Constraint Satisfaction

CSCI 4511/6511

Joe Goldfrank

Announcements

- Homework 2 is due on 29 September at 11:55 PM
- Fri 20 Sep Office Hours moved: 12 PM 3 PM
- Autograder

• \$50 GCP Credits

Review and Saved Rounds

Simple Games

- Two-player
- Turn-taking
- Discrete-state
- Fully-observable
- Zero-sum
 - This does some work for us!

Max and Min

- Two players want the opposite of each other
- State takes into account both agents
 - Actions depend on whose turn it is

Minimax

- Initial state s_0
- ACTIONS(s) and TO-MOVE(s)
- RESULT(s, a)
- IS-TERMINAL(s)
- UTILITY(s, p)

Minimax

Minimax

Algorithm Minimax Search

```
1: function MINIMAX-SEARCH(game, state)
       player \leftarrow game.To-Move(state)
 2:
       value, move \leftarrow Max-Value(game, state)
 3:
      return move
 4:
 5:
6: function MAX-VALUE(game, state)
       if game.Is-Terminal(state) then
7:
          return game.UTILITY(state, player),null
8:
      v \leftarrow -\infty
 9:
       for each a in game.Actions(state) do
10:
          v2, a2 \leftarrow Min-Value(game, game.Result(state, a))
11:
          if v2 > v then
12:
              v, move \leftarrow v2, a
13:
      return v, move
14:
15:
16: function MIN-VALUE(game, state)
       if game.Is-Terminal(state) then
17:
          return game.UTILITY(state, player),null
18:
      v \leftarrow \infty
19:
       for each a in game.Actions(state) do
20:
          v2, a2 \leftarrow Max-Value(qame, qame.Result(state, a))
21:
          if v2 < v then
22:
              v, move \leftarrow v2, a
23:
      return v, move
24:
```

More Than Two Players

- Two players, two values: v_A, v_B
 - Zero-sum: $v_A = -v_B$
 - Only one value needs to be explicitly represented
- > 2 players:
 - $v_A, v_B, v_C \dots$
 - Value scalar becomes \vec{v}

Minimax Efficiency

Pruning removes the need to explore the full tree.

- Max and Min nodes alternate
- Once *one* value has been found, we can eliminate parts of search
 - Lower values, for Max
 - Higher values, for Min
- Remember highest value (α) for Max
- Remember lowest value (β) for Min

Pruning

Heuristics 😌

- In practice, trees are far too deep to completely search
- Heuristic: replace utility with evaluation function
 - Better than losing, worse than winning
 - Represents chance of winning
- Chance? 윻 윻
 - Even in deterministic games
 - Why?

More Pruning

- Don't bother further searching bad moves
 - Examples?
- Beam search
 - Lee Sedol's singular win against AlphaGo

Heuristic + Cutoff

Other Techniques

- Move ordering
 - How do we decide?
- Lookup tables
 - For subsets of games

Monte Carlo Tree Search

- Many games are too large even for an efficient α - β search \cong
 - We can still play them
- *Simulate* plays of entire games from starting state
 - Update win probability from each node (for each player) based on result
- "Explore/exploit" paradigm for move selection

Choosing Moves

- We want our search to pick good moves
- We want our search to pick unknown moves
- We *don't* want our search to pick bad moves
 - (Assuming they're actually bad moves)

Select moves based on a heuristic.

Games of Luck

- Real-world problems are rarely deterministic
- Non-deterministic state evolution:
 - Roll a die to determine next position
 - Toss a coin to determine who picks candy first
 - Precise trajectory of kicked football¹
 - Others?

Solving Non-Deterministic Games

Previously: Max and Min alternate turns

Now:

- Max
- Chance
- Min
- Chance

Expectiminimax

- "Expected value" of next position
- How does this impact branching factor of the search?

Expectiminimax

Filled With Uncertainty

What is to be done?

- Pruning is still possible
 - How?
- Heuristic evaluation functions
 - Choose carefully!

Non-Optimal Adversaries

- Is deterministic "best" behavior optimal?
- Are all adversaries rational?

• Expectimax

CSPs

Factored Representation

- Encode relationships between variables and states
- Solve problems with *general* search algorithms
 - Heuristics do not require expert knowledge of problem
 - Encoding problem requires expert knowledge of problem¹

Why?

Constraint Satisfaction

- Express problem in terms of state variables
 - Constrain state variables
- Begin with all variables unassigned
- Progressively assign values to variables
- Assignment of values to state variables that "works:" *solution*

More Formally

- State variables: X_1, X_2, \ldots, X_n
- State variable domains: D_1, D_2, \ldots, D_n
 - The domain specifies which values are permitted for the state variable
 - Domain: set of allowable variables (or permissible range for continuous variables)¹
 - Some constraints C_1, C_2, \ldots, C_m restrict allowable values

1. Or a hybrid. such as a union of ranges of continuous variables.

Constraint Types

- Unary: restrict single variable
 - Can be rolled into domain
 - Why even have them?
- Binary: restricts two variables
- Global: restrict "all" variables

Constraint Examples

- X_1 and X_2 both have real domains, i.e. $X_1, X_2 \in \mathbb{R}$
 - A constraint could be $X_1 < X_2$
- X_1 could have domain {red, green, blue} and X_2 could have domain {green, blue, orange}
 - A constraint could be $X_1
 eq X_2$
- $\bullet \ X_1, X_2, \ldots, X_1 0 0 \in \mathbb{R}$
 - Constraint: exactly four of X_i equal 12
 - Rewrite as binary constraint?

Assignments

- Assignments must be to values in each variable's domain
- Assignment violates constraints?
 - Consistency
- All variables assigned?
 - Complete

Yugoslavia¹

1. One of the most difficult problems of the 20th century

Four-Colorings

Two possibilities:

Formulate as CSP?

Graph Representations

- Constraint graph:
 - Nodes are variables
 - Edges are constraints
- Constraint hypergraph:
 - Variables are nodes
 - Constraints are nodes
 - Edges show relationship

Why have two different representations?

Graph Representation I

Constraint graph: edges are constraints

Graph Representation II

Constraint hypergraph: constraints are nodes

How To Solve It

- We can search!
 - ... the space of consistent assignments
- Complexity $O(d^n)$
 - Domain size d, number of nodes n
- Tree search for node assignment
 - Inference to reduce domain size
- Recursive search

How To Solve It

Algorithm Backtracking Search 1: **function** Backtracking-Search(CSP)return Backtrack $(CSP, \{\})$ 2: 3: function BACKTRACK(CSP, assignment) 4: if *assignment* is complete then 5: return assignment 6: $var \leftarrow \text{Select-Unassigned-Variable}(CSP, assignment)$ 7: for each value in Order-Domain-Variables (CSP, var, assignment) do 8: if *value* is consistent with *assignment* then 9: assignment.Add(var = value)10: $inferences \leftarrow \text{Inference}(CSP, var, assignment)$ 11: if $inferences \neq failure$ then 12: CSP.Add(inferences)13: $result \leftarrow Backtrack(CSP, assignment)$ 14: if $result \neq failure$ then 15: **return** result 16: CSP.Remove(inferences) 17: assignment.Remove(var = value)18:

What Even Is Inference

- Constraints on one variable restrict others:
 - $X_1 \in \{A,B,C,D\}$ and $X_2 \in \{A\}$
 - $X_1
 eq X_2$
 - Inference: $X_1 \in \{B, C, D\}$
- If an unassigned variable has no domain...
 - Failure

Inference

- Arc consistency
 - Reduce domains for pairs of variables
- Path consistency
 - Assignment to two variables
 - Reduce domain of third variable

AC-3

Algorithm AC-3		
1:	function AC-3 (CSP)	
2:	$queue \leftarrow all arcs in CSP$	
3:	while <i>queue</i> is not empty do	
4:	$(X_i, X_j) \leftarrow \operatorname{Pop}(queue)$	
5:	if $Revise(CSP, X_i, X_j)$ then	
6:	for each X_k in X_i . Neighbors $-\{X_i\}$ do	
7:	$queue. Add((X_i, X_j))$	
8:	return True	
9:		
10:	function $\text{Revise}(CSP, X_i, X_j)$	
11:	$revised \leftarrow False$	
1 2:	for each x in D_i do	
13:	if $\mathcal{C}(X_i = x, X_i)$ not satisfied for any value in D_i then	
14:	D_i .Remove(x)	
15:	$revised \leftarrow True$	
16:	return <i>revised</i>	

How To Solve It (Again)

Backtracking search:

- Similar to DFS
- Variables are *ordered*
 - Why?
- Constraints checked each step
- Constraints optionally *propagated*

How To Solve It (Again)

Algorithm Backtracking Search

1: 2:	function Backtracking-Search(CSP) return Backtrack(CSP , {})
3:	
4:	function $Backtrack(CSP, assignment)$
5:	if <i>assignment</i> is complete then
6:	return assignment
7:	$var \leftarrow \text{Select-Unassigned-Variable}(CSP, assignment)$
8:	for each $value$ in Order-Domain-Variables $(CSP, var, assignment)$ do
9:	if $value$ is consistent with $assignment$ then
10:	assignment.Add(var = value)
11:	$inferences \leftarrow \text{Inference}(CSP, var, assignment)$
12:	if $inferences eq failure$ then
13:	CSP.Add(inferences)
14:	$result \leftarrow Backtrack(CSP, assignment)$
15:	if $result \neq failure$ then
16:	return result
17:	CSP.Remove $(inferences)$
18:	assignment.Remove $(var = value)$

Yugoslav Arc Consistency

Ordering

- SELECT-UNASSGINED-VARIABLE(CSP, assignment)
 - Choose most-constrained variable¹
- Order-Domain-Variables (CSP, var, assignment)
 - Least-constraining value
- Why?

Restructuring

Tree-structured CSPs:

- *Linear time* solution
- Directional arc consistency: $X_i o X_{i+1}$
- Cutsets
- Sub-problems

Cutset Example

(Heuristic) Local Search

- Hill climbing
 - Random restarts
- Simulated annealing
- Fast?
- Complete?
- Optimal?

Continuous Domains

• Linear:

• Convex

Is This Even Relevant in 2024?

- Absolutely yes.
- LLMs are bad at CSPs
- CSPs are common in the real world
 - Scheduling
 - Optimization
 - Dependency solvers

Logic Preview

 $egin{aligned} R_{HK} &\Rightarrow
eg R_{SI} \ G_{HK} &\Rightarrow
eg G_{SI} \ B_{HK} &\Rightarrow
eg B_{SI} \ R_{HK} &ee G_{HK} &ee B_{HK} \end{aligned}$

. . .

Goal: find assignment of variables that satisifies conditions

References

- Stuart J. Russell and Peter Norvig. *Artificial Intelligence: A Modern Approach.* 4th Edition, 2020.
- Mykal Kochenderfer, Tim Wheeler, and Kyle Wray. *Algorithms for Decision Making*. 1st Edition, 2022.
- Stanford CS231
- Stanford CS228
- UC Berkeley CS188