Probability

CSCI 4511/6511

Joe Goldfrank

Announcements

- Homework 3 Due 14 Oct
- Midterm Exam 16 Oct
 - In class
 - Open note

Review

Symbols

- Propositional symbols
 - Similar to boolean variables
 - Either True or False

Sentences

- What is a linguistic sentence?
 - Subject(s)
 - Verb(s)
 - Object(s)
 - Relationships
- What is a logical sentence?
 - Symbols
 - Relationships

Familiar Logical Operators

• ¬

• \wedge

• "Not" operator, same as CS (!, not, etc.)

- "And" operator, same as CS (&&, and, etc.)
- This is sometimes called a *conjunction*.
- ∨
 - "Inclusive Or" operator, same as CS.
 - This is sometimes called a *disjunction*.

Unfamiliar Logical Operators

 $\bullet \Rightarrow$

- Logical *implication*.
- If $X_0 \Rightarrow X_1, X_1$ is always True when X_0 is True.
- If X_0 is False, the value of X_1 is not constrained.
- $\bullet \quad \Longleftrightarrow \quad$
 - "If and only If."
 - If $X_0 \iff X_1, X_0$ and X_1 are either both True or both False.
 - Also called a *biconditional*.

Equivalent Statements

- $X_0 \Rightarrow X_1$ alternatively:
 - $(X_0 \wedge X_1) \vee \neg X_0$
- $X_0 \iff X_1$ alternatively:
 - $(X_0 \wedge X_1) \lor (\neg X_0 \wedge \neg X_1)$

Entailment

- $KB \models A$
 - "Knowledge Base entails A"
 - For every model in which KB is True, A is also True
 - One-way relationship: A can be True for models where KB is not True.
- Vocabulary: A is the query

Knowing Things

Falsehood:

- $KB \models \neg A$
 - No model exists where KB is True and A is True

It is possible to not know things:¹

- $KB \nvDash A$
- $KB \nvDash \neg A$

Satisfiability

- Commonly abbreviated "SAT"
- First NP-complete problem
- $\bullet \ (X_0 \wedge X_1) \vee X_2$
 - Satisfied by $X_0 = \text{True}, X_1 = \text{False}, X_2 = \text{True}$
 - Satisfied for any X_0 and X_1 if $X_2 = True$
- $\bullet \ X_0 \wedge \neg X_0 \wedge X_1$
 - Cannot be satisfied by any values of X_0 and X_1

Conjunctive Normal Form

- *Literals* symbols or negated symbols
 - X_0 is a literal
 - $\neg X_0$ is a literal
- *Clauses* combine literals and disjunction using disjunctions
 (∨)
 - $X_0 \lor \neg X_1$ is a valid disjunction
 - $(X_0 \lor \neg X_1) \lor X_2$ is a valid disjunction

Conjunctive Normal Form

- *Conjunctions* (\land) combine clauses (and literals)
 - $X_1 \wedge (X_0 \vee \neg X_2)$
- Disjunctions cannot contain conjunctions:
- $X_0 \lor (X_1 \land X_2)$ not in CNF
 - Can be rewritten in CNF: $(X_0 \lor X_1) \land (X_0 \lor X_2)$

Converting to CNF

- $\bullet \,\, X_0 \,\, \Longleftrightarrow \,\, X_1$
 - $(X_0 \Rightarrow X_1) \land (X_1 \Rightarrow X_0)$
- $X_0 \Rightarrow X_1$
 - $\neg X_0 \lor X_1$
- $\bullet \ \neg (X_0 \wedge X_1)$
 - $\neg X_0 \lor \neg X_1$
- $\bullet \ \neg(X_0 \lor X_1)$
 - $\neg X_0 \land \neg X_1$

Probability

Randomness and Uncertainty

- We don't know things about future events
 - Someone else might know
- Example: expectimax!
 - Ghost could behave randomly
 - Ghost could behave according to some plan
 - We model behavior as random

The Random Variable

- Uncertain future event: random variable
- Probability:

$$P(x) = \lim_{n o \infty} rac{n_x}{n}$$

• Probabilities constrained $0 \leq P(x) \leq 1$ for any x

The Random Variable

- In ensemble of events, what fraction represent event x ?
 - What's troubling about this?
- How do we quantify probability based on observations?
- How do we quantify probability without direct observations?

Plausibility of Statements

- "A is more plausible than B"
 - P(A) > P(B)
- "A is as plausible as B"
 - P(A) = P(B)
- "A is impossible"
 - P(A) = 0
- "A is certain"
 - P(A) = 1

Probability Distribution

- Enumerate possible outcomes¹
- Assign probabilities to outcomes
- Distribution: ensemble of outcomes mapped to probabilities
- Works for discrete and continuous cases

Combinatorics

- Enumerating outcomes is a counting problem
 - We know how to solve counting problems
- Permutations:
 - Ordering *n* items: *n*!
 - Ordering *n* items, *k* of which are alike: $\frac{n!}{k!}$
 - ... k_1, k_2 of which are alike: $\frac{n!}{k_1!k_2!}$

I Am Extremely Sorry

... if you thought this course was going to be about LLMs

Combinatorics

- How many possible outcomes are there?
- How many possible outcomes are there *of interest?*
- Assume all outcomes have equal probability
 - Or don't
- Divide
 - Weight if necessary

Choice

- *n* events
- k are of interest
 - n k are *not* of interest

Possible combinations:

$$\binom{n}{k} = rac{n!}{k!(n-k)!}$$

Bernoulli Trials

- "Single event" that occurs with probability θ
- $P(E) = \theta$
- $P(\neg E) = 1 \theta$
- Alternate notations:¹
 - $P(E^C) = 1 \theta$
 - $P(\bar{E}) = 1 \theta$
- Examples?

1. Math notation can be inconsistent. which you may find infuriating.

Math Notation

- P(E)
 - Probability of some event E occuring
- $P\{X=a\}$
 - Probability of random variable X taking value a
- p(a)
 - Probability of random variable taking value *a*

Bernoulli Random Variable

- Bernoulli trial:
 - Variable, takes one of two values
 - Coin toss: *H* or *T*
 - $P\{X = H\} = \theta$
 - $P\{X = T\} = 1 \theta$

Expected Value

- Variable's values can be numeric values:
 - Coin toss H = 8 and T2
 - $P\{X=8\}=\theta$
 - $P\{X=2\} = 1 \theta$
- Expected value:
 - $E[X] = H \cdot \theta + T \cdot (1 \theta)$
 - $E[X] = 8 \cdot \theta + 2 \cdot (1 \theta)$

Expected Value

Of a variable:

$$E[X] = \sum_{i=0}^n x_i \cdot p(x_i)$$
 .

Of a function of a variable:

$$E[g(x)] = \sum_{i=0}^n g(x_i) \cdot p(x_i)
eq g(E[X])$$

Variance

• How much do values *vary* from the expected value?

$$\operatorname{Var}(X) = E[(X - E[X])^2]$$

- E[X] represents mean, or μ
- We're really interested in $E[|X \mu|]$
 - Absolute values are mathematically troublesome
- Standard deviation: $\sigma = \sqrt{Var}$

Variance

$$egin{aligned} &\operatorname{Var}(X) = E[(E[X]-\mu)^2] \ &= \sum_x (x-\mu)^2 p(x) \ &= \sum_x (x^2-2x\mu+\mu^2) p(x) \ &= \sum_x x^2 p(x) - 2\mu \sum_x x p(x) + \mu^2 \sum_x p(x) \ &= E[X^2] - 2\mu\mu + \mu^2 \ &= E[X^2] - E[X]^2 \end{aligned}$$

How To Lie With Statistics

Discrete Distributions

Binomial Distribution

- Bernoulli trial:
 - Successes and failures
 - $P\{X=1\}=\theta$
 - $P\{X=0\} = 1 \theta$
- Conduct *many* trials. How many succeed?

Binomial Distribution

- Probability of n successes in n trials: θ^n
- Probability of k successes in n trials:

•
$$\theta^k (1-\theta)^{(n-k)}$$
 ... per ordering!

- n! orderings
- k success are alike and (n k) failures are alike

•
$$\frac{n!}{k!(n-k)!}$$
 orderings of k successes

•
$$P\{X=k\} = \binom{n}{k}\theta^k(1-\theta)^{(n-k)}$$

Binomial Distribtion

n=12, heta=0.2

scipy.stats

Geometric Distribution

- Perform Bernoulli trials until first success
 - X represents number of failures
 - $P{X = k} = \theta(1 \theta)^{(k)}$ (only one ordering!)

Geometric Distribtion

 $\theta = 0.4$

 $\theta = 0.2$

Negative Binomial Distribution

- "General case" of Geometric distribution
- Number of trials until r successes observed
- $P\{X=k\}={k+r-1 \choose k}(1- heta)^k heta^r$

Negative Binomial Distribution

r=3, heta=0.5

Poisson Distribution

- Events "arrive" independently through time
 - People at a bus stop
- Requests to a server
- Number of arrivals per time interval
 - Parameter λ average number of arrivals

$$P\{X=k\}=rac{\lambda^k e^{-\lambda}}{k!}$$

Poisson Distribution

 $\lambda = 5$

 $\lambda=2$

Continuous Distributions

Continuous vs. Discrete

- Discrete:
 - PMF: p(x)
 - $E[X] = \sum_i x_i p(x_i)$
- Continuous:
 - PDF: *f*(*x*)
 - CDF: $P\{X \le x\} = F(x) = \int_{-\infty}^{x} f(x) \, dx$

•
$$E[X] = \int_{-\infty}^{\infty} x f(x) \ dx$$

Uniform Distribution

- Takes any value in range with equal probability
 - Range: [*a*, *b*]
 - Nomenclature: U(a, b)
- U(0,1) is "standard" random variable for modeling

Uniform Distribution

U(0,1)

Normal Distribution

$$\mu=1,\sigma^2=1$$

$$\mu=3,\sigma^2=2$$

(Remarkably unsatisfying.)

Joint Distributions

- Distribution over multiple variables
 - P(x, y) represents $P\{X = x, Y = y\}$
- Marginal distribution:

•
$$P(x) = \sum_{y} P(x, y)$$

Independence

Conditional probability:

$$P(x|y) = rac{P(x,y)}{P(y)}$$

Bayes' rule:

$$P(x|y) = rac{P(y|x)P(x)}{P(y)}$$

Conditional Independence

$$P(x|y) = P(x)
ightarrow P(x,y) = P(x)P(y)$$

- Two variables can be conditionally independent...
 - ... when conditioned on a third variable

Parameter Space

- *n* Bernoulli R.V.s
- Fully dependent joint distribution:
 - $2^n 1$ parameters
- Fully independent joint distribution:
 - n parameters \Im

Notice a theme?

Bayesian Networks

References

- Stuart J. Russell and Peter Norvig. *Artificial Intelligence: A Modern Approach.* 4th Edition, 2020.
- Mykal Kochenderfer, Tim Wheeler, and Kyle Wray. *Algorithms for Decision Making*. 1st Edition, 2022.
- Ross, *
- Stanford CS231
- UC Berkeley CS188