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Selective sampling, a realistic active learning model, has received recent attention
in the learning theory literature. While the analysis of selective sampling is still in
its infancy, we focus here on one of the (seemingly) simplest problems that remain
open. Given a pool of unlabeled examples, drawn i.i.d. from an arbitrary input
distribution known to the learner, and oracle access to their labels, the objective
is to achieve a target error-rate with minimum label-complexity, via an efficient
algorithm. No prior distribution is assumed over the concept class, however the
problem remains open even under the realizability assumption: there exists a
target hypothesis in the concept class that perfectly classifies all examples, and
the labeling oracle is noiseless.1 As a precise variant of the problem, we consider
the case of learning homogeneous half-spaces in the realizable setting: unlabeled
examples, xt, are drawn i.i.d. from a known distribution D over the surface of
the unit ball in R

d and labels yt are either −1 or +1. The target function is a
half-space u · x ≥ 0 represented by a unit vector u ∈ R

d such that yt(u · xt) > 0
for all t. We denote a hypothesis v’s prediction as v(x) = SGN(v · x).

Problem: Provide an algorithm for active learning of half-spaces, such that
(with high probability with respect to D and any internal randomness):

1. After L label queries, algorithm’s hypothesis v obeys Px∼D[v(x) �= u(x)] < ε.
2. L is at most the PAC sample complexity of the supervised problem,

Õ(d
ε log 1

ε ), and for a general class of input distributions, L is significantly
lower.2

3. Total running time is at most poly(d, 1
ε ).

1 Motivation

In most machine learning applications, access to labeled data is much more lim-
ited or expensive than access to unlabeled samples from the same data-generating
distribution. It is often realistic to model this scenario as active learning. Often
the label-complexity, the number of labeled examples required to learn a con-
cept via active learning, is significantly lower than the PAC sample complexity.
While the query learning model has been well studied (see e.g. [1]), it is often
unrealistic in practice, as it requires oracle access to the entire input space. In
1 In the general setting, the target is the member of the concept class with minimal

error-rate on the full input distribution, with respect to the (possibly noisy) oracle.
2 Tilde notation suppresses terms in the high probability parameter, log d and log log 1

ε
.
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selective sampling (originally introduced by [4]) the learner receives unlabeled
data and may request certain labels to be revealed, at a constant cost per label.

2 State of the Art

Recent work has provided several negative results. Standard perceptron was
shown to require Ω( 1

ε2 ) labels under the uniform, using any active learning rule
[6]. Dasgupta [5] provided a general lower bound for learning half-spaces of Ω(1

ε )
labels, when the size of the unlabeled sample is bounded. Kääriäinen provided
a lower bound of Ω(η2

ε2 ), where η is the noise rate in the fully agnostic case [9].
Several of the positive results to date have been based on intractable algo-

rithms. Dasgupta [5] gave a general upper bound on labels for selective sam-
pling to learn arbitrary concepts under arbitrary input distributions, which for
half-spaces under distributions λ-similar to uniform is Õ(d log λ log2 1

ε ). The al-
gorithm achieving the bound is intractable: exponential storage and computa-
tion are required, as well as access to an exponential number of functions in
the concept class (not just their predictions). Similarly, recent work by Balcan,
Beygelzimer and Langford [2] provides an upper bound on label-complexity of
Õ(d2 log 1

ε ) for learning half-spaces under the uniform, in a certain agnostic sce-
nario, via an intractable algorithm.

Several selective sampling algorithms have been shown to work in practice,
e.g. [10]. Some lack performance guarantees, or have been analyzed in the regret
framework, e.g. [3]. Under a Bayesian assumption, Freund et al. [7] gave a bound
on label-complexity of Õ(d log 1

ε ) for learning half-spaces under the uniform,
using Query By Committee [13], a computationally complex algorithm that has
recently been simplified to yield encouraging empirical results [8]. This is the
optimal label-complexity for the problem when the input distribution is uniform,
in which case the PAC sample complexity is Θ̃(d

ε ) [11, 12].
There have also been some positive results for efficient algorithms, however

to date the analyses have only been performed with respect to input distrib-
utions that are uniform or near-uniform. Dasgupta, Kalai and Monteleoni [6]
introduced an efficient and fully online algorithm yielding the optimal label-
complexity for learning half-spaces under the uniform. An algorithm due to [4],
which is tractable in the realizable case, was recently shown to require at most
Õ(d2 log 1

ε ) labels under the uniform [2].

3 Other Open Variants

Along with the simple version stated here, the following variants remain open:

1. D is unknown to the learner.
2. Agnostic setting, under low noise rates:3 an efficient algorithm with a non-

trivial label-complexity bound under the uniform, or arbitrary distributions.

3 The fully agnostic setting faces the lower bound of [9].
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3. Online constraint: storage and time complexity (of the online update) must
not scale with the number of seen labels or mistakes.

4. Analagous goal for other concept classes, or for general concepts.
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