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Abstract. We propose and analyze a fast spectral clustering algorithm
with computational complexity linear in the number of data points that
is directly applicable to large-scale datasets. The algorithm combines two
powerful techniques in machine learning: spectral clustering algorithms
and Nyström methods commonly used to obtain good quality low rank
approximations of large matrices. The proposed algorithm applies the
Nyström approximation to the graph Laplacian to perform clustering.
We provide theoretical analysis of the performance of the algorithm and
show the error bound it achieves and we discuss the conditions under
which the algorithm performance is comparable to spectral clustering
with the original graph Laplacian. We also present empirical results.

Keywords: spectral clustering, Nyström method, large-scale clustering,
sampling, sparsity, performance guarantees, error bounds, unsupervised
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1 Introduction

Clustering is one of the fundamental problems in machine learning. The recent
widespread development of sensors, data-storage and data-acquisition devices
has helped make large data-sets common place. This, however, poses a serious
computational challenge for the existing clustering techniques. Spectral clus-
tering techniques (Luxburg, 2007) are widely used, due to their simplicity and
empirical performance advantages compared to other clustering methods, such
as k-means or single-linkage algorithms. However, a significant obstacle to scal-
ing up spectral clustering to large datasets is that it requires building an affinity
matrix between pairs of data points which becomes computationally prohibitive
for large data-sets.

There have been several attempts to address this problem and make spectral
clustering algorithms more applicable to large-scale problems. Here we study an
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approach that extends the spectral clustering algorithm, described in Ng et al.
(2001), via Nyström approximation techniques. Our work is most related to
Williams and Seeger (2001); Fowlkes et al. (2004); Li et al. (2011), which use the
Nyström method to sample the columns of the affinity matrix and further ap-
proximate the full matrix by using correlations between the sampled columns and
the remaining columns (Fowlkes et al., 2004). However, these works did not pro-
vide performance guarantees; that is our primary contribution. Other approaches
to scaling up spectral clustering include work by Yan et al. (2009), which used
the k-means clustering algorithm (Lloyd, 1982) as a preprocessing step to spec-
tral clustering, to reduce its computational complexity. The analysis assumes
the data are generated by a mixture model (the same assumption is made in the
work by Lashkari and Golland (2007)). Related work by Drineas and Mahoney
(2005) performs non-uniform sampling of the Gram matrix and provides a bound
on the approximation error, however in order to achieve good performance one
may need to sample large number of columns (in special cases even O(n)) and,
furthermore, the practicality of this technique for massive datasets may be lim-
ited (Yan et al., 2009). Several other works on constructing approximations that
are tighter than the Nyström method’s, for sparse graph Laplacians, have also
emerged (Fung et al., 2011; Spielman and Teng, 2011). However, the computa-
tional complexity of these methods depends highly on the number of edges in
the graph. In contrast, the Nyström method has a fixed complexity that is de-
pendent only on the number of vertices n and the number of sampled columns
l. This is potentially more useful in cases where a large number of edges exist
but only a few have significantly large weights, as is the case in many sparse
datasets that arise in applications, such as collaborative filtering.

This paper combines the spectral clustering algorithm (Ng et al., 2001) with
the Nyström approximation method by using a Nyström approximation to the
graph Laplacian. Our analysis differs from the approach of Belkin and Niyogi
(2007) in that we focus on the finite sample analysis whereas Belkin and Niyogi
(2007) emphasized asymptotic results. In particular, they show that if points
are sampled uniformly at random from an unknown sub-manifold M ∈ R

N ,
then the eigenvectors of a suitably constructed graph Laplacian converge to the
eigenfunctions of the Laplace-Beltrami operator on M. Our approach leads to
a practical algorithm with complexity linear in the number of data points n.
We provide performance guarantees for this algorithm by combining Nyström
approximation analysis, using a uniform random sampling without replacement
scheme due to Kumar et al. (2009), with perturbation theory analysis (Ng et al.,
2001). We discuss conditions under which the algorithm’s performance is com-
parable to spectral clustering with the original graph Laplacian.

2 Approach

2.1 Spectral Clustering Algorithm

In general, spectral clustering methods can be interpreted as graph partition-
ing algorithms and the above algorithm (Algorithm 1) can be seen as graph
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Algorithm 1. Spectral clustering

Input: dataset S = {s1, s2..., sn} ∈ R
d, number of clusters k, kernel function κ :

R
d × R

d �→ R

Output: k-clustering of S

A ∈ R
n×n s.t. Aij = δ[i �= j]κ(si, sj)

D ∈ R
n×n s.t.Dij = δ[i = j]

∑n
j=1 Aij

L = I −D− 1
2AD− 1

2

X ∈ R
n×k s.t. SmallestEigenVectors(L, k)

Y ∈ R
n×k s.t. Yim = Xim/

√∑
m X 2

im

K = ClusterRows(Y) (via any k-clustering algorithm minimizing distortion, i.e. k-
means)

partitioning with a normalized-cut cost function. Algorithm 1 shows the widely
used normalized spectral clustering algorithm presented in Ng et al. (2001).
Given the set of n points S = {s1, s2..., sn} the algorithm first builds an n× n
affinity matrix A, i.e.:

Aij = κ(si, sj) if i �= j and 0 otherwise.

Here Aij corresponds to the i’th row and j’th column of the affinity matrix and κ
is any kernel function accepting two input data-points and returning a scalar out-
put. Once the affinity matrix is computed, the normalized graph Laplacian L can
be constructed. The first k eigenvectors of L are then normalized and clustered.
It was shown in Ng et al. (2001) that one can perform spectral k-clustering using
a perturbed version Ã of the ideal affinity matrix A. Under certain assumptions,
the clusterings obtained using A and Ã will be similar. Our goal is to extend
these assumptions and show that using ideal graph Laplacian L and its Nyström
r-rank approximation, L̃ will also give similar clustering results. Based on the
analysis in Ng et al. (2001) we know that if the four assumptions listed below
are satisfied then using either Ã or A to perform spectral clustering will give
similar partitionings of the dataset (and also similar to the true clustering of the
dataset):

– Assumption A1: ∃γ>0∀i={1,2,...,k}λi
2 ≤ 1− γ, where λi

2 is the second largest
eigenvalue of Li, where Li is the subblock of L corresponding to cluster i.

– Assumption A2: ∃ε1>0∀i1,i2={1,2,...,k},i1 �=i2

∑
j∈Si1

∑
l∈Si2

Ã2
jl

d̃j d̃l
≤ ε1, where

d̃j =
∑

m∈Si1
Ãjm and d̃l =

∑
m∈Si2

Ãlm and Si is the set of points belonging

to the ith cluster.

– Assumption A3: ∃ε2>0∀i={1,2,...,k},j∈Si

∑
l:l �∈Si

Ãjl

d̃j
≤ ε2(

∑
l,m∈Si

Ã2
lm

d̃ld̃m
)−

1
2 .

– Assumption A4: ∃C>0∀i={1,2,...,k},j={1,2,...,ni}d̃j ≥ (
∑ni

l=1 d̃l)/(Cni).

Assumption A1 guarantees each cluster to be tight. Assumption A2 and A3
require data points within a cluster to be more connected to each other than
they are with data points from any other cluster. Finally, the last assumption
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requires that the points in any cluster can never be much less’ connected than
other points in the same cluster. The similarity of the clusterings obtained using
A and Ã is then assured via Theorem 1. Let yij be the jth row of Yi from

Algorithm 1, where Yi is the subblock of Y corresponding to cluster i. Then the
following theorem holds.

Theorem 1 (Ng et al. (2001)). Let assumptions A1, A2, A3 and A4 hold.
Set ε =

√
k(k − 1)ε1 + kε22. If γ > (2 +

√
2)ε, then there exist k orthonormal

vectors r1, r2, . . . , rk such that Y in Algorithm 1 satisfies

1

n

k∑

i=1

ni∑

j=1

‖yij − ri‖2 ≤ 4C(4 + 2
√
k)2

ε2

(γ −√
2ε)2

.

2.2 Nyström Method for Matrix Approximation

We now explicate the Nyström r-rank approximation for any symmetric positive
semidefinite (SPSD) matrix L ∈ R

n×n. After performing sampling (we will only
be using uniform sampling without replacement schemes), create matrix C ∈
R

n×l from the sampled columns. Then, form matrix W ∈ R
l×l matrix consisting

of the intersection of these l columns with the corresponding l rows of L. Let
W = UΣU�, where U is orthogonal and Σ = diag(σ1, σ2, . . . , σl) is a real diago-
nal matrix with the diagonal sorted in decreasing order. Let W+

r be the pseudo-
inverse of the best rank-r approximation to W (W+

r =
∑r

t=1 σ
−1
t U (t)U(t), where

U (t) and U(t) are respectively the tth column and row of U). Then the Nyström

approximation L̃ of L can be obtained as follows: L̃ = CW+
r C�. Furthermore

if we represent L̃ as L̃ = ŨΣ̃Ũ� then Σ̃ = n
l ΣWr and Ũ =

√
l
nCUWrΣ

−1
Wr

,

where Wr = UWrΣWrU
�
Wr

. Theorem 2 due to Kumar et al. (2009) shows the
performance bounds for the Nyström method when used with uniform sampling
without replacement. In Kumar et al. (2009) the authors also compare the qual-
ity of obtained Nyström approximations, on the experiments with large-scale
datasets, when using uniform and non-uniform sampling strategies (they con-
sider both sampling with and without replacement). They consider two most

Algorithm 2. Nyström method for matrix approximation

1: Input: matrix L, l - number of columns sampled, r - rank approximation (r ≤ l <<
n)

2: Output: Σ̃ and Ũ such that L̃ = ŨΣ̃Ũ�

3: L ← indices of l columns sampled
4: C ← G(:,L)
5: W ← C(L, :)
6: Wr ← best r-rank approximation to W

7: Σ̃ = n
l
ΣWr and Ũ =

√
l
n
CUWrΣ

−1
Wr

, where Wr = UWrΣWrU
�
Wr
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popular non-uniform sampling techniques: column-norm sampling and diagonal
sampling. They show that uniform sampling without replacement is not only
more effcient both in time and space but also improves the accuracy of the
Nyström method.

Theorem 2 (Kumar et al. (2009)). Let G ∈ R
n×n be an SPSD matrix. As-

sume that l columns of G are sampled uniformly at random without replacement,
let G̃r be the rank-r Nyström approximation to G and let Gr be the best rank-r

approximation to G. Let ε > 0, l ≥ 64r/ε4 and η =
√

log(2/δ)ξ(l,n−l)
l , where

ξ(m,u) = mu
m+u−1/2

1
1−1/(2max{m,u}) . Then with probability at least 1− δ,

‖G− G̃r‖F ≤ ‖G−Gr‖F + ε

⎡

⎣

⎛

⎝n

l

∑

i∈D(l)

Gii

⎞

⎠

√
√
√
√n

n∑

i=1

G2
ii + ηmax(nGii)

⎤

⎦

1
2

,

where ‖·‖F is the Frobenius norm,
∑

i∈D(l) Gii is the sum of the largest l diagonal
entries of G.

3 Fast Spectral Clustering Algorithm

For large-scale fast spectral clustering, we propose Algorithm 3. The algorithm
chooses l columns sampled uniformly at random from the affinity matrix. It
therefore never builds the entire n × n affinity matrix which would be compu-
tationally prohibitive. It then computes two sparse diagonal degree matrices D

Algorithm 3. Fast spectral clustering

Input: dataset S = {s1, s2..., sn} ∈ R
d, k - number of clusters, l - number of columns

sampled, r - rank approximation (k ≤ r ≤ l << n)
Output: k-clustering of S

L ← indices of l columns sampled (uniformly without replacement)
Â← A(:,L)
D ∈ R

n×n s.t.Dij = δ[i = j]1/
√∑l

j=1 Âij

Δ ∈ R
l×l s.t.Δij = δ[i = j]1/

√∑n
i=1 Âij

C ← Î −
√

l
n
D × Â×Δ: I

′
- matrix of columns of I indexed by L

W ← C(L, :)
Wr ← best r-rank approximation to W

Σ̃ = n
l
ΣWr and Ũ =

√
l
n
CUWrΣ

−1
Wr

, where Wr = UWrΣWrU
�
Wr

X ← SmallestEigenVectors(Ũ , k)

Y ← NormalizeRows(X ) : Yim = Xim/(
∑

m X 2
im)

1
2

K ← ClusterRows(Y ) (use any k-clustering algorithm minimizing distortion, i.e. k-
means)
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AND Δ. Subsequently, the matrix C is recovered which is n x l. Matrix C plays
the role of the sampled graph Laplacian. We then follow the steps of Algorithm 2
to obtain the approximate eigensystem of the graph Laplacian and finally the
first k eigenvectors are normalized and clustered. Clearly, Algorithm 3 performs
sampling of the affinity matrix. This is in contrast to the more computationally
expensive approach of computing the complete n × n affinity matrix and then
obtaining matrix C by sampling directly from the graph Laplacian. We provide
Theorem 3 to show that for appropriate values of l, both of these algorithms
will give similar clustering results. First, let us introduce some additional nota-
tion. We consider two scenarios: sampling the graph Laplacian and sampling the
affinity matrix. Let L be the set of indices of sampled columns. Let I

′
be the

matrix of columns of I that are indexed by L. Notice that for i ∈ {1, 2, . . . , n}
and j ∈ L, any entry in the sampled graph Laplacian has the following form:

C
′
ij = I

′
ij −

Aij
√
(
∑n

a=1 Aaj)(
∑n

b=1 Aib)
.

On the other hand, matrix C in Algorithm 3 has the following form:

Cij = I
′
ij −

√
l

n

Aij
√
(
∑n

a=1 Aaj)(
∑

b∈L Aib)
.

The difference lies in the second term in the denominator and the scaling factor√
l
n . Consider Theorem 3.

Theorem 3. Let Aij ’s be iid1 scalar random variables (bounded in [0, 1]) whose
expectation is μ. With probability at least 1− δ the following holds:

C
′
ij

√
μ

μ+ δ′ ≤ lim
n→∞Cij ≤ C

′
ij

√

max(
μ

μ− δ′ , 1),

where δ
′
= 1√

l

√
log(2/δ).

Proof. By the law of large numbers we have that limn→∞ 1
n

∑n
b=1 Aib = μ. By

Hoeffding’s inequality we have that with probability at least 1−δ, | 1l
∑

b∈L Aib−
μ| ≤ 1√

l

√
log(2/δ). Therefore

lim
n→∞Cij = lim

n→∞

[

I
′
ij −

√
l

n

√
n

l
(I

′
ij − C

′
ij)

√
1
n

∑n
b=1 Aib

1
l

∑
b∈L Aib

]

= lim
n→∞

[

C
′
ij

√
1
n

∑n
b=1 Aib

1
l

∑
b∈L Aib

]

1 The iid assumption is made only for the purpose of this section.
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Finally, if 1
l

∑
b∈L Aib ≥ μ:

C
′
ij

√
μ

μ+ δ′ ≤ lim
n→∞

[

C
′
ij

√
1
n

∑n
b=1 Aib

1
l

∑
b∈L Aib

]

≤ C
′
ij ,

and if 1
l

∑
b∈L Aib < μ:

C
′
ij ≤ lim

n→∞

[

C
′
ij

√
1
n

∑n
b=1 Aib

1
l

∑
b∈LAib

]

≤ C
′
ij

√
μ

μ− δ′ ,

where δ
′
= 1√

l

√
log(2/δ). Combining both cases gives the theorem.

Theorem 3 shows that, for sufficiently large l, the two algorithms under con-
sideration (Algorithm 3 sampling the affinity matrix and the slower alternative
of sampling the graph Laplacian) should produce similar C matrices and thus
yield similar clustering results. Furthermore, in batch settings with finite n, Al-
gorithm 3 is still applicable, i.e. consider the example presented on Figure 1
showing the partitionings of two simple datasets obtained by spectral clustering
algorithm of Ng et al. (2001) using the full affinity matrix and, for comparison,
our Algorithm 3. The size of both datasets is very small (n = 50), but the per-
formance of both algorithms is very similar. Finally, in our theoretical analysis
we will focus on the scenario when the graph Laplacian is being sampled. This
analysis is easier than considering sampling the affinity matrix which, for in-
stance, does not need to be PSD. We end this section with Theorem 4 showing
the computational complexity of the proposed Algorithm 3.

a) b)

Fig. 1. Result of spectral clustering on two datasets (a and b), n = 50, l = 10% ∗ n,
r = l. Top row: the dataset (left) and the partitioning obtained by spectral clustering
using the full affinity matrix (right). Bottom row: the dataset with sampled data points
(green) (left) and the partitioning obtained by Algorithm 3 (using the sampled affinity
matrix) (right).

Theorem 4. The computational complexity of Algorithm 3 is O(nlmax(r, c))+
Γ , where c is the cost of evaluating a single kernel function between two data
points and Γ is the cost of the clustering algorithm minimizing distortion used
to obtain the final clustering.
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4 Performance Guarantees

As was mentioned before the theoretical analysis considers the case where we
sample the graph Laplacian L built from the n × n affinity matrix and thus
C is an n × l matrix of sampled columns. Furthermore, matrix W is an l × l
matrix consisting of the intersection of these l columns with the corresponding l
rows of L. Our theoretical analysis will consider the performance of the proposed
algorithm in the ideal case where A and L are block diagonal matrices (for further
details, the reader is referred to Ng et al. (2001)). This section is organized as
follows: we will first show the main result (Theorem 5) and then we will show
the technical lemmas and proofs that led to this result.

4.1 Main Result

Let A be the ideal affinity matrix that gave rise to the ideal graph Laplacian
L. Let L̃ be the Nyström r-rank approximation to L and let Ã be the affinity
matrix that would give rise to L̃ in case when no Nyström approximation was
used. We will now present our main result, Theorem 5. Let yij be the jth row of

Yi from Algorithm 3, where Yi is the subblock of Y corresponding to cluster i.
Then the following theorem holds.

Theorem 5. Let ε > 0, l ≥ 64r/ε4 and η =
√

log(2/δ)ξ(l,n−l)
l , where ξ(m,u) =

mu
m+u−1/2 · 1

1−1/(2max{m,u}) . Let C be a bounded positive constant (defined in

Lemma 4), ε1 = εnC2
√
1 + η and ε2 = nC5/2√nε1(ε

√
1 + η + 2 − 1

n ) and set

ε
′
=
√
k(k − 1)ε1 + kε22. Let ∀i={1,2,...,k}λi

2 < 1 − εn
√
r(1 + η), where λi

2 be the
second largest eigenvalue of Li (subblock of L corresponding to cluster i). Let γ
be a positive constant defined in Lemma 1. If γ > (2 +

√
2)ε

′
, then with prob-

ability at least 1 − δ, there exist k orthogonal vectors r1, r2, . . . , rk (r�i rj = 1 if
i = j, 0 otherwise) so that Y in Algorithm 3 satisfies:

1

n

k∑

i=1

ni∑

j=1

‖yij − ri‖2 ≤ 4C(4 + 2
√
k)2

ε
′2

(γ −√
2ε′)2

Theorem 5 is generalization of Theorem 1. It differs from Theorem 1 in that it
extends the four assumptions used in Theorem 1 which result from the fact that
Ã is a very special version of the perturbed ideal A, in particular it is an affinity
matrix that gave rise to the Nyström r-rank approximation to the ideal graph
Laplacian. The assumption on each λi

2 ensures that each cluster is tight enough
such that after sampling the clusters will still remain tight (γ can be interpreted
as the measure of tigtness of each cluster after sampling). This assumption also
shows that when we decrease the number of sampled columns l, we expect the
original clusters to be tighter in order for the clusters obtained after sampling
to also be tight enough such that the dataset is still k-clusterable.
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4.2 Theoretical Analysis

We will first present Theorem 6 which is a version of Theorem 2 when the
sampled matrix is a graph Laplacian L. Theorem 6 relies on the fact that L is a
SPSD matrix with ones on its diagonal and is of rank r, hence it is its own best
rank approximation.

Theorem 6. Let L ∈ R
n×n be an ideal graph Laplacian. Assume that l columns

of L are sampled uniformly at random without replacement and let L̃ be the best

rank-r approximation to L. Let ε > 0, l ≥ 64r/ε4 and η =
√

log(2/δ)ξ(l,n−l)
l ,

where ξ(m,u) = mu
m+u−1/2 · 1

1−1/(2max{m,u}) . Then with probability at least 1− δ,

‖L− L̃‖F ≤ εn
√
1 + η.

Recall a useful theorem (Theorem 7) that we will need later. It can be found
i.e. in Kannan and Vempala (2009). Intuitively Theorem 7 implies that if two
matrices are close (in terms of the squared Frobenius norm of their difference),
then their singular values should also be close too.

Theorem 7. For any two n× n symmetric matrices A and B,

n∑

t=1

(σt(A) − σt(B))2 ≤ ‖A−B‖2F

We now proceed with the theoretical analysis that will lead to Theorem 5.
We aim to make use of Theorem 1 and then Theorem 6 to provide theoretical
guarantees on the performance of spectral clustering when using the Nyström
approximation to the ideal graph Laplacian. We will focus on extending assump-
tions A1, A2, A3 and A4 used in Theorem 1. We will present Lemma 1, 2, 3 and 4.
Applying them to Theorem 1 yields our main result captured in Theorem 5.

Lemma 1. Let λi
2 be the second largest eigenvalue of Li, where Li is the subblock

of L corresponding to cluster i, and let λ̃i
2 be the second largest eigenvalue of L̃i,

where L̃i is the subblock of L̃ corresponding to cluster i. If λi
2 < 1− εn

√
r(1 + η)

then with probability at least 1− δ, ∃γ>0λ̃
i
2 ≤ 1− γ.

Proof. We know that

r∑

t=1

(λ̃i
t − λi

t)
2 ≤ ‖L̃i − Li‖2F ≤ ‖L̃− L‖2F , (1)

where the first inequality comes from Theorem 7. By applying Jensen’s inequality
to the left hand side of Equation 1, we obtain

r∑

t=1

|λ̃i
t − λi

t| ≤
√
r‖L̃− L‖F . (2)
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Then in particular the following holds:

|λ̃i
2 − λi

2| ≤
√
r‖L̃− L‖F . (3)

By assumption, we know that λi
2 < 1 − εn

√
r(1 + η). Now, if λ̃i

2 ≤ λi
2 then

lemma holds. If λ̃i
2 > λi

2, then we can rewrite Equation 3 as:

λ̃i
2 ≤ λi

2 +
√
r‖L̃− L‖F (4)

Since λ2 < 1− εn
√
r(1 + η) and by Theorem 6 with probability at least 1− δ

the following holds:
√
r‖L̃ − L‖F ≤ εn

√
r(1 + η), then we can write that with

probability at least 1− δ, ∃γ>0λ̃
i
2 ≤ 1− γ.

Lemma 1 extends assumption A1 from Ng et al. (2001). Before we proceed to
the next lemma, let us first introduce some more notation. We know that Ã is
defined as the affinity matrix that would give rise to graph Laplacian L̃ in case
when no Nyström approximation was used and thus L̃ = I − D̃−1/2ÃD̃−1/2 (in
this case D̃ is the diagonal matrix whose (i, i)-element is the sum of Ã’s ith row).
Let i1 and i2 be such that i1, i2 ∈ {1, 2, . . . , k} and i1 �= i2. Define the follow-
ing: d(j) =

∑n
m=1;j∈Si1

Ajm, d̃(j) =
∑

m=1;j∈Sn
i1

Ãjm, d(l) =
∑n

m=1;l∈Si2
Alm,

d̃(l) =
∑n

m=1;l∈Si2
Ãlm, dj =

∑n
m=1;m,j∈Si1

Ajm, d̃j =
∑n

m=1;m,j∈Si1
Ãjm, dl =

∑n
m=1;m,l∈Si2

Alm, d̃l =
∑n

m=1;m,l∈Si2
Ãlm. Notice that d(j) ≥ dj and d(l) ≥

dl. Let ∀i∈{1,2,...,k}d̃∗(i) = minj∈Si d̃j and d̃∗ = mini∈{1,2,...,k} d̃∗(i). Also, let

∀i∈{1,2,...,k}D̃∗(i) = maxj∈Si d̃(j) and D̃∗ = maxi∈{1,2,...,k} D̃∗(i). At this point

we will make a reasonable assumption that D̃∗

d̃∗ is a bounded positive con-

stant. Assuming the dataset has balanced clusters (i.e., no cluster is signifi-
cantly bigger/smaller than any other) and in particular the datasets have no
outliers, this assumption will be naturally satisfied. Furthermore, let αSi1Si2

=

minj∈Si1,l∈Si2,i1,i2∈{1,2,...,k}
d̃j d̃l

d̃(j) d̃(l)
and let α = mini1,i2∈{1,2,...,k} αSi1Si2

. Note

that α ∈ (0, 1] and in the ideal case α = 1. We are now ready to state and prove
Lemma 2.

Lemma 2. With probability at least 1 − δ, ∀i1,i2={1,2,...,k},i1 �=i2

∑

j∈Si1

∑

l∈Si2

Ã2
jl

d̃j d̃l

≤ ε1, where ε1 = εn
(

D̃∗

d̃∗

)2 √
1 + η.

Proof. We know that:

∑

j∈Si1

∑

l∈Si2

‖L̃jl − Ljl‖2 ≤ ‖L̃− L‖F . (5)

The left-hand side of Equation 5 can be further expressed as

∑

j∈Si1

∑

l∈Si2

| Ãjl
√
d̃(j)d̃(l)

− Ajl
√
d(j)d(l)

|2 =
∑

j∈Si1

∑

l∈Si2

| Ãjl
√
d̃(j)d̃(l)

|2, (6)
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where the last equality comes from the fact that ∀j∈Si1 ,l∈Si2 ,i1 �=i2Ajl = 0. Com-
bining this result with Equation 5 we have

∑

j∈Si1

∑

l∈Si2

Ã2
jl

d̃(j)d̃(l)
≤ ‖L̃− L‖F . (7)

Rewrite Equation 7 as:

∑

j∈Si1

∑

l∈Si2

Ã2
jl

d̃j d̃l

d̃j d̃l

d̃(j)d̃(l)
≤ ‖L̃− L‖F . (8)

The left-hand side of Equation 8 is lower-bounded by α
∑

j∈Si1

∑
l∈Si2

Ã2
jl

d̃j d̃l
and

thus
∑

j∈Si1

∑

l∈Si2

Ã2
jl

d̃j d̃l
≤ 1

α
‖L̃− L‖F . (9)

Again, by Theorem 6 we can write that with probability at least 1 − δ the
following holds:

∑

j∈Si1

∑

l∈Si2

Ã2
jl

d̃j d̃l
≤ εn

α

√
1 + η ≤ εn

(
D̃∗

d̃∗

)2
√
1 + η, (10)

where the last inequality comes from the fact that α ≥ ( d̃∗

D̃∗ )
2.

Lemma 2 extends assumption A2 from Ng et al. (2001).

Define βSi = maxj∈Si,l �∈Si

d̃l

d̃j
and β = maxi∈{1,2,...,k} βSi . We can now proceed

to the next lemma.

Lemma 3. With probability at least 1− δ, ∀i={1,2,...,k},j∈Si

∑
l:l �∈Si

Ãjl

d̃j

≤ ε2(
∑

l,m∈Si

Ã2
lm

d̃ld̃m
)−

1
2 , where ε2 = n

(
D̃∗

d̃∗

)2√
n D̃∗

d̃∗ ε1(ε
√
1 + η + 2− 1

n ).

Proof. Consider any i ∈ {1, 2, . . . , k} and j ∈ Si. We will consider the expression:

[∑
l:l �∈Si

Ãjl

d̃j

]

×
⎡

⎣
∑

l,m∈Si

Ã2
lm

d̃ld̃m

⎤

⎦

1
2

(11)

The first term in the above expression can be upper-bounded by Jensen’s in-
equality as follows

∑
l:l �∈Si

Ãjl

d̃j
=
∑

l:l �∈Si

Ãjl

d̃j
=

⎡

⎢
⎣

⎛

⎝
∑

l:l �∈Si

Ãjl

d̃j

⎞

⎠

2
⎤

⎥
⎦

1
2

≤
⎡

⎣|Si|
∑

l:l �∈Si

(
Ãjl

d̃j

)2
⎤

⎦

1
2

. (12)
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The right-hand side of Equation 12 can be rewritten and bounded as

⎡

⎣|Si|
∑

l:l �∈Si

(
Ã2

jl

d̃j d̃l
× d̃l

d̃j

)⎤

⎦

1
2

≤
⎡

⎣|Si|β
∑

l:l �∈Si

(
Ã2

jl

d̃j d̃l

)⎤

⎦

1
2

. (13)

Combining these results together and applying Equation 10 we see that, with
probability at least 1− δ,

∑
l:l �∈Si

Ãjl

d̃j
≤
√
nβε1. (14)

Now focus on bounding the second term in Expression 11. Recall that
∑

l,m∈Si

‖L̃lm − Llm‖2 ≤ ‖L̃− L‖F . (15)

Similarly, as in previous paragraph, we can write that

∑

l,m∈Si

‖L̃lm − Llm‖2 =
∑

l,m∈Si

| Ãlm√
d̃(l)d̃(m)

− Alm√
d(l)d(m)

|2

=
∑

l,m∈Si

| Ãlm
√
d̃(l)d̃(m)

− 1

ni
|2, (16)

where ni = |Si|. The last equality uses the fact that ∀l,m∈SiAlm = 1 and d(l) =
d(m) = dl = dm = ni. We can then expand the right-hand side of Equation 16:

∑

l,m∈Si

| Ãlm
√
d̃(l)d̃(m)

− 1

ni
|2 =

∑

l,m∈Si

⎛

⎝ Ã2
lm

d̃(l)d̃(m)

− 2Ãlm

ni

√
d̃(l)d̃(m)

+
1

n2
i

⎞

⎠

=
∑

l,m∈Si

⎛

⎝ Ã2
lm

d̃ld̃m
× d̃ld̃m

d̃(l)d̃(m)

− 2Ãlm

ni

√
d̃(l)d̃(m)

⎞

⎠+ 1. (17)

Equation 17 can be lower-bounded as:

∑

l,m∈Si

⎛

⎝ Ã2
lm

d̃ld̃m
× d̃ld̃m

d̃(l)d̃(m)

− 2Ãlm

ni

√
d̃(l)d̃(m)

⎞

⎠+1 ≥ α
∑

l,m∈Si

Ã2
lm

d̃ld̃m
− 2

ni

ñi
+1, (18)

where ñi is the number of data points assigned to cluster i when using L̃ rather
than L.

Let ρ = maxi∈{1,2,...,k} 2ni

ñi
. Combining Equation 15 and 18 we obtain:

∑

l,m∈Si

Ã2
lm

d̃ld̃m
≤ 1

α
(‖L̃− L‖F + ρ− 1). (19)
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After applying Theorem 6 we obtain that with probability at least 1− δ

∑

l,m∈Si

Ã2
lm

d̃ld̃m
≤ 1

α
(εn
√
1 + η + ρ− 1). (20)

Combining Equation 14 and 20 we get the following:

[∑
l:l �∈Si

Ãjl

d̃j

]

×
⎡

⎣
∑

l,m∈Si

Ã2
lm

d̃ld̃m

⎤

⎦

1
2

≤
√
nβε1 × 1

α
(εn
√
1 + η + ρ− 1)

≤ n

(
D̃∗

d̃∗

)2
√

n
D̃∗

d̃∗
ε1

(

ε
√
1 + η + 2− 1

n

)

, (21)

where the last inequality uses the fact that α ≥ ( d̃∗

D̃∗ )
2, β ≤ D̃∗

d̃∗ and ρ ≤ 2n.

Lemma 4. ∃C>0∀i={1,2,...,k},j={1,2,...,ni}d̃j ≥ (
∑ni

l=1 d̃l)/(Cni).

Proof. Consider any i ∈ {1, 2, . . . , k} and any j, l ∈ Si. It is true that

d̃j
∑ni

l=1 d̃l
≥ d̃∗

D̃∗ni

≥ 1

Cni
, (22)

where C = D̃∗

d̃∗ is a bounded positive constant as was already discussed before.

Lemma 4 extends assumption A4 from Ng et al. (2001).

5 Experiments

To evaluate the proposed algorithms empirically, we consider the four datasets
described in Ng et al. (2001). We used a Gaussian kernel to build the affinity
matrix (κ(si, sj) = exp(−‖si − sj‖2/2σ2)). The parameters σ and r were man-
ually tuned to obtain the best performance. Figure 2 shows the datasets with
plots of the error versus the percent of the columns sampled (l/n). We used
uniform sampling without replacement throughout. Note that both the choice of
columns as well as the initialization of the k-means clustering algorithm2 slightly
affect the performance. Thus, we show two types of results: the curves in the
second row on Figure 2 obtained by averaging over 10,000 runs and the curves
underneath showing the most frequently obtained performance (i.e. the median
case). Also we performed two sets of experiments where r was held constant as
well as where r was tuned for each value of l. In the first case, we set r = τ (the
value of τ for each dataset is provided under Figure 2) and when l ≤ τ we set
τ = l. In the second case, we observed that tuning r for each value of l (when l
increases, r should decrease) can improve the performance but the improvement
is relatively small and not worth presenting here.

2 There was no significant difference in the choice of the distortion-minimizing al-
gorithm we use in the last step of our spectral clustering algorithm, be it Lloyd’s
algorithm, k-means++ and k-means#.
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Fig. 2. Top row: the datasets with color-coded clusters. Second Row: error curves vs %
of columns sampled with the error averaged over 10,000 runs. Third row: error curves vs
% of columns sampled with the most frequent result being displayed. The parameters
of interest for each experiment (from left to right) were: a) n = 1000; σ = 1; τ = 50,
b) n = 1500; σ = 1; τ = 20, c) n = 2000; σ = 1; τ = 50, d) n = 2000; σ = 1; τ = 50.

Acknowledgments. The authors thank Sanjiv Kumar for helpful suggestions.

References

Belkin, M., Niyogi, P.: Convergence of Laplacian eigenmaps. In: NIPS 2006, pp. 129–136.
MIT Press (2007)

Drineas, P., Mahoney, M.W.: On the Nyström Method for Approximating a Gram
Matrix for Improved Kernel-Based Learning. Journal of Machine Learning Research
6, 2005 (2005)

Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the nyström
method. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 214–225 (2004)

Fung, W.S., Hariharan, R., Harvey, N.J., Panigrahi, D.: A general framework for graph
sparsification. In: STOC (2011)

Kannan, R., Vempala, S.: Spectral algorithms. Foundations and Trends in Theoretical
Computer Science 4(3-4), 157–288 (2009)

Kumar, S., Mohri, M., Talwalkar, A.: Sampling techniques for the nyström method.
Journal of Machine Learning Research 5, 304–311 (2009)

Lashkari, D., Golland, P.: Convex clustering with exemplar-based models. In: NIPS
2007 (2007)

Li, M., Lian, X.-C., Kwok, J.T., Lu, B.-L.: Time and space efficient spectral clustering
via column sampling. In: 24th IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2011, pp. 2297–2304. IEEE (2011)

Lloyd, S.P.: Least squares quantization in pcm. IEEE Transactions on Information
Theory 28, 129–137 (1982)



Fast Spectral Clustering via the Nyström Method 381

Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4), 395–416
(2007)

Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm.
In: NIPS 2001, pp. 849–856. MIT Press (2001)

Spielman, D.A., Teng, S.-H.: Spectral sparsification of graphs. SIAM Journal on Com-
puting 40(4), 981–1025 (2011)

Williams, C., Seeger, M.: Using the Nyström method to speed up kernel machines. In:
NIPS 2000, pp. 682–688. MIT Press (2001)

Yan, D., Huang, L., Jordan, M.I.: Fast approximate spectral clustering. In: ACM
SIGKDD, pp. 907–916. ACM (2009)


	Fast Spectral Clustering via the Nystr¨omMethod
	1 Introduction
	2 Approach
	2.1 Spectral Clustering Algorithm
	2.2 Nystr¨om Method for Matrix Approximation

	3 Fast Spectral Clustering Algorithm
	4 Performance Guarantees
	4.1 Main Result
	4.2 Theoretical Analysis

	5 Experiments
	References




