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Abstract

We consider an online learning scenario in which the learner can make
predictions on the basis of a fixed set of experts. We derive upper and
lower relative loss bounds for a class of universal learning algorithms in-
volving a switching dynamics over the choice of the experts. On the basis
of the performance bounds we provide the optimal a priori discretiza-
tion for learning the parameter that governs the switching dynamics. We
demonstrate the new algorithm in the context of wireless networks.

1 Introduction

We focus on the online learning framework in which the learner has access to a set of ex-
perts but possesses no other a priori information relating to the observation sequence. In
such a scenario the learner may choose to quickly identify a single best expert to rely on
[12], or switch from one expert to another in response to perceived changes in the observa-
tion sequence [8], thus making assumptions about the switching dynamics. The ability to
shift emphasis from one “expert” to another, in response to changes in the observations, is
valuable in many applications, including energy management in wireless networks.

Many algorithms developed for universal prediction on the basis of a set of experts have
clear performance guarantees (e.g., [12, 6, 8, 14]). The performance bounds characterize
the regret relative to the best expert, or best sequence of experts, chosen in hindsight. Al-
gorithms with such relative loss guarantees have also been developed for adaptive game
playing [5], online portfolio management [7], paging [3] and the k-armed bandit problem
[1]. Other relative performance measures for universal prediction involve comparing across
systematic variations in the sequence [4].

Here we extend the class of algorithms considered in [8], by learning the switching-rate
parameter online, at the optimal resolution. Our goal of removing the switching-rate as a
parameter is similar to Vovk’s in [14], though the approach and the comparison class for
the bounds differ. We provide upper and lower performance bounds, and demonstrate the
utility of these algorithms in the context of wireless networks.

2 Algorithms and performance guarantees

The learner has access to n experts, a1, . . . , an, and each expert makes a prediction at each
time-step over a finite (known) time period t = 1, . . . , T . We denote the ith expert at



time t as ai,t to suppress any details about how the experts arrive at their predictions and
what information is available to facilitate the predictions. These details may vary from one
expert to another and may change over time. We denote the non-negative prediction loss
of expert i at time t as L(i, t), where the loss, a function of t, naturally depends on the
observation yt ∈ Y at time t. We consider here algorithms that provide a distribution pt(i),
i = 1, . . . , n, over the experts at each time point. The prediction loss of such an algorithm
is denoted by L(pt, t).

For the purpose of deriving learning algorithms such as Static-expert and Fixed-
share described in [8], we associate the loss of each expert with a predictive probability so
that − log p(yt|yt−1, . . . , y1, i) = L(i, t). We define the loss of any probabilistic prediction
to be the log-loss:

L(pt, t) = − log

n
∑

i=1

pt(i) p(yt|i, y1, . . . , yt−1) = − log

n
∑

i=1

pt(i)e
−L(i,t) (1)

Many other definitions of the loss corresponding to pt(·) can be bounded by a scaled log-
loss [6, 8]. We omit such modifications here as they do not change the essential nature of
the algorithms nor their analysis.

The algorithms combining expert predictions can be now derived as simple Bayesian esti-
mation methods calculating the distribution pt(i) = P (i|y1, . . . , yt−1) over the experts on
the basis of the observations seen so far. p1(i) = 1/n for any such method as any other ini-
tial bias could be detrimental in terms of relative performance guarantees. Updating pt(·)
involves assumptions about how the optimal choice of expert can change with time. For
simplicity, we consider here only a Markov dynamics, defined by p(it|it−1; α), where α
parameterizes the one-step transition probabilities. Allowing switches at rate α, we define1

p(it|it−1; α) = (1 − α)δ(it, it−1) +
α

n − 1
[1 − δ(it, it−1)] (2)

which corresponds to the Fixed-share algorithm, and yields the Static-expert
algorithm when α = 0. The Bayesian algorithm updating pt(·) is defined analogously to
forward propagation in generalized HMMs (allowing observation dependence on past):

pt(i; α) =
1

Zt

n
∑

j=1

pt−1(j; α)e−L(j,t−1)p(i|j; α) (3)

where Zt normalizes the distribution. While we have made various probabilistic assump-
tions (e.g., conditional independence of expert predictions) in deriving the algorithm, the
algorithms can be used in a context where no such statistical assumptions about the ob-
servation sequence or the experts are warranted. The performance guarantees we provide
below for these algorithms do not require these assumptions.

2.1 Relative loss bounds

The existing upper bound on the relative loss of the Fixed-share algorithm [8] is ex-
pressed in terms of the loss of the algorithm relative to the loss of the best k-partition of
the observation sequence, where the best expert is assigned to each segment. We start by
providing here a similar guarantee but characterizing the regret relative to the best Fixed-
share algorithm, parameterized by α∗, where α∗ is chosen in hindsight after having seen
the observation sequence. Our proof technique is different from [8] and gives rise to simple
guarantees for a wider class of prediction methods, along with a lower bound on this regret.

1where δ(·, ·) is the Kronecker delta.



Lemma 1 Let LT (α) =
∑T

t=1 L(pt;α, t), α ∈ [0, 1], be the cumulative loss of the Fixed-
share algorithm on an arbitrary sequence of observations. Then for any α, α∗:

LT (α) − LT (α∗) = − log
[

Eα̂∼Q e(T−1)[D(α̂‖α∗)−D(α̂‖α)]
]

(4)

Proof: The cumulative log-loss of the Bayesian algorithm can be expressed in terms of
negative log-probability of all the observations:

LT (α) = − log[
∑

~s

φ(~s)p(~s; α)] (5)

where ~s = {i1, . . . , iT }, φ(~s) =
∏T

t=1 e−L(it,t), and p(~s; α) = p1(i1)
∏T

t=2 p(it|it−1; α).

Consequently, LT (α) − LT (α∗)

= − log

∑

~s φ(~s)p(~s; α)
∑

~r φ(~r)p(~r; α∗)
= − log

[

∑

~s

(

φ(~s)p(~s; α∗)
∑

~r φ(~r)p(~r; α∗)

)

p(~s; α)

p(~s; α∗)

]

= − log

[

∑

~s

Q(~s; α∗)
p(~s; α)

p(~s; α∗)

]

= − log

[

∑

~s

Q(~s; α∗)elog p(~s;α)
p(~s;α∗)

]

= − log

[

∑

~s

Q(~s; α∗)e(T−1)(α̂(~s) log α
α∗ +(1−α̂(~s)) log 1−α

1−α∗ )

]

where Q(~s; α∗) is the posterior probability over the choices of experts along the sequence,
induced by the hindsight-optimal switching-rate α∗, and α̂(~s) is the empirical fraction of
non-self-transitions in the selection sequence ~s. This can be rewritten as the expected value
of α̂ under distribution Q. 2

We obtain upper and lower bounds on regret by optimizing Q in Q, the set of all distribu-
tions over α̂ ∈ [0, 1], of the expression for regret.

2.1.1 Upper bound

The upper bound follows from solving: maxQ∈Q

{

− log
[

Eα̂∼Q e(T−1)[D(α̂‖α∗)−D(α̂‖α)]
]}

subject to the constraint that α∗ has to be the hindsight-optimal switching-rate, i.e. that:
(C1) d

dα
(LT (α) − LT (α∗))|α=α∗ = 0

Theorem 1 Let LT (α∗) = minα LT (α) be the loss of the best Fixed-share algorithm
chosen in hindsight. Then for any α ∈ [0, 1], LT (α)−LT (α∗) ≤ (T −1) D(α∗‖α), where
D(α∗‖α) is the relative entropy between Bernoulli distributions defined by α∗ and α.

The bound vanishes when α = α∗ and does not depend directly on the number of experts.
The dependence on n may appear indirectly through α∗, however. While the regret appears
proportional to T , this dependence vanishes for any reasonable learning algorithm that is
guaranteed to find α such that D(α∗‖α) ≤ O(1/T ), as we will show in Section 3.

Theorem 1 follows, as a special case, from an analogous result for algorithms based on
arbitrary first-order Markov transition dynamics. In the general case, the regret bound
is: (T − 1) maxi D(P (j|i, α∗) ‖P (j|i, α)), where α, α∗ are now transition matrices, and
D(·‖·) is the relative entropy between discrete distributions. For brevity, we provide only
the proof of the scalar case of Theorem 1.

Proof: Constraint (C1) can be expressed simply as d
dα

LT (α)|α=α∗ = 0, which is equiv-
alent to Eα̂∼Q{α̂} = α∗. Taking the expectation outside the logarithm, in Equation 4,
results in the upper bound. 2



2.1.2 Lower bound

The relative losses obviously satisfy LT (α)−LT (α∗) ≥ 0 providing a trivial lower bound.
Any non-trivial lower bound on the regret cannot be expressed only in terms of α and α∗,
but needs to incorporate some additional information about the losses along the observation
sequence. We express the lower bound on the regret as a function of the relative quality β∗

of the minimum α∗:

β∗ =
α∗(1 − α∗)

T − 1

d2

dα2
LT (α)|α=α∗ (6)

where the normalization guarantees that β∗ ≤ 1. β∗ ≥ 0 for any α∗ that minimizes LT (α).

The lower bound is found by solving: minQ∈Q

{

− log
[

Eα̂∼Q e(T−1)[D(α̂‖α∗)−D(α̂‖α)]
]}

subject to both constraint (C1) and (C2) d2

dα2 (LT (α) − LT (α∗))|α=α∗ = β∗(T−1)
α∗(1−α∗)

Theorem 2 Let β∗ and α∗ be defined as above based on an arbitrary observation se-
quence, and q1 = [1 + T−1

1−β∗

1−α∗

α∗
]−1 and q0 = [1 + T−1

1−β∗

α∗

1−α∗
]−1. Then

LT (α) − LT (α∗) ≥ − log
[

Eα̂∼Q e(T−1)[D(α̂‖α∗)−D(α̂‖α)]
]

(7)

where Q(1) = q1 and Q((α∗ − q1)/(1− q1)) = 1− q1 whenever α ≥ α∗; Q(0) = q0 and
Q(α∗/(1− q0)) = 1 − q0 otherwise.

Proof omitted due to space constraints. The upper and lower bounds agree for all α, α∗ ∈
(0, 1) when β∗ → 1. Thus there may exist observation sequences on which Fixed-
share, using α 6= α∗, must incur regret linear in T .

2.2 Algorithm Learn-α

We now give an algorithm to learn the switching-rate simultaneously to updating the prob-
ability weighting over the experts. Since the cumulative loss Lt(α) of each Fixed-
share algorithm running with switching parameter α can be interpreted as a negative
log-probability, the posterior distribution over the switching-rate becomes

pt(α) = P (α|yt−1, . . . , y1) ∝ e−Lt−1(α) (8)

assuming a uniform prior over α ∈ [0, 1]. As a predictive distribution pt(α) does not
include the observation at the same time point. We can view this algorithm as finding
the single best “α-expert,” where the collection of α-experts is given by Fixed-share
algorithms running with different switching-rates, α.

We will consider a finite resolution version of this algorithm, allowing only m possible
choices for the switching-rate, {α1, . . . , αm}. For a sufficiently large m and appropriately
chosen values {αj}, we expect to be able to always find αj ≈ α∗ and suffer only a minimal
additional loss due to not being able to represent the hindsight-optimal value exactly.

Let pt,j(i) be the distribution over experts defined by the jth Fixed-share algorithm
corresponding to αj , and let ptop

t (j) be the top-level algorithm producing a weighting over
such Fixed-share experts. The top-level algorithm is given by

ptop
t (j) =

1

Zt

ptop
t−1(j)e

−L(pt−1,j ,t−1) (9)

where ptop
1 (j) = 1/m, and the loss per time-step becomes

Ltop(ptop
t , t) = − log

m
∑

j=1

ptop
t (j)e−L(pt,j ,t) = − log

m
∑

j=1

n
∑

i=1

ptop
t (j)pt,j(i)e

−L(i,t) (10)

as is appropriate for a hierarchical Bayesian method.



3 Relative loss and optimal discretization

We derive here the optimal choice of the discrete set {α1, . . . , αm} on the basis of the
upper bound on relative loss. We begin by extending Theorem 1 to provide an analogous
guarantee for the Learn-α algorithm.

Corollary to Theorem 1 Let Ltop
T be the cumulative loss of the hierarchical Learn-α

algorithm using {α1, . . . , αm}. Then

Ltop
T − LT (α∗) ≤ log(m) + (T − 1) min

j=1,...,m
D(α∗‖αj) (11)

The hierarchical algorithm involves two competing goals that manifest themselves in the
regret: 1) the ability to identify the best Fixed-share expert, which degrades for larger
m, and 2) the ability to find αj whose loss is close to the optimal α for that sequence, which
improves for larger m. The additional regret arising from having to consider a number of
non-optimal values of the parameter, in the search, comes from the relative loss bound
for the Static-Expert algorithm, i.e. the relative loss associated with tracking the
best single expert [8, 12]. This regret is simply log(m) in our context. More precisely,
the corollary follows directly from successive application of that single expert relative loss
bound, and then our Fixed-share relative loss bound (Theorem 1):

Ltop
T − LT (α∗) ≤ log(m) + min

j=1,...,m
LT (αj) (12)

≤ log(m) + (T − 1) min
j=1,...,m

D(α∗‖αj) (13)

3.1 Optimal discretization

We start by finding the smallest discrete set of switching-rate parameters so that any addi-
tional regret due to discretization does not exceed (T − 1)δ, for some threshold δ. In other
words, we find m = m(δ) values α1, . . . , αm(δ) such that

max
α∗∈[0,1]

min
j=1,...,m(δ)

D(α∗‖αj) = δ (14)

The resulting discretization, a function of δ, can be found algorithmically as follows. First,
we set α1 so that maxα∗∈[0,α1] D(α∗‖α1) = D(0‖α1) = δ implying that α1 = 1 − e−δ.
Each subsequent αj is found conditionally on αj−1 so that

max
α∗∈[αj−1,αj ]

min{D(α∗‖αj−1), D(α∗‖αj)} = δ (15)

The maximizing α∗ can be solved explicitly by equating the two relative entropies giving

α∗ = log(
1 − αj−1

1 − αj

)

(

log(
αj

αj−1

1 − αj−1

1 − αj

)

)−1

(16)

which lies within [αj−1, αj ] and is an increasing function of the new point αj . Substituting
this α∗ back into one of the relative entropies we can set αj so that D(α∗‖αj−1) = δ. The
relative entropy is an increasing function of αj (through α∗) and the solution is obtained
easily via, e.g., bisection search. The iterative procedure of generating new values αj

can be stopped after the new point exceeds 1/2; the remaining levels can be filled-in by
symmetry so long as we also include 1/2. The resulting discretization is not uniform but
denser towards the edges; the spacing around the edges is O(δ), and O(

√
δ) around 1/2.

For small values of δ, the logarithm of the number of resulting discretization levels, or
log m(δ), closely approximates −1/2 log δ. We can then optimize the regret bound (11):
−1/2 log δ + (T − 1)δ, yielding δ∗ = 1/(2T ), and m(δ∗) =

√
2T . Thus we will need

O(
√
T ) settings of α, as in the case of choosing the levels uniformly with spacing

√
δ. The

uniform discretization would not, however, possess the same regret guarantee, resulting in
a higher than necessary loss due to discretization.



3.1.1 Optimized regret bound for Learn-α

The optimized regret bound for Learn-α(δ∗) is thus (approximately) 1
2 log T +c, which is

comparable to analysis of universal coding for word-length T [11]. The optimal discretiza-
tion for learning the parameter is not affected by n, the number of original experts. Unlike
regret bounds for Fixed-share, the value of the bound does not depend on the obser-
vation sequence. And notably, in comparison to the lower bound on Fixed-share’s
performance, Learn-α’s regret is at most logarithmic in T .

4 Application to wireless networks

We applied the Learn-α algorithm to an open problem in computer networks: managing
the tradeoff between energy consumption and performance in wireless nodes of the IEEE
802.11 standard [9]. Since a node cannot receive packets while asleep, yet maintaining the
awake state drains energy, the existing standard uses a fixed polling time at which a node
should wake from the sleep state to poll its neighbors for buffered packets. Polling at fixed
intervals however, does not respond optimally to current network activity. This problem is
clearly an appropriate application for an online learning algorithm, such as Fixed-share
due to [8]. Since we are concerned with wireless, mobile nodes, there is no principled way
to set the switching-rate parameter a priori, as network activity varies not only over time,
but across location, and the location of the mobile node is allowed to change. We can
therefore expect an additional benefit from learning the switching-rate.

Previous work includes Krashinsky and Balakrishnan’s [10] Bounded Slowdown algo-
rithm which uses an adaptive control loop to change polling time based on network con-
ditions. This algorithm uses parameterized exploration intervals, and the tradeoff is not
managed optimally. Steinbach applied reinforcement learning [13] to this problem, yet
required an unrealistic assumption: that network activity possesses the Markov property.

We instantiate the experts as deterministic algorithms assuming constant polling times.
Thus we use n experts, each corresponding to a different but fixed polling time in millisec-
onds (ms): Ti : i ∈ {1 . . . n} The experts form a discretization over the range of possible
polling times. We then apply the Learn-α algorithm exactly as in our previous exposition,
using the discretization defined by δ∗, and thus running m(δ∗) sub-algorithms, each run-
ning Fixed-share with a different αj . In this application, the learning algorithm can
only receive observations, and perform learning updates, when it is awake. So our subscript
t here signifies only wake times, not every time epoch at which bytes might arrive.

We define the loss function, L, to reflect the tradeoff inherent in the conflicting goals of
minimizing both the energy usage of the node, and the network latency it introduces by
sleeping. We propose a loss function that is one of many functions proportional to this
tradeoff. We define loss per expert i as:

Loss(i, t) = γ
ItT

2
i

2Tt

+
1

Ti

(17)

where It is the observation the node receives, of how many bytes arrived upon awakening
at time t, and Tt is the length of time that the node just slept. The first term models the
average latency introduced into the network by buffering those bytes, and scales It to the
number of bytes that would have arrived had the node slept for time Ti instead of Tt, under
the assumption that the bytes arrived at a uniform rate. The second term models the energy
consumption of the node, based on the design that the node wakes only after an interval Tt

to poll for buffered bytes, and the fact that it consumes less energy when asleep than awake.
The objective function is a sum of convex functions and thus admits a unique minimum.
γ > 0 allows for scaling between the units of information and time, and the ability to
encode a preference for the ratio between energy and latency that the user favors.
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Figure 1: a) Cumulative loss of Fixed-share(α) as a function of α, compared to the
cumulative loss on the same trace of the 802.11 protocol, Static-expert, and Learn-
α(δ∗). Figure b) zooms in on the first 0.002 of the α range. c) Cumulative loss of Learn-
α(δ), as a function of 1/δ, when n = 10, and b) n = 5. Circles at 1/δ∗ = 2T .

4.0.2 Experiments

We used traces of real network activity from [2], a UC Berkeley home dial-up server that
monitored users accessing HTTP files from home. Multiple overlapping connections, pass-
ing through a collection node over several days, were recorded by start and end times, and
number of bytes transferred. Per connection we smoothed the total number of bytes uni-
formly over 10ms intervals spanning its duration. We set γ = 1.0 × 10−7, calibrated to
attain polling times within the range of the existing protocol.

Figure 1a) and b) compare cumulative loss of the various algorithms on a 4 hour trace,
with observation epochs every 10ms. This corresponds to approximately 26,100 training
iterations for the learning algorithms. In the typical online learning scenario, T , the number
of learning iterations, i.e. the time horizen parameter to the loss bounds, is just the number
of observation epochs. In this application, the number of training epochs need not match
the number of observation epochs, since the application involves sleeping during many
observation epochs, and learning is only done upon awakening. Since in these experiments
the performance of the three learning algorithms are compared by each algorithm using n
experts spanning the range of 1000ms at regularly spaced intervals of 100ms, to obtain a
prior estimate of T , we assume a mean sleep interval of 550ms, the mean of the experts.

The Static-expert algorithm achieved lower cumulative loss than the best expert,
since it can attain the optimal smoothed value over the desired range of polling times,
whereas the expert values just form a discretization. On this trace, the optimal α for
Fixed-share turns out to be extremely low. So for most settings of α, one would be
better off using a Static-expertmodel, yet as the second graph shows, there is a value
of α below which it is beneficial to use Fixed-share. This lends validity to our fun-
damental goal of being able to quantify the level of non-stationarity of a process, in order



to better model it. Moreover there is a clear advantage to using Learn-α, since without
prior knowledge of the stochastic process to be observed, there is no optimal way to set α.

Figure 1c) and d) show the cumulative loss of Learn-α as a function of 1/δ. We see that
choosing δ = 1

2T , matches the point in the curve beyond which one cannot significantly
reduce cumulative loss by decreasing δ. As expected, the performance of the algorithm
levels off after the optimal δ that we can compute a priori. Our results also verify that the
optimal δ is not significantly affected by the number of experts n.

5 Conclusion

We proved upper and lower bounds on the regret for a class of online learning algorithms,
applicable to any sequence of observations. The bounds extend to richer models of non-
stationary sequences, allowing the switching dynamics to be governed by an arbitrary tran-
sition matrix. We derived the regret-optimal discretization (including the overall resolution)
for learning the switching-rate parameter in a simple switching dynamics, yielding an algo-
rithm with stronger guarantees than previous algorithms. We exemplified the approach in
the context of energy management in wireless networks. In future work, we hope to extend
the online estimation of α and the optimal discretization to learning a full transition matrix.
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