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1 Introduction
We consider the problem of adaptively combining the “multi-model ensemble” of General Circulation Mod-
els (GCMs) that inform the Intergovernmental Panel on Climate Change (IPCC), drawn from major labora-
tories around the world. This problem can be treated as an expert tracking problem in the online setting as in
[5], where an algorithm maintains a set of weights over the experts (here the GCMs are the experts). At each
time interval these weights are used to make a combined prediction, and then the weights can be updated
based on the performance of experts. In this work we focus on tracking the GCMs at different geographic
locations and effectively incorporating spatial influence and correlations between these locations. In [4], we
proposed a simple method that allowed regions to influence their immediate neighbors. Here we extend [4],
providing a more rigorous derivation of the spatial influence and allowing globally coherent influence by
using a Markov Random Field (MRF).

2 Technical Approach
We approach this multi-model ensemble problem using a pairwise MRF, where the state of each hidden
variable is the identity of the best GCM at a specific location. Similar MRF-based methods have been
used recently to analyze climate data. In [2] an MRF-based approach was used to spatially and temporally
detect drought states throughout the twentieth century. Our proposed method differs from [2] in that (1)
we estimate the full marginal distributions of the hidden variables rather than their most likely state and (2)
we apply our method in an online setting where at each time iteration we fit a new MRF and then perform
inference to obtain the marginals.

Figure 1: Construction of the MRF

We utilize a pairwise MRF, where every neighbor-
ing pair (xi and xj) of variables has an associated “en-
ergy” function E(xi, xj), with lower energy indicating a
more likely state. The joint distribution of all variables is
p(x1, x2, . . . xmax) =

∏
(i,j)

e−E(xi,xj), where (i, j) is the

set of all neighboring variables [6].
To establish reasonable energy functions for the

MRF, we first show that the Fixed-Share algorithm of [3]
can be expressed as a simple MRF. Fixed-Share is one
of several common “share update” algorithms for expert
tracking that incorporate switching dynamics, to model
situations where the best expert may switch over time.
By expressing Fixed-Share as an MRF, we identify the
energy function that corresponds to the switching dynamics. Since an MRF is an undirected graph, this
“switching” energy function can be naturally applied to spatial links between variables as well.

Figure 1(a) shows the MRF corresponding to Fixed-Share. The black nodes are observed variables
or evidence: pt−1 was our “belief” (represented as a fixed probability distribution over the GCMs) from
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the previous time iteration of which GCM would be the best predictor, and Lt represents the losses we
observed for each GCM (typically the squared difference between the prediction and the observed value) at
the previous time iteration. The white nodes are the hidden variables: pt represents the identity of the GCM
that is currently the best predictor, and p∗t is an intermediate node, indicated by the dotted border. We define
the energy functions as:

Eprev(p
∗
t = i,pt−1) = − log pt−1(i) (1)

EL(p
∗
t = i,Lt−1) = Lt−1(i) (2)

Etime(pt = i, p∗t = j) =

{
− log(1− αtime) if i = j

− log(αtime
n−1 ) if i 6= j

(3)

Where n is the number of experts, and αtime is a parameter of Fixed-Share that captures how frequently the
best expert switches. A simple calculation of the marginal probability of pt confirms that this MRF is indeed
equivalent to the Fixed-Share update rule.

Figure 1(b) illustrates how we construct a spatial lattice MRF by using a Fixed-Share MRF at each
location. The pt node for each region is linked to each of its adjacent spatial neighbors, with the energy of
each link (Espace) taking the same form as the energy of the temporal switching dynamics (Etime) but with
a different switching rate parameter αspace.

Figure 2: The performance (mean annual
squared loss for global predictions) of our
method versus αspace with αtime = 0.05.
The red line represents our proposed ap-
proach. The blue line is equivalent to TCM
[5] and NTCM with no neighborhood in-
fluence [4].

At each time iteration we consider a new MRF, with the
inferred marginal distributions from the previous round (now
held fixed) and the GCM losses serving as the observed vari-
ables. To calculate the marginal probabilities of the hidden
variables (i.e. our new beliefs over GCMs), we apply Loopy
Belief Propagation (LBP) to the MRF. In LBP, each node sends
messages to neighboring nodes about the sender’s “belief” of
the neighbor’s state. On tree graphs, the belief propagation is
guaranteed to quickly determine the correct marginals. How-
ever on graphs with loops, such as our lattice MRF, there is no
universal guarantee of convergence or the accuracy of the re-
sulting marginals. Nevertheless, LBP has been shown to em-
pirically perform well for a number a different applications
with loopy graphs [6]. In our experiments, LBP also converged
quickly, with the messages converging in less than 10 message
passing iterations for all reasonable αspace values.

Figure 2 show our initial results from an online evalua-
tion of historical GCM temperature predictions from the IPCC
Phase 3 Coupled Model Intercomparison Project (CMIP3)
archive [1]. The right-most point on the graph corresponds
to αspace = n−1

n (n is the GCM ensemble size) for an algorithm variant with no spatial influence. Spatial
influence increases with subsequent smaller αspace values. When αspace = 0 the spatial influence is at a
maximum, and all the hidden variables must have the same state (this case is equivalent to tracking a single
set of experts over all locations without modeling any spatial variation). Figure 2 indicates that the optimal
value of αspace is between these two extremes, as the performance initially improves with increasing spatial
influence (decreasing αspace), but eventually diminishes with αspace values that are too small.

In conclusion, we proposed a rich method for incorporating spatial influence into the multi-model en-
semble problem. We showed that this method performs well when an appropriate value for αspace is used.
Future contributions could include methods to learn the αspace parameter from the data or methods to use
climate science domain knowledge help set a value for αspace.
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