Partially-Observable Markov Decision Processes

CSCI 4511/6511

Joe Goldfrank

Announcements

- Homework Four: 11 Nov
- Extra Credit HW: Due 4 Dec (releases next week)
- Project Proposals: 13 Nov
- Final Exam: 4 Dec
- Project Deadline: 13 Dec

MDP Example

Belief

State Uncertainty

- Markov Decision Process (MDP):
	- Assumes state is observed
	- Policy returns action as function of state
	- Decision-maker observes state, selects action
- Partially-Observable Markov Decision Process (POMDP):
	- State not fully observed
	- Decision-maker observes... *something*
	- \blacksquare That *something* is related to state

Decision Theory

- How do we make uncertain decisions?
	- How do we consider uncertainty?

Decision

Games of Luck

Closer to Reality

Belief

Updating Beliefs

Agent Function

Beliefs

- Parametric
	- Coin probability example
- Nonparametric
	- Particle filters

Need a world model.

Discrete State Filter

- Finite state space
- Finite observation space
- *Categorical* probability distributions
	- \blacksquare State is a vector
	- \blacksquare Belief state is a vector

Updating Beliefs

Observation model O

- \bullet $O(o|a, s')$
	- \blacksquare Probability of observing o given action a and transition to state s′
	- Part of our model
- We want: $P(s'|b, a, o)$

Updating Beliefs

$$
P(s'|o,b,a) \propto P(o|s',b,a,\cdot) \cdot P(s'|b,a) = O(o|a,s') \cdot P(s'|b,a) = O(o|a,s') \sum_{s} P(s'|b,a,s) P(s|b,a) = O(o|a,s') \sum_{s} T(s'|s,a)b(s)
$$

Example

State 0: Sated State 1: Hungry Action 0: Ignore State 1: Feed

 $T_{ignore} = \left[\begin{array}{cc} 0.9 & 0.1 \ \textrm{\footnotesize{O}} & 1 \end{array}\right]$ 0 0.1 1 $T_{feed} = \begin{bmatrix} 1 & 0 \ 1 & 0 \end{bmatrix}$ 1 0 0 $O(\text{quiet}|\text{sated}) = 0.9$ $O(c$ rying|sated) = 0.1 $O(\text{quiet}|\text{hungry}) = 0.2$

 $O(c$ rying|hungry) = 0.8

Continuous States

- Discrete state filtering impossible
	- Extended to continuous case
	- Summation becomes an integral
- We need to make assumptions
	- Linear gaussian assumption: Kalman Filter

Particle Filter

- Discretize continuous *belief state* space
	- State space can be continuous
	- **The Transition space can be continuous**
	- **EXPLO Arbitrary dynamics**

Particle Filter Details

- For each particle:
	- \blacksquare *Sample* result from transition model
- For each result:
	- \blacksquare *Weight* result by observation model
- From full result:
	- \blacksquare Resample

Decisions

Solving POMDPs

- $POMDP \rightarrow Belief-State MDP$
- State space: all beliefs
- Action space: identical
- Reward space: identical

Belief state space is continuous.

Conditional Planning

- Plan is a "small" decision tree
	- Take an action
	- **Observe next observation**
	- Take subsequent actions based on observation

Conditional Plan - Example

Plan Utility

$$
U^\pi(s) = R(s, \pi()) + \\\gamma \left[\sum_{s'} T(s'|s, \pi()) \sum_o O(o|\pi(), s') U^{\pi(o)}(s') \right]
$$

- Can be evaluated recursively
- Finite horizon
- Tractable for small horizons
- Exponential explosion for larger horizons

Alpha Vectors

Expected utility of belief: $U^{\pi}(b) = \sum b(s) U^{\pi}(s)$ s U^{π}

As a vector:

$$
U^{\pi}(b)=\sum_{s}b(s)U^{\pi}(s)=\boldsymbol{\alpha}_{\pi}^{T}\mathbf{b}
$$

 α - expected utility under plan π for each state

Using Alpha Vectors

- Generate h -step conditional plans
- Calculate $Q(b, a)$
	- **Compare with** $Q(s, a)$ **for MDPs**
- Extract action

Plan Utility

Monte Carlo Tree Search

Multi-Armed Bandits

- Slot machine with more than one arm
- Each pull has a cost
- Each pull has a payout
- Probability of payouts unknown
- Goal: maximize reward
	- Time horizon?

Solving Multi-Armed Bandits

Confidence Bounds

- Expected value of reward per arm
	- Confidence interval of reward per arm
- Select arm based on upper confidence bound

- How do we estimate rewards?
	- Explore vs. exploit

Bandit as MDP?

Bandit Strategies

• Gittins Index:
$$
\lambda = \max_{T>0} \frac{E[\sum_{t=1}^{T-1} \gamma^t R_t]}{E[\sum_{t=1}^{T-1} \gamma^t]}
$$

• Upper Confidence Bound for arm $$M$ i:

$$
\quad \bullet \ \ UCB(M_i) = \mu_i + \tfrac{g(N)}{\sqrt{N_i}}
$$

- \bullet $g(N)$ is the "regret"
- Thompson Sampling
	- \blacksquare *Sample* arm based on probability of being optimal

Monte Carlo Methods

Tree Search

- Forget DFS, BFS, Dijkstra, A*
	- State space too large
	- Stochastic expansion
- Impossible to search entire tree
- Can *simulate* problem forward in time from starting state

Monte Carlo Tree Search

- Randomly simulate trajectories through tree
	- Complete trajectory
	- \blacksquare No heuristic needed¹
	- \blacksquare *Need* a model
- Better than exhaustive search?

�. Heuristics can be used.

Selection Policy

- Focus search on "important" parts of tree
	- Similar to alpha-beta pruning
- Explore vs. exploit
	- **E** Simulation
	- \blacksquare Not actually exploiting the problem
	- \blacksquare Exploiting the search

Monte Carlo Tree Search

- Choose a node
	- \blacksquare Explore/exploit
	- Choose a successor
	- Continue to leaf of search tree
- Expand leaf node
- Simulate result until completion
- Back-propagate results to tree

Monte Carlo Tree Search

-
-
-
-
- -
- -
- - -
		- -
			-
-
-
-
- -
- - -
		-
-
- -
- - -
- -
-
-
-
-

Upper Confidence Bounds for Trees (UCT)

- MDP: Maximize $Q(s, a) + c \sqrt{\frac{\log N(s)}{N(s, a)}}$ $N(s,a)$ $\sqrt{\log N(\epsilon)}$ $\sqrt{2}$
	- \bullet Q for state s and action a
- POMDP: Maximize $Q(h, a) + c \sqrt{\frac{\log N(h)}{N(h, a)}}$ $N(h,a)$ $\sqrt{\log N(h)}$ $\sqrt{2}$
	- \bullet Q for history h and action a
	- History: action/observation sequence

Partially-Observable UCT

-
-
-
-
- -
	-
- - -
- -
	- - -
- -
-
- -
	-
- -
-
-
-
-
- - -
-
-
-
-
-
-
-
-
-
-
-
-
-
- -
-
-

References

- Mykal Kochenderfer, Tim Wheeler, and Kyle Wray. Algorithms for Decision Making. 1st Edition, 2022.
- Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. 2nd Edition, 2018.

[David Silver and Joel Veness, Monte-Carlo Planning in Large](https://papers.nips.cc/paper_files/paper/2010/file/edfbe1afcf9246bb0d40eb4d8027d90f-Paper.pdf) [POMDPs,](https://papers.nips.cc/paper_files/paper/2010/file/edfbe1afcf9246bb0d40eb4d8027d90f-Paper.pdf) [Advances in Neural Information Processing Systems 23](https://papers.nips.cc/paper_files/paper/2010/file/edfbe1afcf9246bb0d40eb4d8027d90f-Paper.pdf) [\(NIPS 2010\)](https://papers.nips.cc/paper_files/paper/2010/file/edfbe1afcf9246bb0d40eb4d8027d90f-Paper.pdf)

• Stanford CS228 (Mykal Kochenderfer)