
Review
CSCI 4511/6511

Joe Goldfrank

Announcements
• Extra Credit HW: Due 4 Dec

• Project Proposals

• Final Exam: 4 Dec

• Project Deadline: 13 Dec

Reflex Agent
• Very basic form of agent function

• Percept Action lookup table

• Good for simple games

▪ Tic-tac-toe

▪ Checkers?

• Needs entire state space in table

→

Partially-Observable State
• Most real-world problems

▪ Sensor error

▪ Model error

• Reflex agents fail1

• Agent needs a belief state

�. Unless total number of partial observations is bounded

State
What is the state space?

Search: Why?
• Fully-observed problem

• Deterministic actions and state

• Well defined start and goal

Other Applications
• Route planning

• Protein design

• Robotic navigation

• Scheduling

▪ Science

▪ Manufacturing

Not Included
• Uncertainty

▪ State transitions known

• Adversary

▪ Nobody wants us to lose

• Cooperation

• Continuous state

Search Problem
Search problem includes:

• Start State

• State Space

• State Transitions

• Goal Test

State Space:

Actions & Successor States:

State Space Graph

Search Trees
Graph:

Tree:

Let’s Talk About Trees
• For any non-trivial problem, they’re big

▪ (Effective) branching factor

▪ Depth

• Graph and tree both too large for memory

▪ Successor function (graph)

▪ Expansion function (tree)

How To Solve It
Given:

• Starting node

• Goal test

• Expansion

Do:

• Expand nodes from start

• Test each new node for goal

▪ If goal, success

• Expand new nodes

▪ If nothing left to expand, failure

Tree Search Algorithms
• BFS

• DFS

• UCS/Dijkstra

• A*

• Greedy searches

A* Search
• Include path-cost

▪

• Complete (always)

• Optimal (sometimes)

• Painful time and space complexity

g(n)

f(n) = g(n) + h(n)

O()bm

Choosing Heuristics
• Recall: estimates cost from to goal

• Admissibility

• Consistency

h(n) n

Choosing Heuristics
• Admissibility

▪ Never overestimates cost from to goal

▪ Cost-optimal!

• Consistency

▪

▪ successors of

▪ cost from to given action

n

h(n) ≤ c(n, a,) + h()n′ n′

n′ n

c(n, a,)n′ n n′ a

Consistency
• Consistent heuristics are admissible

▪ Inverse not necessarily true

• Always reach each state on optimal path

Weighted A* Search
• Greedy:

• A*:

• Uniform-Cost Search:

…

• Weighted A* Search:

▪ Weight

f(n) = h(n)

f(n) = h(n) + g(n)

f(n) = g(n)

f(n) = W ⋅ h(n) + g(n)

W > 1

Iterative-Deepening A* Search
“IDA*” Search

• Similar to Iterative Deepening with Depth-First Search

▪ DFS uses depth cutoff

▪ IDA* uses cutoff with DFS

▪ Once cutoff breached, new cutoff:

◦ Typically next-largest

▪ time complexity

▪ space complexity1

h(n) + g(n)

h(n) + g(n)

O()bm

O(d)

�. This is slightly complicated based on heuristic branching factor .bh

Where Do Heuristics Come From?
• Intuition

▪ “Just Be Really Smart”

• Relaxation

▪ The problem is constrained

▪ Remove the constraint

• Pre-computation

▪ Sub problems

• Learning

Local Search
Uninformed/Informed Search:

• Known start, known goal

• Search for optimal path

Local Search:

• “Start” is irrelevant

• Goal is not known

▪ But we know it when we see it

• Search for goal

“Real-World” Examples
• Scheduling

• Layout optimization

▪ Factories

▪ Circuits

• Portfolio management

• Others?

Hill-Climbing
• Objective function

• State space mapping

▪ Neighbors

Variations
• Sideways moves

▪ Not free

• Stochastic moves

▪ Full set

▪ First choice

• Random restarts

▪ If at first you don’t succeed, you fail try again!

▪ Complete

The Trouble with Local Maxima
• We don’t know that they’re local maxima

▪ Unless we do?

• Hill climbing is efficient

▪ But gets trapped

• Exhaustive search is complete

▪ But it’s exhaustive!

▪ Stochastic methods are ʻexhaustive’

Simulated Annealing
• Doesn’t actually have anything to do with metallurgy

• Search begins with high “temperature”

▪ Temperature decreases during search

• Next state selected randomly

▪ Improvements always accepted

▪ Non-improvements rejected stochastically

▪ Higher temperature, less rejection

▪ “Worse” result, more rejection

Local Beam Search
Recall:

• Beam search keeps track of “best” branches

Local Beam Search:

• Hill climbing search, keeping track of successors

▪ Deterministic

▪ Stochastic

k

k

Simple Games
• Two-player

• Turn-taking

• Discrete-state

• Fully-observable

• Zero-sum

▪ This does some work for us!

Minimax
• Initial state

• ACTIONS() and TO-MOVE()

• RESULT()

• IS-TERMINAL()

• UTILITY()

s0

s s

s, a

s

s, p

More Than Two Players
• Two players, two values:

▪ Zero-sum:

▪ Only one value needs to be explicitly represented

• players:

▪

▪ Value scalar becomes

,vA vB

= −vA vB

> 2

, , . . .vA vB vC

v ⃗

Minimax Efficiency
Pruning removes the need to explore the full tree.

• Max and Min nodes alternate

• Once one value has been found, we can eliminate parts of
search

▪ Lower values, for Max

▪ Higher values, for Min

• Remember highest value () for Max

• Remember lowest value () for Min

α

β

Solving Non-Deterministic Games
Previously: Max and Min alternate turns

Now:

• Max

• Chance

• Min

• Chance

Expectiminimax

Constraint Satisfaction
• Express problem in terms of state variables

▪ Constrain state variables

• Begin with all variables unassigned

• Progressively assign values to variables

• Assignment of values to state variables that “works:” solution

More Formally
• State variables:

• State variable domains:

▪ The domain specifies which values are permitted for the
state variable

▪ Domain: set of allowable variables (or permissible range for
continuous variables)1

▪ Some constraints restrict allowable values

, , . . . ,X1 X2 Xn

, , . . . ,D1 D2 Dn

, , . . . ,C1 C2 Cm

�. Or a hybrid, such as a union of ranges of continuous variables.

Constraint Types
• Unary: restrict single variable

▪ Can be rolled into domain

▪ Why even have them?

• Binary: restricts two variables

• Global: restrict “all” variables

Constraint Examples
• and both have real domains, i.e.

▪ A constraint could be

• could have domain and could have
domain

▪ A constraint could be

•

▪ Constraint: exactly four of equal 12

▪ Rewrite as binary constraint?

X1 X2 , ∈ RX1 X2

<X1 X2

X1 {red, green, blue} X2

{green, blue, orange}

≠X1 X2

, , . . . , 00 ∈ RX1 X2 X1

Xi

Assignments
• Assignments must be to values in each variable’s domain

• Assignment violates constraints?

▪ Consistency

• All variables assigned?

▪ Complete

Graph Representation I
Constraint graph: edges are constraints

Graph Representation II
Constraint hypergraph: constraints are nodes

Solving CSPs
• We can search!

▪ …the space of consistent assignments

• Complexity

▪ Domain size , number of nodes

• Tree search for node assignment

▪ Inference to reduce domain size

• Recursive search

O()dn

d n

Inference
• Arc consistency

▪ Reduce domains for pairs of variables

• Path consistency

▪ Assignment to two variables

▪ Reduce domain of third variable

Ordering
• SELECT-UNASSGINED-VARIABLE()

▪ Choose most-constrained variable1

• ORDER-DOMAIN-VARIABLES()

▪ Least-constraining value

• Tree-structure: Linear time solution

CSP , assignment

CSP , var, assignment

�. or MRV: “Minimum Remaining Values”

Logic
•

▪ “Not” operator, same as CS (!, not, etc.)

•

▪ “And” operator, same as CS (&&, and, etc.)

▪ This is sometimes called a conjunction.

•

▪ “Inclusive Or” operator, same as CS.

▪ This is sometimes called a disjunction.

¬

∧

∨

Unfamiliar Logical Operators
•

▪ Logical implication.

▪ If , is always True when is True.

▪ If is False, the value of is not constrained.

•

▪ “If and only If.”

▪ If , and are either both True or both
False.

▪ Also called a biconditional.

⇒

⇒X0 X1 X1 X0

X0 X1

⟺

⟺X0 X1 X0 X1

Knowledge Base & Queries
• We encode everything that we ʻknow’

▪ Statements that are true

• We query the knowledge base

▪ Statement that we’d like to know about

• Logic:

▪ Is statement consistent with KB?

Entailment
•

▪ “Knowledge Base entails A”

▪ For every model in which is True, is also True

▪ One-way relationship: can be True for models where
is not True.

• Vocabulary: is the query

KB ⊨ A

KB A

A KB

A

Knowing Things
Falsehood:

•

▪ No model exists where is True and is True

It is possible to not know things:1

•

•

KB ⊨ ¬A

KB A

KB ⊬ A

KB ⊬ ¬A

�. – “does not entail”⊬

Conjunctive Normal Form
• Literals — symbols or negated symbols

▪ is a literal

▪ is a literal

• Clauses — combine literals and disjunction using disjunctions
()

▪ is a valid disjunction

▪ is a valid disjunction

X0

¬X0

∨

∨ ¬X0 X1

(∨ ¬) ∨X0 X1 X2

Conjunctive Normal Form
• Conjunctions () combine clauses (and literals)

▪

• Disjunctions cannot contain conjunctions:

• not in CNF

▪ Can be rewritten in CNF:

∧

∧ (∨ ¬)X1 X0 X2

∨ (∧)X0 X1 X2

(∨) ∧ (∨)X0 X1 X0 X2

Converting to CNF
•

▪

•

▪

•

▪

•

▪

⟺X0 X1

(⇒) ∧ (⇒)X0 X1 X1 X0

⇒X0 X1

¬ ∨X0 X1

¬(∧)X0 X1

¬ ∨ ¬X0 X1

¬(∨)X0 X1

¬ ∧ ¬X0 X1

Joint Distributions
• Distribution over multiple variables

▪ represents

• Marginal distribution:

▪

P(x, y) P{X = x, Y = y}

P(x) = P(x, y)∑y

Independence
Conditional probability:

Bayes’ rule:

P(x|y) =
P(x, y)

P(y)

P(x|y) =
P(y|x)P(x)

P(y)

Conditional Independence

• Two variables can be conditionally independent…

▪ … when conditioned on a third variable

P(x|y) = P(x) → P(x, y) = P(x)P(y)

Markov Chains
Markov property:

“The future only depends on the past through the present.”

• State captures “all” information about past

• No information in (or other past states) influences

P(| , , . . . ,) = P(|)Xt Xt−1 Xt−2 X0 Xt Xt−1

Xt−1

Xt−2 Xt

State Transitions
Stochastic matrix

• All rows sum to 1

• Discrete state spaces implied

P

P =
⎡
⎣
⎢⎢

P1,1

⋮
Pn,1

…

⋱

P1,n

Pn,n

⎤
⎦
⎥⎥

Stationary Behavior
• “Long run” behavior of Markov chain

 for large

• “Stationary state” such that:

• Row eigenvector for for eigenvalue 1

•

x0P k k

π

π = πP

P

Absorbing States
• State that cannot be “escaped” from

▪ Example: gambling running out of money

• Non-absorbing states: “transient” states

→

P =

⎡
⎣
⎢⎢⎢

0.5
0.3
0.1
0

0.3
0.4
0.6
0

0.1
0.3
0.2
0

0.1
0

0.1
1

⎤
⎦
⎥⎥⎥

Markov Reward Process
• Reward function :

▪ Reward for being in state

• Discount factor

= E[| = s]Rs Rt+1 St

s

γ ∈ [0, 1]

=Ut ∑k γkRt+k+1

The Markov Decision Process
• Transition probabilities depend on actions

Markov Process:

Markov Decision Process (MDP):

Rewards: with discount factor

= Pst+1 st

=st+1 stP
a

Ra γ

MDP - Policies
• Agent function

▪ Actions conditioned on states

• Can be stochastic

▪ Usually deterministic

▪ Usually stationary

π(s) = P [= a| = s]At st

MDP - Policies
State value function :1

State-action value function :2

Notation: indicates expected value under policy

U π

(s) = [| = s]U π Eπ Ut St

Qπ

(s, a) = [| = s, = a]Qπ Eπ Ut St At

Eπ π

�. Often simply called “value function”

�. Often simply called “action value function”

Bellman Expectation
Value function:

Action-value fuction:

(s) = [+ γ ()| = s]U π Eπ Rt+1 U π St+1 St

(s, a) = [+ γ (,)| = s, = a]Qπ Eπ Rt+1 Qπ St+1 At+1 St At

Bellman Equation

(s) = R(s, a) + γ T (|s, a) ()U ∗ max
a

∑
s′

s′ U ∗ s′

Bellman Equation

(s, a) = R(s, a) + γ T (|s, a) (,)Q∗ ∑
s′

s′ max
a

Q∗ s′ a′

How To Solve It
• No closed-form solution

▪ Optimal case differs from policy evaluation

Iterative Solutions:

• Value Iteration

• Policy Iteration

Reinforcement Learning:

• Q-Learning

• Sarsa

Model Uncertainty
Action-value function:

we don’t know :

Q(s, a) = R(s, a) + γ T (|s, a)U()∑
s′

s′ s′

T

(s) = [+ γ + + +. . . |s]U π Eπ rt rt+1 γ2rt+2 γ3rt+3

Q(s, a) = [+ γ + + +. . . |s, a]Eπ rt rt+1 γ2rt+2 γ3rt+3

Temporal Difference (TD) Learning
• Take action from state, observe new state, reward

• Update immediately given

• TD Error:

▪ Measurement:

▪ Old Estimate:

U(s) ← U(s) + α [r + γU() − U(s)]s′

(s, a, r,)s′

[r + γU() − U(s)]s′

r + γU()s′

U(s)

Methods
• Q-Learning

• Sarsa

• Eligibility traces

• Local approximation

Monte Carlo Tree Search - Search

• If current state (tree states):

▪ Maximize:

▪ Update during search

∈ T

Q(s, a) + c
log N(s)
N(s,a)

− −−−−−√
Q(s, a)

Monte Carlo Tree Search - Expansion

• State

▪ Initialize and

▪ Add state to

∉ T

N(s, a) Q(s, a)

T

Monte Carlo Tree Search - Rollout

• Policy is “rollout” policy

▪ Usually stochastic

▪ States not tracked

π0

References
• Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 4th Edition,

2020.

• Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. 2nd
Edition, 2018.

• Mykal Kochenderfer, Tim Wheeler, and Kyle Wray. Algorithms for Decision Making. 1st
Edition, 2022.

• UC Berkeley CS188

• Stanford CS234 (Emma Brunskill)

• Stanford CS228 (Mykal Kochenderfer)

