
Practical Online Active Learning for Classification

Claire Monteleoni∗

Department of Computer Science and Engineering
University of California, San Diego

cmontel@cs.ucsd.edu

Matti Kääriäinen
Department of Computer Science

University of Helsinki
matti.kaariainen@cs.helsinki.fi

Abstract

We compare the practical performance of several re-
cently proposed algorithms for active learning in the on-
line classification setting. We consider two active learning
algorithms (and their combined variants) that are strongly
online, in that they access the data sequentially and do not
store any previously labeled examples, and for which for-
mal guarantees have recently been proven under various
assumptions. We motivate an optical character recognition
(OCR) application that we argue to be appropriately served
by online active learning. We compare the practical effi-
cacy, for this application, of the algorithm variants, and
show significant reductions in label-complexity over ran-
dom sampling.

1. Introduction

The emerging problem of OCR on small devices is one
of several real-world motivations for online active learning
algorithms. As of 2004, a quarter of US physicians were al-
ready using handheld computers.1 In the 2004 US presiden-
tial election, several major political organizations equipped
canvassers going door-to-door with handheld computers
to collect neighborhood voting data. Limited computing
power may constrain the OCR training of these handhelds
to be online. In an online active learning setting, the device
could occasionally ask the user to provide a classification
label for a written character that was difficult to interpret.
The human could then enter the character’s label through
the keypad, for example. Human usage would likely fa-
vor algorithms that minimize the number of such correction
events during the learning process.

At a general level, the active learning model is applica-
ble to any domain in which unlabeled data is easy to come

∗Work done primarily while at MIT Computer Science and Artificial
Intelligence Lab.

1McAlearney AS, Schweikhart SB, Medow MA, Doctors’ experience
with handheld computers in clinical practice: qualitative study. British
Medical Journal. 2004 May 15;328(7449):1162.

by and there exists a (potentially difficult or expensive)
mechanism by which to obtain their labels. By recasting a
supervised problem into the active learning framework, the
label-complexity, the number of labeled examples required
to learn a concept via active learning, can be significantly
lower than the PAC sample complexity. While the query
learning model has been well studied theoretically (see e.g.
[1]), it is often unrealistic in practice, as it requires access
to labels for the entire input space. It has been shown in do-
mains such as OCR and text that the synthetic examples on
which the learner has the most uncertainty may be difficult
even for a human to label [14]. In the selective sampling
model (originally introduced by [7]) the learner receives un-
labeled data and may request certain labels to be revealed,
at a constant cost per label. We will operate in this model,
which we will refer to below as active learning.

The online learning framework is motivated in part by
resource limitations facing computational learners, and the
vast amounts of data involved in many machine learning ap-
plications. In the online learning model, the learner receives
observations one at a time and is constrained against storing
all previously seen observations and then simply perform-
ing batch learning. In particular, neither the time complex-
ity of the hypothesis update, nor the learner’s memory us-
age, may grow with the number of seen examples. Active
learning can be modeled in an online or sequential fashion,
in which unlabeled examples are received one at a time and
the learner must make a one-time choice whether to pay
for the current label. We refer to this framework as online
active learning. Algorithms for sequential active learning
that also respect online constraints on time and memory, we
will refer to as strongly online active learners, though with
a slight overload of terminology we will also refer to them
simply as online active learners.

The problem of online active learning has received re-
cent attention in the machine learning theory literature. We
will focus on algorithms that both have some form of theo-
retical guarantee and perform sequential active learning in a
strongly online fashion: neither the time-complexity of their
hypothesis update step, nor their memory usage, scale with

1-4244-1180-7/07/$25.00 ©2007 IEEE

the number of examples seen. In fact, as they are both based
on Perceptron variants, they each store only a single vector
and their algorithmic form is very light-weight and easy to
implement. The two algorithms have not been compared
theoretically and since some of their analysis assumptions
are rather limiting, we evaluate them on real data, in or-
der to assess their performance when these assumptions are
relaxed. Moreover, we illustrate the useful application of
online active learning to optical character recognition.

2. Related Work

Several active learning algorithms have been shown to
work in practice, for example Lewis and Gale’s sequen-
tial algorithm for text classification [14], which has batch
access to the remaining unlabeled datapoints at each itera-
tion. Tong and Koller [17] introduced several active learn-
ing algorithms, that use a support vector machine (SVM) as
the underlying classifier, which work well in practice. At
each step, the SVM algorithm is used to update the hypoth-
esis, and the next query is selected from the pool of remain-
ing unlabeled data by optimizing a margin-based heuristic
that varies between different versions of the algorithm. Al-
though, as very recent work has shown [3], it is possible to
define and analyze variants of these heuristics that operate
in the sequential setting, the use of the SVM sub-algorithm
breaks the online constraints on time and memory. Thus,
neither of these approaches are strongly online.

Among the active learning algorithms that have been
shown to obey theoretical guarantees, several schemes with
provable upper bounds on label-complexity are actually in-
tractable. Dasgupta provided a general result in a non-
Bayesian, realizable setting (i.e. there exists a perfect sepa-
rator for the data, in the concept class over which the learn-
ing is perfomed) for a scheme that requires exponential stor-
age and computation [8]. In a non-Bayesian, agnostic set-
ting, Balcan, Beygelzimer and Langford provided a label-
complexity upper bound for learning linear separators under
the uniform input distribution, that relies on an algorithm
that is computationally complex [2].

Several formal guarantees have been shown for active
learning algorithms that can actually be implemented. Un-
der Bayesian assumptions, Freund et al. [10] gave an up-
per bound on label-complexity for learning linear separators
under the uniform, using Query By Committee [16], a com-
putationally complex algorithm that has recently been sim-
plified to yield encouraging empirical results [11]. Cesa-
Bianchi, Conconi and Gentile provided regret bounds on an
active learning algorithm for learning linear thresholds [5]
from a stream of iid examples corrupted by random class
noise whose rate scales with the examples’ margins. Both
algorithms store all previously labeled points, and thus are
not online.

We focus on two algorithms for sequential active learn-

Initialization: s1 = 1√
d
, τ = 0, t = 1,

v1 = x0y0, τ = 0.
Do

Receive x.
Predict ŷ = sign(x · vt).
If |x · vt| ≤ st then:
Query the label y ∈ {−1, +1} of x.
Set (xt, yt) = (x, y).
If (xt · vt)yt < 0, then:

vt+1 = vt − 2(vt · xt)xt

st+1 = st

τ = 0
else:

vt+1 = vt

τ = τ + 1
If τ ≥ R, then:

st+1 = st/2
τ = 0

else: st+1 = st

t = t + 1
Until t == L

Figure 1. The DKM algorithm, parameterized by the dimension d,
and R, the waiting time before halving the active learning thresh-
old.

ing that are strongly online, and whose performance has
been analyzed formally under various assumptions. Das-
gupta, Kalai and Monteleoni (DKM) [9] provided an on-
line active learning algorithm with a label-complexity upper
bound for learning linear separators under the uniform input
distribution, in a non-Bayesian, realizable setting. We will
explore the empirical performance of this algorithm when
these assumptions of separability and uniform input distri-
bution are violated, by applying it to real data from OCR, an
application that, as we explained above, is particularly ap-
propriate for strongly online active learning. We compare
DKM’s performance to another state-of-the-art strongly on-
line active learning algorithm due to Cesa-Bianchi, Gentile
and Zaniboni (CBGZ) [6], which has regret bounds in the
individual sequence prediction context.

3. Algorithms

The algorithms we consider are both for learning linear
separators through the origin, in the online active learning
framework. We note that they can both be kernelized to
handle richer concept classes, however for clarity of expo-
sition, we will focus on learning linear separators in Rd.
Each algorithm can be decomposed into two parts: an ac-
tive learning mechanism, wrapped around a sub-algorithm
that implements supervised learning.

3.1. The DKM algorithm

The DKM active learning algorithm is shown in Figure 1.
The formal framework of the Dasgupta et al. work [9] is a
non-Bayesian setting in which no prior distribution is as-
sumed over hypotheses, yet the problem is assumed to be
realizable i.e. there exists a target linear separator that per-
fectly classifies all examples. The stream of examples is as-
sumed to be drawn iid from the uniform distribution on the
surface of the ball in Rd. This is without loss of generality,
as only the angle, not the magnitude, of a vector determines
its classification by a halfspace through the origin. Labels y
can be either +1 or −1.

The supervised learning sub-algorithm of DKM is a
modification of Perceptron. The same logic is used in de-
ciding whether to perform a hypothesis update: updates are
only made if the seen example was a mistake. However
the update rule differs from standard Perceptron’s update as
follows. Starting from hypothesis vt, as opposed to the Per-
ceptron update vt+1 = vt +µ ytxt, with learning rate µ, the
DKM update is vt+1 = vt − 2(vt ·xt)xt. This is equivalent
to replacing the learning rate with 2|vt·xt|, since updates are
only made on mistakes, in which case yt = − sign(vt ·xt).
This essentially tunes the size of the update to be propor-
tional to a measure of confidence on vt’s prediction on the
example. Using this update, the algorithm monotonically
decreases its true error rate with each mistake, unlike Per-
ceptron whose true error rate can actually increase on an
update.2

In the realizable setting, when the input distribution is
uniform, Dasgupta et al. [9] prove a mistake bound for the
supervised algorithm in terms of ε, the final true error rate
attained. The error rate decreases exponentially with the
number of mistakes (the mistake bound is logarithmic in
1
ε), whereas the mistake bound for the Perceptron update
in this setting is polynomial in 1

ε [4]. They also provide a
polynomial lower bound on mistakes (and therefore labels
for the active setting) on Perceptron with any active learning
rule, under the uniform input distribution.

The active learning component of DKM consists of
querying for a label only if |vt · x| < st for an active learn-
ing threshold st. The threshold is initialized to 1√

d
in the

uniform case. If the learner queries on R consecutive la-
bels without hitting an error, then st is halved. Since the
algorithm is more likely to err on examples that are close
to its current separator, this technique manages the tradeoff
between waiting too long to query an actual error (if st is
too high), and making an update that is too small (if st is
too low), since |vt · x| weights the DKM update. Dasgupta
et al. [9] prove a label-complexity bound of the same form
as the mistake bound, i.e. the true error of the algorithm de-

2As a side effect, the norm of the hypothesis stays constant at one,
unlike that of Perceptron.

Initialization: t = 1, v1 = (0, . . . , 0)".
Do

Receive x.
Set p̂ = x · vt, and predict ŷ = sign(p̂).
Toss a coin with P (Heads) = b

b+|p̂|.
If Heads
Query the label y ∈ {−1, +1} of x.
If y %= ŷ, then:

vt+1 = vt + ηyx"

else:
vt+1 = vt

t = t + 1
Until t == L

Figure 2. The CBGZ algorithm, parametrized by b > 0 and learn-
ing rate η > 0.

creases exponentially with the number of label queries. As
in the supervised case, the proof assumes separability and
the uniform input distribution. Monteleoni extended this
to input distributions that are λ-similar to uniform, i.e. for
any subset of the input space, the ratio between the distribu-
tion’s measure and the uniform measure is upper and lower
bounded by constants [15].

3.2. Application to the non-uniform setting

In applying the algorithm to the non-uniform setting we
changed the initial setting of the active learning threshold.
Dasgupta et al. used s1 = 1√

d
in the uniform case based on

a fact about uniform random projections (cf. Appendix of
[9]) that need not hold when the distribution is non-uniform.
Instead of starting the initial learning threshold so low, we
make no assumptions about the input distribution and thus
set the initial threshold to the maximum value that |x · vt|
could take, which is one, since ‖xt‖ = ‖vt‖ = 1 for all t.
Changing the initial active learning threshold might imply
that R should also differ from the value given in [9]. Re-
gardless, since that paper did not focus on optimizing con-
stants, we tuned R, along with the parameters of the other
algorithms, as discussed in the evaluation section.

3.3. The CBGZ algorithm

Similar to DKM, the strongly online active learning algo-
rithms proposed by Cesa-Bianchi et al. [6] are based on aug-
menting Perceptron-type algorithms with a margin-based
filtering rule; for the first-order version used in our experi-
ments, see Figure 2. The algorithm queries for a label with
probability b/(b + |p̂|), where p̂ is the margin of the ex-
ample with respect to the current hypothesis, and b > 0 is
a parameter. If a label is queried and the algorithm’s pre-
diction sign(p̂) is incorrect, a standard Perceptron update
is performed. The main result in [6] is a bound on the ex-

pected number of mistakes the algorithm makes on arbitrary
input sequences (with respect to the algorithm’s random-
ness). Both this mistake bound and the expected number of
label queries depend on b. By optimizing b for the mistake
bound, one can match the mistake bound for standard Per-
ceptron. However, this choice of b may result in querying
almost all the labels. The optimal choice of b depends on
the data, and thus in practice is known only in hindsight.
To circumvent this issue, the authors provide and analyze a
method for tuning b on the fly, but in practice this adaptive
strategy has inferior performance [6].

The theoretical results for DKM and CBGZ are incom-
parable, as the algorithms are based on different assump-
tions (uniform distribution with linear separability vs. in-
dividual sequences) and the main results give bounds for
different quantities (both accuracy and label-complexity for
DKM vs. mistake bounds for CBGZ). The lack of unified
theoretical results is one motivation for our empirical study
of the performance of these algorithms on real data.

4. Evaluation

4.1. Comparison class of algorithms

In designing our evaluation, we considered comparing
to the SVM-based active learning algorithms proposed by
Tong and Koller [17], as they are well-known benchmarks
for active learning. However the online classification frame-
work we consider differs from their pool-based model in
which active learners have unlimited access to all unlabeled
data. Although their active learning criteria could also be
adapted for the sequential setting (see e.g. [3]), their al-
gorithmic form is less constrained: SVMs do not obey the
online constraints on storage and running time that we are
concerned with in this work.

Given these extra degrees of freedom, we would expect
SVM-based methods to outperform all the strongly online
algorithms. We confirmed this with experiments using an
SVM as the sub-algorithm, paired both with random queries
and with the Simple active learning heuristic [17], with
batch access to the remaining unlabeled pool. In both cases
the number of labels queried was strictly lower than that of
all the online algorithms studied, for each associated error
rate. Since random sampling from a pool (drawn iid from
the input distribution) is equivalent to a stream of iid draws
from the input distribution, the random sampling case can
be viewed as sequential, in terms of the data observation.

Thus the ability to break the online constraints on time
and memory by running the SVM sub-algorithm, suffices to
provide improved performance versus the strongly online
algorithms. In fact the gains in performance due to using
SVMs instead of online methods were greater than those
from using the Simple active learning heuristic [17] instead
of random sampling. Our conclusion from those experi-

ments is that the online active learning algorithms studied in
this paper seem to be most useful in settings with strict on-
line requirements, while methods without online constraints
seem to have superior performance when applicable.

Therefore as an appropriate comparison class, we instead
consider only algorithms that are strongly online. Thus
we compare all six combinations of the two online active
learning rules discussed above, as well as random sampling,
paired with two strongly online supervised learning algo-
rithms: Perceptron and the supervised update of DKM. We
will denote as DKM2 the exact algorithm from [9], i.e. the
DKM active learning logic with the DKM supervised up-
date as the sub-algorithm. Running DKM’s active learn-
ing logic with Perceptron as the sub-algorithm, we refer
to as DKMactivePerceptron. We will denote as CBGZ,
the CBGZ active learning rule with Perceptron as the sub-
algorithm, as specified in [6]. For the sake of completeness,
we also experimented with combining CBGZ’s active learn-
ing rule and the DKM update, denoted below as CBGZac-
tiveDKMupate. The random sampling methods simply flip
a coin as to whether to query the current point’s label, and
update using Perceptron (randomPerceptron) or the DKM
update (randomDKMupdate). This method is equivalent to
performing supervised learning with the sub-algorithm in
question, as it yields a sequence of labeled examples that
are simply iid samples from the input distribution.

4.2. Experiments

We conducted our evaluation on benchmark data from
OCR, since OCR on small devices could stand to benefit
from strongly online active learning solutions. Additionally,
these datasets are known to be non-uniformly distributed
over inputs. We used both MNIST [13] and USPS in order
to experiment with multiple datasets and dimensionalities
(d = 784 for MNIST, d = 256 for USPS).

We experimented on 7 binary classification problems, 5
from MNIST and two from USPS, each consisting of ap-
proximately 10,000 examples. All the problems but two
were linearly separable. (Using svmLight [12] we were un-
able to find separating hyperplanes for the problem {1,4,7}
vs. all other characters, both in the MNIST and USPS ver-
sions). Since the algorithms access the data in one pass,
in a sequential fashion, for each problem we ran 5 runs, in
which the dataset was uniformly re-permuted, of 10 fold
cross-validation.

Several of the algorithms have parameters: Perceptron’s
learning rate, CBGZ’s b and DKM active learning version’s
R, so each was tuned independently on a separate holdout
set for each problem, using 10 fold cross-validation on ap-
proximately 2,000 examples. A threshold on test error, ε,
was chosen for each problem based (qualitatively) on level
of separability, and each algorithm’s parameters were tuned
to minimize the number of labels, averaged over folds, to

MNIST: 0v1 (0.01) 0vAll (0.05) 4v7 (0.05) 6v9 (0.025) 147vAll (0.15)
DKM2 28.02±25.26 105.30±42.39 150.02±49.61 163.12±42.45 275.34±72.00

DKMperc 13.78±5.88 57.26±15.92 44.00±15.32 20.44±11.75 217.06±75.85

CBGZ DKM 130.12±116.45 183.78±120.83 194.36±80.20 218.28±94.95 379.16±138.38

CBGZperc 32.78±19.52 62.66±30.48 63.32±30.76 30.66±13.31 170.02±63.61

randDKM 87.72±101.84 173.44±114.55 276.92±150.59 367.24±191.25 375.46±164.33

randPerc 83.76±78.47 103.74±76.25 107.98±57.41 104.06±75.10 214.16±93.12

USPS: 0vAll (0.05) 147vAll (0.1)
DKM2 174.22±63.85 190.72±80.09

DKMperc 87.56±28.97 137.86±58.21

CBGZ DKM 156.08±66.75 193.70±96.35

CBGZperc 115.14±61.09 116.28±60.68

randDKM 235.10±129.11 210.40±109.39

randPerc 173.96±98.96 151.32±72.65

Figure 3. Mean and standard deviation (over 5 runs of 10 fold cross-validation) of the minimum number of labels to reach the test error
threshold (in parentheses) for the problem.

reach test error ε.
In Figure 3 we report the means and standard devia-

tions, over all the experiments run, of the minimum number
of labels after which each algorithm reached the test error
threshold (ε listed in parentheses) for that problem. On ev-
ery problem, online active learning shows a clear advantage
over online random sampling. Compared to the best active
learning method for each problem, at the comparison test er-
ror threshold, Perceptron with random sampling used more
labels by a factor between 1.26–6.08, and for more than half
of the problems the factor was 2 or higher.

In our discussion of the results, we will indicate which
conclusions can be drawn from the mean label values re-
ported in the table, with statistical significance. We tested
statistical significance using Wilcoxan signed rank hypoth-
esis testing, which is non-parametric and thus robust, and
which takes into account the magnitude of the difference
in mean labels, between the algorithms compared, for each
problem.

The minimum number of labels was attained by DKMac-
tivePerceptron, in all but two of the problems, in which the
minimum was achieved by CBGZ. DKMactivePerceptron
also reports the smallest variance on this figure, in all but
one problem. Both methods used significantly fewer la-
bels than the random sampling methods. We tested this
by assuming as the null hypothesis that the active learn-
ing method in question did not reduce label-complexity be-
yond that of Perceptron with random sampling (the best-
performing random sampling method), yielding, for CBGZ,
a p-value of 0.0156, entailing that the null hypothesis is re-
jected for significance levels of 1.56% and higher, and, for
DKMactivePerceptron, at significance levels of 3.13% and
higher (p = 0.0313). The difference in these two active
learning algorithms’ performance, compared pairwise per
problem, was not statistically significant however. Interest-
ingly, the problems for which CBGZ was the top performer

are the only two unseparable problems. Although both algo-
rithms use Perceptron as the sub-algorithm, we did not have
enough unseparable problems to conclude, with statistical
significance, whether CBGZ’s active learning rule is better
equipped for the non-realizable case than that of DKM.

Similarly, using the DKM active learning rule showed
significant improvements over using the DKM update with
random sampling. DKM2 used fewer labels per problem
than randomDKMupdate, at significance levels of 1.56%
and higher. This is another result that online active learning
incurs significant label savings, compared to random sam-
pling with the same supervised online sub-algorithm.

The DKM supervised update, and methods that used it
as their sub-algorithm tended to perform worse than their
Perceptron counterparts. This is statistically significant
at significance levels of 1.56% and higher, for each pair-
wise comparison between the Perceptron and DKM up-
dates, with the active learning rule fixed. In the unsepara-
ble cases, this may be explained by DKM’s update being
much more aggressive than Perceptron’s, when the point
has a large margin: the DKM update adds to its hypothe-
sis the same quantity, ytxt, as Perceptron, however scaled
by a factor of 2|xt · vt|, which could be greater than one,
as opposed to the Perceptron’s learning rate which is less
than one. The comparison may not be completely fair how-
ever, as the DKM update was the only algorithm without
parameters, and thus the only algorithm not at all tuned per
problem. In fact, both of the active learning variants of stan-
dard Perceptron were actually doubly tuned per problem, as
the Perceptron learning rate was first tuned, and then the
active learning parameter (R or b) was tuned for the prob-
lem, using the tuned Perceptron as the sub-algorithm. It is
also important to note that mistake bounds implying better
performance of the DKM update than Perceptron have only
been shown under uniform [9], and λ-similar to uniform
[15], input distributions, and here the input distribution is

0.8 0.85 0.9 0.95 1
0

100

200

300

400

500

600

Prediction accuracy = 1 − test error

M
ea

n
of

 m
in

im
um

 la
be

ls
 to

 a
ch

ie
ve

 te
st

 a
cc

ur
ac

y.
 M

N
IS

T
 4

v7
.

DKMactiveDKMupdate
DKMactivePerceptron
CBGZactiveDKMupdate
CBGZactivePerceptron
randomDKMupdate
randomPerceptron

0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

35

40

45

50

Prediction accuracy = 1 − test error

M
ea

n
of

 m
in

im
um

 la
be

ls
 to

 a
ch

ie
ve

 te
st

 a
cc

ur
ac

y.
 M

N
IS

T
 0

v1
.

DKMactiveDKMupdate
DKMactivePerceptron
CBGZactiveDKMupdate
CBGZactivePerceptron
randomDKMupdate
randomPerceptron

0.8 0.85 0.9 0.95 1
0

100

200

300

400

500

600

700

Prediction accuracy = 1 − test error

M
ea

n
of

 m
in

im
um

 la
be

ls
 to

 a
ch

ie
ve

 te
st

 a
cc

ur
ac

y.
 U

S
P

S
 0

vA
ll.

DKMactiveDKMupdate
DKMactivePerceptron
CBGZactiveDKMupdate
CBGZactivePerceptron
randomDKMupdate
randomPerceptron

0.8 0.85 0.9 0.95 1
0

200

400

600

800

1000

1200

Prediction accuracy = 1 − test error

M
ea

n
of

 m
in

im
um

 la
be

ls
 to

 a
ch

ie
ve

 te
st

 a
cc

ur
ac

y.
 M

N
IS

T
 0

vA
ll.

DKMactiveDKMupdate
DKMactivePerceptron
CBGZactiveDKMupdate
CBGZactivePerceptron
randomDKMupdate
randomPerceptron

Figure 4. Statistical efficiency. Mean minimum labels to attain test
accuracy (i.e. 1 − test error) above each threshold is over 5 folds
10 runs if all folds/runs reached that test accuracy. a). MNIST
4v7. b) MNIST 0v1. c) USPS 0vAll. d) MNIST 0vAll.

known to be highly non-uniform.
For both sub-algorithms, the DKM active learning rule

tended to outperform the CBGZ active learning rule; with
the DKM update as the sub-algorithm, the DKM active
learning rule (DKM2) used fewer labels than that of CBGZ
(CBGZactiveDKMupdate) in all problems but one. As
mentioned above, for the Perceptron-based methods, this
observation does not have statistical support. However for
the algorithms using the DKM update as the sub-algorithm,
the advantage of the DKM active learning rule over that
of CBGZ is statistically significant at significance levels of
4.69% and higher.

In Figure 4 we plot statistical efficiency curves. Points
indicate the average over all the experiments of the mini-
mum number of labels to attain test error lower than a given
threshold on test error (i.e. one minus the value plotted on
the x-axis), only if all experiments reached that threshold.
It is important to note that the algorithms were only tuned to
minimize labels to reach one of these test error thresholds;
an algorithm that was minimal at the chosen threshold need
not be minimal at all thresholds plotted. Some of the plots
illustrate a slower rate of label increase for algorithms us-
ing DKM as their active learning rule. Not all the plots were
as conclusive, but an interesting example is Figure 4 b) in
which the DKM active algorithms have higher label usage,
at most of the thresholds measured, than their CBGZac-
tive counterparts, however the rate of label increase, as the
test error decreases (x-axis increases), appears to be much
slower.

To provide a qualitative perspective we present some rep-
resentive learning curves, with respect to labeled examples,
in Figure 5. We show a) a problem that was particularly
easy and b) a problem that we did not find to be linearly
separable. Figure 5 c) and d) compare the MNIST and
USPS versions of the problem of 0 vs. all other characters,
which is separable but has a large label imbalance with very
few positive examples. In these problems, while DKMac-
tivePerceptron reduces test error at a faster rate than all the
other algorithms, DKM2 and CBGZ continue querying for
more labels, eventually reaching lower error.

5. Discussion and Conclusions

Our experimental framework may have been susceptible
to overfitting of the parameter settings to the holdout tun-
ing set, per problem, which may have prevented some of
the algorithms from generalizing well to the actual problem
data. Supervised DKM has no parameters, but for all other
algorithms, tuning was involved.

Another tuning issue relates to the behavior observed
above in Figure 5 c) and d), of DKMactivePerceptron at-
taining an initial test error threshold faster than all other al-
gorithms, but then not querying for any more labels in the
rest of the fold. This issue is related to how one should set

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Labels

M
ea

n
te

st
 e

rr
or

 o
ve

r
5

ru
ns

 o
f 1

0
fo

ld
 c

ro
ss

va
lid

at
io

n.
 M

N
IS

T
 0

v1

DKMactiveDKMupdate
DKMactivePerceptron
CBGZactiveDKMupdate
CBGZactivePerceptron
randomDKMupdate
randomPerceptron

0 500 1000 1500
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

LabelsM
ea

n
te

st
 e

rr
or

 o
ve

r
5

ru
ns

 o
f 1

0
fo

ld
 c

ro
ss

va
lid

at
io

n.
 M

N
IS

T
 1

47
vA

l

DKMactiveDKMupdate
DKMactivePerceptron
CBGZactiveDKMupdate
CBGZactivePerceptron
randomDKMupdate
randomPerceptron

0 500 1000 1500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Labels

M
ea

n
te

st
 e

rr
or

 o
ve

r
5

ru
ns

 o
f 1

0
fo

ld
 c

ro
ss

va
lid

at
io

n.
 U

S
P

S
 0

vA
ll

DKMactiveDKMupdate
DKMactivePerceptron
CBGZactiveDKMupdate
CBGZactivePerceptron
randomDKMupdate
randomPerceptron

0 500 1000 1500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Labels

M
ea

n
te

st
 e

rr
or

 o
ve

r
5

ru
ns

 o
f 1

0
fo

ld
 c

ro
ss

va
lid

at
io

n.
 M

N
IS

T
 0

vA
ll

DKMactiveDKMupdate
DKMactivePerceptron
CBGZactiveDKMupdate
CBGZactivePerceptron
randomDKMupdate
randomPerceptron

Figure 5. Learning curves. a) An extremely separable problem, MNIST 0v1. b) An unseparable problem, MNIST 147vAll. c) USPS 0vAll.
d) MNIST 0vAll.

the waiting time threshold R for the DKM active learning
algorithm. With a very small value of R, the algorithm has
very little tolerance for labeled examples that do not yield a
mistake and thus an update, and so will quickly halve its ac-
tive learning threshold. Labeling an example with a smaller
margin with respect to the current hypothesis is more likely
to yield a mistake. Although this can cause a steep descent
of error with respect to the number of labels, once the active
learning threshold becomes too small, the algorithm will
hardly ever make label queries. Since we are experiment-
ing on a finite set of data as opposed to an endless stream,
this means the algorithm may not query for any more labels
on the fold. Ideally, we would like to optimize the constants
in DKM so that the parameter R need not be tuned, but this
is left for future work. Additional future work would entail
modeling other domains using online active learning, and
testing the performance of these algorithms therein.

At a general level, we conclude that online active learn-
ing provides significant performance gains over random
sampling the same number of labels, when the random sam-
pler must obey online constraints on memory and computa-
tion. In particular, we provide an application of DKM, and
to our knowledge this algorithm had not yet been applied

in practice. We study the performance of DKM when the
input distribution is non-uniform, a question left open by
the work of [9], as the performance guarantees were shown
under the assumptions of realizability and a uniform input
distribution. When these assumptions are violated, we ob-
serve that, in this application, DKM active learning has bet-
ter performance when paired with standard Perceptron as
the supervised sub-algorithm, as opposed to the update pro-
posed in [9]. This is an outcome we did not predict, due
to the strikingly better performance guarantees of the up-
date proposed in [9], with respect to Perceptron, under the
uniform assumption.

Moreover, we show the efficacy of these online active
learning algorithms for classification, in an OCR applica-
tion. While there has been recent progress on theory and
algorithms for online active learning, our work is a first step
towards applying these new techniques in practice. We hope
that these techniques will find further use in computer vi-
sion, and other applications that involve vast amounts of
data, or constraints on computational resources, and for
which labeled data is expensive or difficult to obtain.

Acknowledgments

The first author would like to thank Tommi Jaakkola and
Sanjoy Dasgupta for helpful discussions, as well as Luis
Perez-Breva and Jason Rennie for technical advice.

References
[1] D. Angluin. Queries revisited. In Proc. 12th Int. Conference

on Algorithmic Learning Theory, LNAI,2225:12–31, 2001.
1

[2] M.-F. Balcan, A. Beygelzimer, and J. Langford. Agnostic
active learning. In International Conference on Machine
Learning, 2006. 2

[3] M.-F. Balcan, A. Broder, and T. Zhang. Margin based ac-
tive learning. In Proc. 20th Annual Conference on Learning
Theory, To Appear, 2007. 2, 4

[4] E. B. Baum. The perceptron algorithm is fast for nonmali-
cious distributions. Neural Computation, 2:248–260, 1997.
3

[5] N. Cesa-Bianchi, A. Conconi, and C. Gentile. Learning
probabilistic linear-threshold classifiers via selective sam-
pling. In The Sixteenth Annual Conference on Learning The-
ory, 2003. 2

[6] N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Worst-
case analysis of selective sampling for linear-threshold algo-
rithms. In Advances in Neural Information Processing Sys-
tems 17, 2004. 2, 3, 4

[7] D. A. Cohn, L. Atlas, and R. E. Ladner. Improving general-
ization with active learning. Machine Learning, 15(2):201–
221, 1994. 1

[8] S. Dasgupta. Coarse sample complexity bounds for active
learning. In Advances in Neural Information Processing Sys-
tems 18, 2005. 2

[9] S. Dasgupta, A. T. Kalai, and C. Monteleoni. Analysis of
perceptron-based active learning. In Proc. 18th Annual Con-
ference on Learning Theory, 2005. 2, 3, 4, 5, 7

[10] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective
sampling using the query by committee algorithm. Machine
Learning, 28(2-3):133–168, 1997. 2

[11] R. Gilad-Bachrach, A. Navot, and N. Tishby. Query by com-
mittee made real. In Advances in Neural Information Pro-
cessing Systems 18, 2005. 2

[12] T. Joachims. Making large-scale support vector machine
learning practical. In A. S. B. Schölkopf, C. Burges, edi-
tor, Advances in Kernel Methods: Support Vector Machines.
MIT Press, Cambridge, MA, 1998. 4

[13] Y. Lecun. The mnist database of handwritten digits.
http://yann.lecun.com/exdb/mnist/. 1998. 4

[14] D. D. Lewis and W. A. Gale. A sequential algorithm for
training text classifiers. In Proc. of SIGIR-94, 17th ACM
International Conference on Research and Development in
Information Retrieval, 1994. 1, 2

[15] C. E. Monteleoni. Learning with online constraints: Shift-
ing concepts and active learning. PhD Thesis. MIT Com-
puter Science and Artificial Intelligence Lab Technical Re-
port 2006-057, 2006. 3, 5

[16] H. S. Seung, M. Opper, and H. Sompolinsky. Query by com-
mittee. In Proc. Fifth Annual ACM Conference on Computa-
tional Learning Theory, 1992. 2

[17] S. Tong and D. Koller. Support vector machine active learn-
ing with applications to text classification. Journal of Ma-
chine Learning Research, 2:45–66, 2001. 2, 4

