Constraint Satisfaction

CSCI 4511/6511

Joe Goldfrank



Announcements

e Homework 2 is due on 29 September at 11:55 PM

e Fri120 Sep Office Hours moved: 12 PM - 3 PM
e Autograder

e $50 GCP Credits


https://gcp.secure.force.com/GCPEDU?cid=jnzyyCPdfmRW76J6gDzP2Tzut8fzSSR0ruiB0dUYAbFCuljTdICnE%2BJo3gmzisL2/
https://gcp.secure.force.com/GCPEDU?cid=jnzyyCPdfmRW76J6gDzP2Tzut8fzSSR0ruiB0dUYAbFCuljTdICnE%2BJo3gmzisL2/

Review and Saved
Rounds




Simple Games

e Two-player

e Turn-taking

e Discrete-state

e Fully-observable
e /Zero-sum

» This does some work for us!



Max and Min

e Two players want the opposite of each other
e State takes into account both agents

= Actions depend on whose turn it is



Minimax

e Initial state sg

e ACTIONS(s) and TO-MOVE(s)
e RESULT(s, a)

e [S-TERMINAL(S)

e UTILITY(S, p)



Minimax



Minimax

Algorithm Minimax Search

: function MinmmMax-SEArRcH(game, state)
player <— game.To-Move(state)

value, move <— Max-VALUE(game, state)
return move

: function Max-VaLue(game, state)
if game.Is-TermINAL(State) then
return game. Uty (state, player),null

e *N 2 B RN &

V4 —00
for each a in game.Actions(state) do

v2, a2 <—MiN-VALUE(game, game.Resurt(state, a))
12: if v2 > v then

=
Q

[y
L

13: v, Move < v2,a

14: return v, move

15:

16: function MiN-VALUE(game, state)

17: if game.Is-TErmINAL(State) then

18: return game. Utiity (state, player),null
19: V< O

20: for each a in game.Actions(state) do

21 v2, a2 <—Max-VaLue(game, game.Resurt(state, a))
22: if v2 < v then

23 v, Move <— v2,a

24: return v, move




More Than Two Players

e Two players, two values: v 4, vp

s /ero-sum: v4 = —vp

= Only one value needs to be explicitly represented
e > 2 players:

B V4,UB,0C. ..

m Value scalar becomes v



Minimax Efficiency

Pruning removes the need to explore the full tree.

e Max and Min nodes alternate

e Once one value has been found, we can eliminate parts of
search

= Lower values, for Max
» Higher values, for Min
e Remember highest value () for Max

e Remember lowest value (3) for Min



Pruning






Heuristics <

e In practice, trees are far too deep to completely search
e Heuristic: replace utility with evaluation function

= Better than losing, worse than winning

= Represents chance of winning

e Chance’ @ &

= Even in deterministic games

s Why’



More Pruning

e Don’t bother further searching bad moves
= Examples?
e Beam search

= Lee Sedol’s singular win against AlphaGo



Heuristic + Cutoff



Other Techniques

e Move ordering
= How do we decide?
e Lookup tables

= For subsets of games



Monte Carlo Tree Search

e Many games are too large even for an efficient a-3 search =
= We can still play them
o Stmulate plays of entire games from starting state

= Update win probability from each node (for each player)
based on result

o “Explore/exploit” paradigm for move selection



Choosing Moves

e We want our search to pick good moves
e We want our search to pick unknown moves
e We don’t want our search to pick bad moves

= (Assuming they’re actually bad moves)

Select moves based on a heuristic.



Games of Luck

e Real-world problems are rarely deterministic
e Non-deterministic state evolution:
= Roll a die to determine next position
= Toss a coin to determine who picks candy first

= Precise trajectory of kicked football

s Others?

1. Anv definition of “football”



Solving Non-Deterministic Games
Previously: Max and Min alternate turns
Now:

e Max
e Chance
e Min

e Chance

« o
><
-~



Expectiminimax

e “Expected value” of next position 8

e How does this impact branching factor of the search?

09
N\



Expectiminimax



Filled With Uncertainty

What is to be done?

e Pruning is still possible
= How?’
e Heuristic evaluation functions

= Choose carefully!



Non-Optimal Adversaries

e [s deterministic “best” behavior optimal?

e Are all adversaries rational?

e Expectimax



CSPs



Factored Representation

e Encode relationships between variables and states
e Solve problems with general search algorithms
= Heuristics do not require expert knowledge of problem

= Encoding problem requires expert knowledge of problem’

Why?

1. But it alwavs does.



Constraint Satisfaction

e Express problem in terms of state variables
= Constrain state variables

e Begin with all variables unassigned

e Progressively assign values to variables

e Assignment of values to state variables that “works:” solution



More Formally

o State variables: X1, Xo,..., X,
e State variable domains: Dy, Ds, ..., D,

» The domain specifies which values are permitted for the
state variable

= Domain: set of allowable variables (or permissible range for
continuous variables)’

= Some constraints Cq, Cs, ..., C,, restrict allowable values

1. Or a hvbrid. such as a union of ranees of continuous variables.



Constraint Types

e Unary: restrict single variable
= Can be rolled into domain
= Why even have them?

e Binary: restricts two variables

e (Global: restrict “all” variables



Constraint Examples

e X; and X5 both have real domains, i.e. X7, Xs € R
= A constraint could be X; < X

e X could have domain {red, green, blue} and X5 could have
domain {green, blue, orange}

= A constraint could be X7 # X5
¢ Xl,XQ,...,Xl()O c R
= Constraint: exactly four of X; equal 12

= Rewrite as binary constraint?



Assignments

e Assignments must be to values in each variable’s domain
e Assignment violates constraints?

= Consistency
e All variables assigned?

= Complete



Yugoslavia'

1. One of the most difficult nroblems of the 20th centurv



Four-Colorings

'Two possibilities:







Graph Representations

e Constraint graph:
= Nodes are variables
= Edges are constraints
e Constraint hypergraph:
= Variables are nodes
= Constraints are nodes

» Edges show relationship

Why have two different representations?



Graph Representation I

Constraint graph: edges are constraints




Graph Representation 11

Constraint hypergraph: constraints are nodes




How To Solve It

e We can search!

= ...the space of consistent assignments
e Complexity O(d")

» Domain size d, number of nodes n
e Tree search for node assignment

» Inference to reduce domain size

e Recursive search



How To Solve It

Algorithm Backtracking Search

1: function BACKTRACKING-SEARCH(C'S P)
2. return Backtrack(C'SP,{})

3:
4: function Backtrack(C'S P, assignment)
5: if assignment is complete then
6: return assignment
7: var <— SELECT-UNassSIGNED-VARIABLE(C'S P, assignment)
8: for each value in OrRpDER-DoMAIN-VARIABLES(C'S P, var, assignment) do
o: if value is consistent with assignment then
10 assignment.App(var = value)
11: inferences < INrerence(C'S P, var, assignment)
12: if inferences # failure then
13: CSP.App(inferences)
14: result < Backtrack(C'S P, assignment)
15: if result #+ failure then
16: return result
17: C'S P.Remove(in ferences)

18: asstgnment.Remove(var = value)




What Even Is Inference

e Constraints on one variable restrict others:
» X; €{A,B,C,D}and X, € {A}
= X5 # Xo
= Inference: X7 € {B,C, D}

e If an unassigned variable has no domain...

s Failure



Inference

e Arc consistency

s Reduce domains for pairs of variables
e Path consistency

= Assignment to two variables

s Reduce domain of third variable



AC-3

Algorithm AC-3

. function AC-3(C'SP)
queue < all arcs in C'S P
while queue is not empty do
(X;, X;) < Por(queue)
if Revise(C'SP, X;, X ;) then
for each X in X; Neicusors —{ X} do
queue.App((X;, X))

return True

L N 2R RN

. function Revise(C'S P, Xi,Xj)
revised < False
for each z in D, do

[ .
= O

[y
N

13: if C(X; = z, X;) not satisfied for any value in D; then
14: D, .ReMovE(X)
15: revised <— True

return revised

=
ISA




How To Solve It (Again)

Backtracking search:

e Similar to DFS
e Variables are ordered
x Why?
e Constraints checked each step

e Constraints optionally propagated



How To Solve It (Again)

Algorithm Backtracking Search

1: function BAckTRACKING-SEARCH(C'S P)
2. return Backtrack(C'SP,{})

3:
4: function Backtrack(C'S P, assignment)
5: if assignment is complete then
6: return assignment
7: var <— SELECT-UNassSIGNED-VARIABLE(C'S P, assignment)
8: for each value in OrRpDER-DoMAIN-VARIABLES(C'S P, var, assignment) do
o: if value is consistent with assignment then
10 assignment.App(var = value)
11: inferences < INrerence(C'S P, var, assignment)
12: if inferences # failure then
13: CSP.App(inferences)
14: result < Backtrack(C'S P, assignment)
15: if result #+ failure then
16: return result
17: C'S P.Remove(in ferences)

18: asstgnment.Remove(var = value)




Yugoslav Arc Consistency

T
&



Ordering

e SELECT-UNASSGINED-VARIABLE(C'S P, assignment)
» Choose most-constrained variable!
e ORDER-DOMAIN-VARIABLES(C'S P, var, assignment)

= [east-constraining value

e Why?

1. or MRV: “Minimum Remaining Values”



Restructuring
Tree-structured CSPs:

o [Linear time solution
e Directional arc consistency: X; — X1
o Cutsets

e Sub-problems



Cutset Example

T
&



(Heuristic) Local Search

e Hill climbing

= Random restarts
e Simulated annealing
e Fast’?
e Complete’

e Optimal?



Continuous Domains

e Linear:
max clax
a5
st. Az <b
x>0
e Convex
min f(x)
xZr



Is This Even Relevant in 2024°?

e Absolutely yes.

e LLMs are bad at CSPs

e CSPs are common in the real world
= Scheduling
= Optimization

= Dependency solvers



Logic Preview

Rux = —Rgy
Gux = ~Ggr
Brx = —Bg;
Rrrx V Gk V Brk

Goal: find assignment of variables that satisifies conditions



References
e Stuart J. Russell and Peter Norvig. Artificial Intelligence: A
Modern Approach. 4th Edition, 2020.

e Mykal Kochenderfer, Tim Wheeler, and Kyle Wray. Algorsthms
for Decision Making. 1st Edition, 2022.

e Stanford CS231
e Stanford CS228
e UC Berkeley CS188



