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Announcements

e Homework 3 Due 14 Oct
e Midterm Exam - 16 Oct
» In class

= Open note






Symbols

e Propositional symbols
= Similar to boolean variables

s Either True or False



Sentences

e What is a linguistic sentence?
= Subject(s)
= Verb(s)
= Object(s)
» Relationships
e What is a logical sentence?
= Symbols
= Relationships



Familiar Logical Operators

¢ —
= “Not” operator, same as CS (!, not, etc.)
° N
= “And” operator, same as CS (&&, and, etc.)
s This is sometimes called a conjunction.
o \/
s “Inclusive Or” operator, same as CS.

» This is sometimes called a disjunction.



Unfamiliar Logical Operators

¢ =
» Logical implication.
o If Xo = Xi, X; is always True when X is True.
m If X is False, the value of X is not constrained.
¢ —
= “Ifand only If.”

n If X < Xi, Xyand X; are either both True or both
False.

m Also called a biconditional.



Equivalent Statements

e Xy = Xj alternatively:
s (X9 AX7) VX
e Xy < X, alternatively:
s (Xo AX)V(—Xo A —Xq)



Entailment
e KBE A

= “Knowledge Base entails A”

= For every model in which K B is True, A is also True

= One-way relationship: A can be True for models where K B
is not True.

e Vocabulary: A is the query



Knowing Things
Falsehood:
e KB=—-A

= No model exists where K B is True and A is True

It is possible to not know things:!

e KBF A
e KBF —A

1. ¥ - “does not entail”



Satisfiability

e Commonly abbreviated “SAT”

e First NP-complete problem

e (XoAX71)V X,
» Satisfied by X = True, X; = False, Xo = True
s Satisfied for any Xy and X if Xy = True

e Xo N =Xy ANXy
= Cannot be satisfied by any values of Xy and X



Conjunctive Normal Form

e [Literals — symbols or negated symbols
= X i1s aliteral
s =X 1s a literal

e Clauses — combine literals and disjunction using disjunctions
(V)
s X, V —X; is a valid disjunction

» (X V—X7)V X is avalid disjunction



Conjunctive Normal Form

o Conjunctions (/\) combine clauses (and literals)
s X5 A (X VX))
e Disjunctions cannot contain conjunctions:
e Xy V (X1 A X3)notin CNF
= Can be rewritten in CNF: (X, V X1) A (Xo V X32)



Converting to CNF

o X — X;
n (X) = X)) A (X1 = X))
e Xy = X3
=Xy VX,
e =(Xg N X71)
n =Xy VX,
e =(XoV X7)
n =Xy A Xy



Probability



Randomness and Uncertainty

e We don’t know things about future events
= Someone else might know
e Example: expectimax!
= Ghost could behave randomly
= Ghost could behave according to some plan

s We model behavior as random



The Random Variable

e Uncertain future event: random variable

e Probability:

P(z) = lim e

n—oo N

e Probabilities constrained 0 < P(x) < 1 for any x



The Random Variable

e In ensemble of events, what fraction represent event x ?
= What’s troubling about this?
e How do we quantify probability based on observations?

e How do we quantify probability without direct observations?



Plausibility of Statements

e “A 1s more plausible than B”
» P(A) > P(B)

e “A isas plausible as B”

» P(A) = P(B)
e “A isimpossible”
= P(A) =0

e “A 1s certain”

.« P(4) =1



Probability Distribution

e Enumerate possible outcomes'
e Assign probabilities to outcomes
e Distribution: ensemble of outcomes mapped to probabilities

e Works for discrete and continuous cases

1. Evervone has them.



Combinatorics

e Enumerating outcomes is a counting problem
= We know how to solve counting problems
e Permutations:

» Ordering n items: n!

= Ordering n items, k of which are alike: ",;"—,'

n!

kqlks!

m ... k1, ko of which are alike:



I Am Extremely Sorry

...1f you thought this course was going to be about LL.Ms



Combinatorics

e How many possible outcomes are there?
e How many possible outcomes are there of znterest?

e Assume all outcomes have equal probability

= Ordon’t
e Divide
= Weight if necessary



Choice

e 7, events
e k are of interest

m n — kare not of interest

Possible combinations:




Bernoulli Trials

e “Single event” that occurs with probability 8
e P(E)=20
e P(HE)=1-6
e Alternate notations:!
= P(E€)=1-0
» PE)=1-6

e Examples?

1. Math notation can be inconsistent. which vou mav find infuriatine.



Math Notation

* P(E)
= Probability of some event E occuring
e P{X =a}

= Probability of random variable X taking value a

* p(a)

= Probability of random variable taking value a



Bernoulli Random Variable

e Bernoulli trial:
» Variable, takes one of two values
= Coin toss: H or T’
» P{IX=H}=26
» P{IX=T}=1-6



Expected Value

e Variable’s values can be numeric values:
s Coin toss H = 8 and T2
» P{X=8}=20
s P{X=2}=1-96

e Expected value:

» B
= B

X
X

—H-0+T-(1-6)
—8-0+2-(1—6)



Expected Value

Of a variable:

Of a function of a variable:

Blo(e)] = 3 o(a) - p(e:) # 9(BIX])



Variance

e How much do values vary from the expected value?
Var(X) = E[(X - E[X])"]

e E|X] represents mean, or u
o We’re really interested in E'|| X — u]

= Absolute values are mathematically troublesome

e Standard deviation: o = v/ Var



Variance

Var(X) =

DI
= Zw p(z —ZMZ:BP(:B)

_XQ: — 2up +

2

= F
= F

E[(E[X] - u)2]

_Z‘”—“

- B[X]*

+p’ ) p(z)



How To Lie With Statistics

dataset = | dataset = |l

dataset = Il dataset = |V

> 8 -

I 1 1 1 I 1 1 I
50 75 10.0 125 15.0 17.5 50 75 100 125 15.0 175
X X



Discrete Distributions



Binomial Distribution

e Bernoulli trial:
» Successes and failures
» P{X=1}=26
» P{X=0}=1-96

e Conduct many trials. How many succeed?



Binomial Distribution

e Probability of n successes in n trials: 6"

e Probability of k successes in n trials:
= 0%(1 — 6)"%) ___per ordering!
= n!orderings
= k success are alike and (n — k) failures are alike
n!

ol o o1 orderings of k successes

* P{X =k} = ()" Q-0




Binomial Distribtion

n=120=0.2
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Geometric Distribution

e Perform Bernoulli trials until first success

= X represents number of failures

= P{X =k} = 0(1 — 6)"® (only one ordering!)



Geometric Distribtion
9= 0.4 9 = 0.2
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Negative Binomial Distribution

e “General case” of Geometric distribution

e Number of trials until 7 successes observed

e P{X=k}= (""" (1- 0k



Negative Binomial Distribution
r=3,0=0.5 r=2,0=0.25




Poisson Distribution

e Events ‘“arrive” mdependently through time
= People at a bus stop

e Requests to a server

e Number of arrivals per time interval

= Parameter \ - average number of arrivals

Aee=A
k!

P{X = k} =



Poisson Distribution
A=5 A =2

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15




Continuous
Distributions



Continuous vs. Discrete

e Discrete:
= PMF: p(z)
" BIX]| =) zip(zi)
e Continuous:
« PDE: f(z)
» CDF: P{X <z} =F(z) = [ f(z
« BX] = [, 2f(a )daz



Uniform Distribution

e Takes any value in range with equal probability
= Range: |a, b]
= Nomenclature: U(a, b)

e U(0,1)is “standard” random variable for modeling



Uniform Distribution
U(0,1) U(0,5)




Normal Distribution

u=10%=1
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Joint Distributions

e Distribution over multiple variables
» P(z,y) represents P{X = z,Y = y}

e Marginal distribution:
" P(z) =), P(z,y)



Independence
Conditional probability:

Plaly) = “pr-)
Bayes’ rule:
plaly) - PUDPE




Conditional Independence

P(zly) = P(z) = P(z,y) = P(z)P(y)

e Two variables can be conditionally independent...

m ... when conditioned on a third variable



Parameter Space

e 1 Bernoulli R.V.s
e Fully dependent joint distribution:
s 2" — 1 parameters
e Fully independent joint distribution:

~~
-

- nparameters ~

Notice a theme?



Bayesian Networks
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