Partially-Observable Markov Decision Processes

CSCI 4511/6511

Joe Goldfrank

Announcements

- Homework Four: 11 Nov
- Extra Credit HW: Due 4 Dec (releases next week)
- Project Proposals: 13 Nov
- Final Exam: 4 Dec
- Project Deadline: 13 Dec

MDP Example

Belief

State Uncertainty

- Markov Decision Process (MDP):
 - Assumes state is observed
 - Policy returns action as function of state
 - Decision-maker observes state, selects action
- Partially-Observable Markov Decision Process (POMDP):
 - State not fully observed
 - Decision-maker observes... something
 - That *something* is related to state

Decision Theory

- How do we make uncertain decisions?
 - How do we consider uncertainty?

Decision

Games of Luck

Closer to Reality

Belief

Updating Beliefs

Agent Function

Beliefs

- Parametric
 - Coin probability example
- Nonparametric
 - Particle filters

Need a world model.

Discrete State Filter

- Finite state space
- Finite observation space
- Categorical probability distributions
 - State is a vector
 - Belief state is a vector

Updating Beliefs

Observation model O

- O(o|a,s')
 - Probability of observing o given action a and transition to state s'
 - Part of our model
- We want: P(s'|b, a, o)

Updating Beliefs

$$egin{aligned} P(s'|o,b,a) &\propto P(o|s',b,a,) \cdot P(s'|b,a) \ &= O(o|a,s') \cdot P(s'|b,a) \ &= O(o|a,s') \sum\limits_s P(s'|b,a,s) P(s|b,a) \ &= O(o|a,s') \sum\limits_s T(s'|s,a) b(s) \end{aligned}$$

Example

State 0: Sated Action 0: Ignore State 1: Hungry State 1: Feed

$$T_{ignore} = egin{bmatrix} 0.9 & 0.1 \ 0 & 1 \end{bmatrix} \ T_{feed} = egin{bmatrix} 1 & 0 \ 1 & 0 \end{bmatrix} \ O(ext{quiet}| ext{sated}) = 0.9 \ O(ext{quiet}| ext{sated}) = 0.9$$

 $O(\mathrm{crying}|\mathrm{sated}) = 0.1$ $O(\mathrm{quiet}|\mathrm{hungry}) = 0.2$ $O(\mathrm{crying}|\mathrm{hungry}) = 0.8$

Continuous States

- Discrete state filtering impossible
 - Extended to continuous case
 - Summation becomes an integral
- We need to make assumptions
 - Linear gaussian assumption: Kalman Filter

Particle Filter

- Discretize continuous *belief state* space
 - State space can be continuous
 - Transition space can be continuous
 - Arbitrary dynamics

Particle Filter Details

- For each particle:
 - *Sample* result from transition model
- For each result:
 - *Weight* result by observation model
- From full result:
 - Resample

Decisions

Solving POMDPs

- POMDP \rightarrow Belief-State MDP
- State space: all beliefs
- Action space: identical
- Reward space: identical

Belief state space is continuous.

Conditional Planning

- Plan is a "small" decision tree
 - Take an action
 - Observe next observation
 - Take subsequent actions based on observation

Conditional Plan - Example

Plan Utility

$$egin{split} U^{\pi}(s) &= R(s,\pi()) + \ \gamma \left[\sum\limits_{s'} T(s'|s,\pi()) \sum\limits_{o} O(o|\pi(),s') U^{\pi(o)}(s')
ight] \end{split}$$

- Can be evaluated recursively
- Finite horizon
- Tractable for small horizons
- Exponential explosion for larger horizons

Alpha Vectors

Expected utility of belief: $U^{\pi}(b) = \sum_{s} b(s) U^{\pi}(s)$

As a vector:

$$U^{\pi}(b) = \sum_s b(s) U^{\pi}(s) = oldsymbol{lpha}_{\pi}^T \mathbf{b}$$

 $oldsymbol{lpha}$ - expected utility under plan π for each state

Using Alpha Vectors

- Generate *h*-step conditional plans
- Calculate Q(b, a)
 - Compare with Q(s, a) for MDPs
- Extract action

Plan Utility

Monte Carlo Tree Search

Multi-Armed Bandits

- Slot machine with more than one arm
- Each pull has a cost
- Each pull has a payout
- Probability of payouts unknown
- Goal: maximize reward
 - Time horizon?

Solving Multi-Armed Bandits

Confidence Bounds

- Expected value of reward per arm
 - Confidence interval of reward per arm
- Select arm based on upper confidence bound

- How do we estimate rewards?
 - Explore vs. exploit

Bandit as MDP?

Bandit Strategies

• Gittins Index:
$$\lambda = \max_{T>0} \frac{E[\sum^{T-1} \gamma^t R_t]}{E[\sum^{T-1} \gamma^t]}$$

• Upper Confidence Bound for arm \$M_i:

•
$$UCB(M_i) = \mu_i + rac{g(N)}{\sqrt{N_i}}$$

- g(N) is the "regret"
- Thompson Sampling
 - *Sample* arm based on probability of being optimal

Monte Carlo Methods

Tree Search

- Forget DFS, BFS, Dijkstra, A*
 - State space too large
 - Stochastic expansion
- Impossible to search entire tree
- Can *simulate* problem forward in time from starting state

Monte Carlo Tree Search

- Randomly simulate trajectories through tree
 - Complete trajectory
 - No heuristic needed¹
 - *Need* a model
- Better than exhaustive search?

Selection Policy

- Focus search on "important" parts of tree
 - Similar to alpha-beta pruning
- Explore vs. exploit
 - Simulation
 - Not actually exploiting the problem
 - Exploiting the *search*

Monte Carlo Tree Search

- Choose a node
 - Explore/exploit
 - Choose a successor
 - Continue to leaf of search tree
- Expand leaf node
- Simulate result until completion
- Back-propagate results to tree

Monte Carlo Tree Search

Upper Confidence Bounds for Trees (UCT)

- MDP: Maximize $Q(s, a) + c \sqrt{\frac{\log N(s)}{N(s, a)}}$
 - Q for state s and action a
- POMDP: Maximize $Q(h, a) + c \sqrt{\frac{\log N(h)}{N(h, a)}}$
 - Q for history h and action a
 - History: action/observation sequence

Partially-Observable UCT

References

- Mykal Kochenderfer, Tim Wheeler, and Kyle Wray. *Algorithms for Decision Making*. 1st Edition, 2022.
- Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction.* 2nd Edition, 2018.

David Silver and Joel Veness, Monte-Carlo Planning in Large POMDPs, *Advances in Neural Information Processing Systems 23* (NIPS 2010)

• Stanford CS228 (Mykal Kochenderfer)