simultaneously
learning the level of non-stationarity (e.g. burstiness), online. Network properties
can vary both with time and location, making this an appropriate application. We
simulate our algorithm on a mobile wireless 802.11 node, yielding encouraging
empirical results.

Algorithms:
We give a general online learning algorithm for regression/estimation, or
classification: - data need not be perfectly separable
 - works for learning many hypothesis classes

We operate in the non-stochastic setting: no assumptions on the observations.
 Could even be generated online, by an adaptive adversary!

Consider an algorithm that observes the predictions of a set of "experts," and
predicts based on a probability distribution pt(i) over experts, representing how
well each expert has been performing recently.
 Prediction loss of expert i, L(i, t), defined based on problem objective (modular).
 Perform Bayesian updates: pt+1(i) ∝ pt(i)e

−L(i,t).

To model changing regimes (non-stationarity), maintain probability distribution via
an HMM, with the identity of the current best expert as the hidden state.
 Equate L(i, t) with neg. log-likelihood of observation, given expert's prediction.
 Then perform Bayesian updates:

Transition dynamics: model of how the current best expert can change over time:

Learn level of non-stationarity, α , online, while performing original learning task!
 Define a set of meta-experts, each updating with a different value of α .
 Algorithm Learn-α maintains a distribution over α -experts, and uses Bayesian
updates to track the best fixed α . pt(αj) ∝ pt−1(αj)e

−L(αj ,t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2000

4000

6000

8000

10000

12000

α

C
um

ul
at

iv
e

lo
ss

arbitrary expert (500ms)

Fixed−share(α) alg

best expert (100ms)
IEEE 802.11 Protocol alg

Static−expert alg
Learn−α(δ*)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10−3

500

1000

1500

2000

2500

3000

3500

α

C
um

ul
at

iv
e

lo
ss

best expert (100ms)
IEEE 802.11 Protocol alg

Fixed−share(α) alg

Static−expert alg

Learn−α(δ*)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.1 1 10 100

Sl
ow

do
wn

Page retrieval time with PSM off (sec)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.1 1 10 100

Sl
ow

do
wn

Page retrieval time with PSM off (sec)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.1 1 10 100

Sl
ow

do
wn

Page retrieval time with PSM off (sec)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
1

2

3

4

5

6

7

8

9

10

11
x 10!3

time (ms)

los
s o

f e
ac

h
ex

pe
rt.

 lo
ss

 o
f a

lgo
rit

hm
 ci

rc
led

0 1 2 3 4 5 6 7 8 9
x 104

1

2

3

4

5

6

7

8

9

10

11
x 10!3

time (ms)

los
s o

f e
ac

h
ex

pe
rt.

 lo
ss

 o
f a

lgo
rit

hm
 ci

rc
led

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Static-PSM

BSD-10

BSD-100

LPSM (1/T)

LPSM (1/log T)

En
er

gy
 (J

)

Awake
Sleep
Listen

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

Static-PSM

BSD-10

BSD-100

LPSM (1/log T)

En
er

gy
 (J

)

Awake
Sleep
Listen

Results:
Energy usage: reduced by 7-20% from 802.11 PSM.
Average latency 1.02x that of 802.11 PSM. For details, see paper, and below:

pt+1(i) ∝
∑

j

pt(j)e
−L(j,t)p(i|j)

Online learning:
A useful model for many settings:
 Forecasting and real-time predictions (e.g. stock market, internet).
 Online classification (e.g. spam filtering, fraud detection).
 Streaming applications (e.g. high-dimensional, or real-time data).
 Resource-constrained learning (e.g. on small devices).

Online learning framework:
 1. Access to data is one-at-a-time only.
 Once a data point is seen, it might not be seen again.
 Predictions are required in real-time (no training period).
 2. Time and memory use must not scale with the data.
 Computation must be cheap, and light-weight:
 Must not store all the data seen so far, to use a "batch" method.

γ
TtIt

2
+

1

Tt

