
A Appendix to “Streaming k-means approximation,” N. Ailon, R. Jaiswal,
and C. Monteleoni, NIPS 2009.

A.1 Future work

Kanungo et al. [KMNP+04] state that a local search heuristic results in a constant factor approxi-
mation for k-means, with a polynomial running time. The paper is not self contained with respect
to running time analysis, and various key ideas required for completing it appear in [AGKM+04]
and [CG99]. Arthur and Vassilvitskii [AV07] report that Kanungo et al.’s local search algorithm
gives an approximation factor of O(9 + ε) in time O(n3/εd), where d is the dimensionality of the
data11. We do not know what range of ε this claim assumes, and what the running time for some
fixed ε (say, 1) would be. The local search algorithm can be readily plugged into our multi-level
algorithm in Section 3.3. Our analysis does highlight, however, the importance of reducing the ap-
proximation constants in each invocation of a batch algorithm on memory blocks, because the final
approximation constants are exponential in these constants (the power being log n/ log M). Also,
it is important to control the polynomial degree of the running time dependence of each invocation.
Indeed, assume we can afford a streaming running time of at most C × n for some constant C > 0.
If we are using a batch algorithm of running time C ′ ×Np on each size-N block for some C ′ > 0,
then the maximal block size we can afford will be∼ (C/C ′)1/p. The higher p is, however, the larger
the resulting hierarchy depth r, and the worse the final approximation will be. The running time ef-
ficiency was, in fact, one of the main motivations for our derivation of k-means# for the purpose of
obtaining a constant factor bi-criteria algorithm for k-means. We leave the analysis of plugging in
different batch algorithms to our hierarchical solution for streaming k-means to future work.

A.2 Proof of Theorem 3.1

Proof. As mentioned in Section 3.1, the a′ approximation of the number of centers is a direct con-
sequence of the algorithm, so it remains to bound the approximation of the k-means objective.

Recall that the k-means cost of a set of centers T , with respect to a point set S ⊂ Rd, is de-
fined as cost(T) =

∑
x∈S w(x) · D(x, T)2, where w(x) denotes the weight associated with

the point x.12 We will denote the optimal clustering by T ∗ = {t∗1, t∗2, . . . , t∗k}. Thus T ∗ =
arg minT⊂Rd : |T |=k cost(T). For a given set of cluster “centers” T , we will use the notation t(x)
to denote the element of T closest to x.

We will make use of the following lemmas, which extend the lemmas in [GMMM+03] (using the
exposition of Dasgupta’s lecture notes [Das08]), to the case of the k-means objective.

Lemma A.1. cost(S, T) ≤ 2
∑!

i=1 cost(Si, Ti) + 2 cost(Sw, T)

Proof. We start by rewriting the k-means cost by separating it into the sum over each part (in the
partition made by the first step of the algorithm), of the cost of that part.

cost(S, T) =
!∑

i=1

∑

x∈Si

D(x, T)2 ≤
!∑

i=1

∑

x∈Si

(D(x, ti(x)) + D(ti(x), T))2

≤ 2
!∑

i=1

∑

x∈Si

D(x, ti(x))2 + 2
!∑

i=1

∑

x∈Si

D(ti(x), T)2

= 2
!∑

i=1

cost(Si, Ti) + 2
!∑

i=1

|Ti|∑

j=1

|Sij |D(tij , T)2

= 2
!∑

i=1

cost(Si, Ti) + 2 cost(Sw, T)

11The dependence on d could probably be taken care of using dimension reduction techniques, which we
will not elaborate on here.

12For the unweighted case, we can assume that w(x) = 1 for all x.

10

The first inequality follows from applying the triangle inequality, D(x, T) ≤ D(x, ti(x)) +
D(ti(x), T). The second inequality follows from applying (a + b)2 ≤ 2a2 + 2b2, to each term
in the sum.

First we will upper bound
∑!

i=1 cost(Si, Ti).

Lemma A.2.
∑!

i=1 cost(Si, Ti) ≤ b · cost(S, T ∗)

Proof.

!∑

i=1

cost(Si, Ti) ≤
!∑

i=1

b · min
T ′⊂Rd

cost(Si, T
′) ≤

!∑

i=1

b · cost(Si, T
∗) ≤ b · cost(S, T ∗)

The first inequality is due to Ti being the result of A which provides a b approximation to the optimal
cost, for each Si

Now we will upper bound cost(Sw, T).

Lemma A.3. cost(Sw, T) ≤ 2b′ · (
∑!

i=1 cost(St, Ti) + cost(S, T ∗))

Proof. First,
cost(Sw, T) ≤ b′ · min

T ′⊂Rd
cost(Sw, T ′) ≤ b′ · cost(Sw, T ∗),

where the first inequality is due to T being the result of A′ which provides a b′ approximation to the
optimal cost, for input Sw. The second inequality follows from the optimality of the right hand side
for Sw. We can now cost(Sw, T ∗) bound as follows.

cost(Sw, T ∗) =
!∑

i=1

|Ti|∑

j=1

|Sij |D(tij , T ∗)2

≤ 2
!∑

i=1

|Ti|∑

j=1

∑

x∈Sij

D(x, tij)2 + 2
!∑

i=1

|Ti|∑

j=1

∑

x∈Sij

D(x, t∗(x))2

= 2
!∑

i=1

∑

x∈Si

D(x, ti(x))2 + 2
!∑

i=1

∑

x∈Si

D(x, t∗(x))2

= 2
!∑

i=1

cost(St, Ti) + 2 cost(S, T ∗)

The first inequality uses the triangle inequality and then (a + b)2 ≤ 2a2 + 2b2, similar to the proof
of Lemma A.1.

To attain the Theorem, we simply apply substitions from Lemmas A.2 and A.3 to the statement of
Lemma A.1.

A.3 Additional experimental results

The experimental set-up is described in the paper. Here we report standard deviations on the exper-
iments run.

11

k BL DC-1 DC-2
5 1.3302 · 108 2.3433 · 108 4.2539 · 108

10 2.9615 · 108 1.5782 · 108 1.8783 · 108

15 3.1203 · 108 8.6772 · 107 1.3998 · 108

20 3.6956 · 108 5.4427 · 107 1.0200 · 108

25 2.4563 · 108 4.7795 · 103 4.2328 · 103

k BL DC-1 DC-2
5 0.0000 · 106 1.5902 · 106 2.5717 · 106

10 1.2051 · 106 5.2143 · 105 5.3538 · 105

15 0.0736 · 106 3.0826 · 105 3.2327 · 105

20 0.2603 · 106 1.1590 · 105 2.2730 · 105

25 0.5821 · 106 1.2943 · 105 1.2939 · 105

k BL DC-1 DC-2
5 1.1687 · 107 4.5518 · 107 3.6388 · 107

10 0.0000 · 107 8.1261 · 106 1.1827 · 107

15 0.0373 · 107 3.3351 · 106 3.6615 · 106

20 0.2398 · 107 2.3456 · 106 2.0151 · 106

25 0.0631 · 107 1.1220 · 106 9.8168 · 105

Table 3: Standard deviations of the k-means cost (over 10 random restarts per algorithm): a) norm25
dataset, b) Cloud dataset, c) Spambase dataset.

12

