A Appendix to “Streaming k-means approximation,”’ N. Ailon, R. Jaiswal,
and C. Monteleoni, NIPS 2009.

A.1 Future work

Kanungo ef al. [KMNP+04] state that a local search heuristic results in a constant factor approxi-
mation for k-means, with a polynomial running time. The paper is not self contained with respect
to running time analysis, and various key ideas required for completing it appear in [AGKM+04]
and [CG99]. Arthur and Vassilvitskii [AV07] report that Kanungo et al.’s local search algorithm
gives an approximation factor of O(9 + €) in time O(n?®/e?), where d is the dimensionality of the
data!'. We do not know what range of € this claim assumes, and what the running time for some
fixed € (say, 1) would be. The local search algorithm can be readily plugged into our multi-level
algorithm in Section 3.3. Our analysis does highlight, however, the importance of reducing the ap-
proximation constants in each invocation of a batch algorithm on memory blocks, because the final
approximation constants are exponential in these constants (the power being logn/log M). Also,
it is important to control the polynomial degree of the running time dependence of each invocation.
Indeed, assume we can afford a streaming running time of at most C' x n for some constant C' > 0.
If we are using a batch algorithm of running time C’ x NP on each size-N block for some C’ > 0,
then the maximal block size we can afford will be ~ (C//C”)'/?. The higher p is, however, the larger
the resulting hierarchy depth r, and the worse the final approximation will be. The running time ef-
ficiency was, in fact, one of the main motivations for our derivation of k-means# for the purpose of
obtaining a constant factor bi-criteria algorithm for k-means. We leave the analysis of plugging in
different batch algorithms to our hierarchical solution for streaming k-means to future work.

A.2 Proof of Theorem 3.1

Proof. As mentioned in Section 3.1, the a’ approximation of the number of centers is a direct con-
sequence of the algorithm, so it remains to bound the approximation of the k-means objective.

Recall that the k-means cost of a set of centers 7', with respect to a point set S C R?, is de-
fined as cost(T) = >, .qw(z) - D(x,T)?, where w(z) denotes the weight associated with

the point x.'> We will denote the optimal clustering by T* = {t},t5,...,t;}. Thus 7% =
arg mingcga . |7|=x cost(T). For a given set of cluster “centers” T', we will use the notation #(x)
to denote the element of T closest to z.

We will make use of the following lemmas, which extend the lemmas in [GMMM-+03] (using the
exposition of Dasgupta’s lecture notes [Das08]), to the case of the k-means objective.

Lemma A.1. cost(S, T) < 20_, cost(S;, T;) + 2 cost(S,, T)

Proof. We start by rewriting the k-means cost by separating it into the sum over each part (in the
partition made by the first step of the algorithm), of the cost of that part.

cost(S,T) = ZZDmT < ZZ z)) + D(t;(2),T))?

i=1 x€S; i=1x€S;
‘ ’
< 2 ) D@, ti(x)?+2) > D(ti(z),T)?
i=1 x€S; i=1 z€S;
¢ |Ti
= 2Zcost Si, T;) +ZZZ|SU\D i, T
=1 j=1

= 2 Z cost(S;, T;) + 2 cost(Sw, T')

=1

"The dependence on d could probably be taken care of using dimension reduction techniques, which we
will not elaborate on here.
"2For the unweighted case, we can assume that w(z) = 1 for all z.
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The first inequality follows from applying the triangle inequality, D(z,T) < D(z,t;(z)) +

D(t;(z),T). The second inequality follows from applying (a + b)? < 2a? + 2b%, to each term
in the sum. O

First we will upper bound Zle cost(S;, T).
Lemma A.2. Zle cost(S;, T;) < b- cost(S,T*)

Proof.
¢ ¢ ¢
t(S;,T3) < b- mi t(S;, T < b-cost(S;, T*) < b-cost(S,T*
; cost( ) < ; ot ( ) < ; cost( ) < b- cost( )
The first inequality is due to 7T; being the result of A which provides a b approximation to the optimal
cost, for each S; O

Now we will upper bound cost(S,,, T).
Lemma A.3. cost(Sy,,T) <2V - (Zle cost(Sy, T;) + cost(S,T*))

Proof. First,
cost(Sy, T) < b+ min cost(Sy,T") <V - cost(S,, T"),
T'CR?
where the first inequality is due to T being the result of A’ which provides a b’ approximation to the
optimal cost, for input S,,. The second inequality follows from the optimality of the right hand side
for S,,. We can now cost(Sy,, T™) bound as follows.

¢ Ty
cost(Sy, T*) = ZZ|Sij|D(tijaT*)2
i=1 j=1
¢ |Ti ¢ |Ti
< 2) 303 D(@ty)*+2) ) Y D(x,t*(x))’
i=1 j=12€S;, i=1j=1z€S;;
‘ ‘
= QZ Z D(x,t;(x))* + QZ Z D(xz,t*(x))?
i=1 x€S; i=1 z€S;

¢
= 2 Z cost(Sy, T;) + 2 cost(S, T™)
i=1

The first inequality uses the triangle inequality and then (a + b)? < 2a? + 2b2, similar to the proof
of Lemma A.1. O

To attain the Theorem, we simply apply substitions from Lemmas A.2 and A.3 to the statement of
Lemma A.1. O

A.3 Additional experimental results

The experimental set-up is described in the paper. Here we report standard deviations on the exper-
iments run.
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k BL DC-1 DC-2

5 | 1.3302-10% | 2.3433-10% | 4.2539 - 10°
10 | 2.9615-10% | 1.5782-10% | 1.8783-10%
15 | 3.1203-10% | 8.6772-107 | 1.3998 - 10®
20 | 3.6956 - 10% | 5.4427-10" | 1.0200 - 10®
25 | 2.4563-10% | 4.7795-10° | 4.2328 - 10°

k BL DC-1 DC-2
5 | 0.0000-10°% | 1.5902-10° | 2.5717 - 10°
10 | 1.2051-10° | 5.2143-10° | 5.3538 - 10°
15 | 0.0736 - 10° | 3.0826 - 10° | 3.2327-10°
20 | 0.2603-10°% | 1.1590-10° | 2.2730 - 10°
25 | 0.5821-10°% | 1.2943-10° | 1.2939 - 10°

k BL DC-1 DC-2
5 | 1.1687-107 | 4.5518-10" | 3.6388 - 10"
10 | 0.0000- 107 | 8.1261-10° | 1.1827-107
15 [ 0.0373-107 | 3.3351-10° | 3.6615 - 10°
20 | 0.2398-107 | 2.3456 - 10° | 2.0151 - 10°
25 | 0.0631-107 | 1.1220-10% | 9.8168 - 10°

Table 3: Standard deviations of the k-means cost (over 10 random restarts per algorithm): a) norm25
dataset, b) Cloud dataset, c) Spambase dataset.
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