
One-pass approximate
k-means optimization

Claire Monteleoni
Columbia University, CCLS

Joint work with Nir Ailon (Google)
and Ragesh Jaiswal (Columbia)

One-pass streaming setting
Streaming setting is similar to online setting, however data stream is finite.

Motivation: very large data-sets, and/or resource constraints (time,
memory).

Goal: algorithms that are light-weight (time, memory), and make only one-
pass over the data.

We study unsupervised learning, in the streaming setting.

Feedback is extremely limited: NO labels, but algorithm
can compute intermediate values of the objective function,
on points seen so far.

k-means clustering objective
Clustering algorithms can be hard to evaluate without prior information or
assumptions on the data.

With no assumptions on the data, one evaluation technique is w.r.t some
objective function.

A widely-cited and studied objective is k-means: Given set, X ⊂ Rd, choose
C ⊂ Rd, |C| = k, to minimize:

Optimizing k-means is NP hard, even for k=2 [DFKV ‘04].

Widely-used algorithm of same name [Lloyd ’57]. Fast but lacks
approximation guarantee, and can suffer from bad initialization.

φC =
∑

x∈X

min
c∈C

‖x− c‖2

Related work
[Arthur & Vassilvitskii, SODA ‘07]: k-means++, a batch
clustering algorithm with O(log k)-approx. of k-means.

[Guha, Meyerson, Mishra, Motwani, & O’Callaghan, TKDE ’03]:
Divide and conquer streaming (a,b)-approximate k-medoid
clustering.

Definition: b-approximation:

Definition: Bi-criteria (a,b)-approximation guarantee: a⋅k centers, b-approx.

φC

φOPT
≤ b

Contributions
Extend k-means++ to k-means#, an (O(log k), O(1))-approximation to
k-means, in batch setting.

Analyze Guha et al. divide and conquer algorithm, using (a,b)-approximate
k-means clustering.

Use Guha et al. with k-means# and then k-means++ to yield a one-pass
O(log k)-approximation algorithm to k-means objective.

Analyze multi-level hierarchy version for improved memory vs.
approximation tradeoff.

Experiments on real and simulated data.

k-means++
Algorithm:

Choose first center c1 uniformly at random from X,
and let C = {c1}.

Repeat (k-1) times:

Choose next center ci = x’∈X with prob.

C ← C ∪ {ci} where

Theorem (Arthur & Vassilvitskii ’07): Returns an O(log k)-
approximation, in expectation.

D(x′, C)2∑
x∈X D(x, C)2

D(x, C) = min
c∈C

‖x− c‖

k-means#
Idea: k-means++ returns k centers, with O(log k)-approximation. Can we
design a variant that returns O(k log k) centers, but constant approximation?

Algorithm:

Initialize C={}.

Choose 3⋅log(k) centers independently and uniformly
at random from X, and add them to C.

Repeat (k-1) times:

Choose 3⋅log(k) centers indep. with prob.
and add them to C.

D(x′, C)2∑
x∈X D(x, C)2

k-means#
Theorem: With probability at least 1/4, k-means# yields an O(1)-
approximation, on O(k log k) centers.

Corollary: With probability at least 1-1/n, running k-means# for 3⋅log n
independent runs yields an O(1)-approximation (on O(k log k) centers).

Proof: Call it repeatedly, 3⋅log n times, independently, and choose the
clustering that yields the minimum cost. Corollary follows, since

 .
(
1− (3/4)3 log n

)
≥

(
1− 1

n

)

k-means# proof idea

 X

 The clustering (partition) induced by OPT.

k-means# proof idea

 X

 The clustering (partition) induced by OPT.

k-means# proof idea

 X

 The clustering (partition) induced by OPT.

k-means# proof idea

 X

 The clustering (partition) induced by OPT.

k-means# proof idea

 X

 The clustering (partition) induced by OPT.

→ We cover the k clusters in OPT, after choosing O(k log k) centers.

k-means#
Theorem: With probability at least 1/4, k-means# yields an O(1)-
approximation, on O(k log k) centers.

Proof outline: Definition “covered”: cluster A ∈ OPT is covered

if: , where .

Define {Xc, Xu}: the partition of X into covered, uncovered.

In the first round we cover one cluster in OPT. In any later round, either:

 Case 1: : We are done.

 Case 2 : : We are likely to cover another OPT cluster.

φC(A) < 32 · φOPT (A)

φC(Xc) > φC(Xu)

φC(Xc) ≤ φC(Xu)

φC(A) =
∑

x∈A

D(x, C)2

k-means# proof
Fix any point x chosen in the first step. Define A as the unique cluster in
OPT, s.t. x ∈ A.

Lemma (AV ‘07): Fix A ∈ OPT, and let C be the 1-clustering with the center
chosen uniformly at random from A. Then .

Corollary: . Pf. Apply Markov’s inequality.

After 3⋅log(k) random points, probability of hitting a cluster A with a point
that is good for A is at least (1-1/k).

So after first step, w.p. at least (1-1/k), at least 1 cluster is covered.

E[φC(A)] = 2 · φOPT (A)

Pr[φC(A) < 8 · φOPT (A)] ≥ 3/4

k-means# proof
Case 1: .

Since X= Xc ∪ Xu and by definition of ϕ,

by definition of Case 1, and definition of covered.

Last inequality is by Xc ⊆X, and definition of ϕ.

φC(Xc) > φC(Xu)

φC(X) = φC(Xc) + φC(Xu) ≤ 2 · φC(Xc) ≤ 64 · φOPT (Xc) ≤ 64 · φOPT (X)

k-means# proof
Case 2: .

The probability of picking a point in Xu at the next round is:

Lemma (AV ‘07): Fix A ∈ OPT, and let C be any clustering. If we add a
center to C, sampled randomly from the D2 weighting over A, yielding C’
then: . Corollary:

So, w.p. we pick a point in Xu that covers a new cluster in OPT

So after 3⋅log(k) picks, prob. of covering a new cluster is at least (1-1/k).

φC(Xc) ≤ φC(Xu)

∑
x∈Xu

D(x, C)2
∑

x∈X D(x, C)2
=

φC(Xu)
φC(Xu) + φC(Xc)

≥ 1
2

E[φC′(A)] ≤ 8 · φOPT (A) Pr[φC′(A) < 32 · φOPT (A)] ≥ 3/4

≥ 1
2

· 3
4

=
3
8

k-means# proof summary
For the first round, prob. of covering a cluster in OPT is at least (1-1/k).

For the k-1 remaining rounds, either Case 1 holds, and we have achieved a
64-approximation, or Case 2 holds, and the probability of covering a new
cluster in OPT, in the next round, is at least (1-1/k).

So the probability that after k rounds there exists an uncovered cluster in
OPT is .

Thus the algorithm achieves a 64-approximation on 3k⋅log(k) centers, with
probability at least 1/4.

Corollary: Repeating it 3⋅log(n) times yields probability (1-1/n).

≤ 1− (1− 1/k)k ≤ 3/4

Divide and conquer clustering
S - stream

{Si} - partition

(a,b)-clustering

{Ti} - sets of ‘centers’

Sw - ∪i Ti with weights w(tij) = |Sij|

(a’,b’)-clustering

 T - final ‘centers’

[Guha et al. ‘03] analyzed for k-medoid clustering: (a’, O(bb’))-approximation.

One-pass k-means approx.
We first analyze Guha et al. scheme for (a,b)-approximation algorithms w.r.t.
k-means: yields a one-pass (a’,O(bb’))-approximation algorithm.

Our algorithm:

 For the (a,b) algorithm, use (repeated) k-means#: a = O(log k), b = O(1).

 For the (a’,b’) algorithm, use k-means++: a’= 1, b’ = O(log k)

So the combined algorithm is a (1, O(log k))-approximation to k-means.

Memory vs. approximation
Generalize to multi-level hierarchy; idea in Guha et al.

Call repeated k-means# at all levels but the last, and k-means++ at the last.

Theorem: Given memory M = nα for a fixed α > 0, letting r = 1/α yields an
r-level one-pass algorithm with O(cr-1 log k)-approximation.

Note: Unit of memory is a word; a point in Rd can be stored in O(1) space.

Experiments

Mixture of 25 Gaussians:

10K points sampled from a mixture of

25 Gaussians chosen at random from

15 dimensional hypercube (side 500).

Experiments

UCI data: Clouds and Spambase.

Experiments
Memory/approximation tradeoff:

 UCI Cloud, k=10; 25 Gaussians, k=25; UCI Spambase, k=10

 Divide and conquer with k-means# at all levels except last, and then k-means++

These runs did not seem to reach a memory limit that would result in worse
approximation.

Future work

Simple extensions: tightening analysis, further experimentation.

Use [Kanungo et al. ‘04] as sub-algorithm to attain a one-pass algorithm with
constant approximation.

Analyze under data assumptions, e.g. i.i.d. or well-separated means.

Next step: an algorithm that approximates k-means in the online setting.

Thank you!

And many thanks to my coauthors:

 Nir Ailon, Google Research NYC

 Ragesh Jaiswal, Columbia University

