Review

CSCI 4511/6511

Joe Goldfrank

Announcements

e Extra Credit HW: Due 4 Dec
e Project Proposals
e Final Exam: 4 Dec

e Project Deadline: 13 Dec

Reflex Agent

e Very basic form of agent function
e Percept — Action lookup table
e Good for simple games

= Tic-tac-toe

= Checkers?

e Needs entire state space in table

Partially-Observable State

e Most real-world problems
= Sensor error
= Model error

e Reflex agents fail

e Agent needs a belzef state

1. Unless total number of nartial observations is bounded

State

What is the state space?
-)

(s
280

CJEE)

Search: Why?

e Fully-observed problem
e Deterministic actions and state

e Well defined start and goal

/\
@\ @
@ e

st art

Other Applications

e Route planning
e Protein design
e Robotic navigation
e Scheduling
= Science

= Manufacturing

Not Included

e Uncertainty

= State transitions known
e Adversary

= Nobody wants us to lose
e Cooperation

e Continuous state

Search Problem

Search problem includes:

e Start State
e State Space

e State Transitions

e Goal Test

State Space:

Actions & Successor States:

"North'

/

Search Trees

Graph:

\\// N T G

K-\

\\

@abors)

Tree:

Let’s Talk About Trees

e For any non-trivial problem, they’re bzg
» (Effective) branching factor
= Depth

e Graph and tree both too large for memory
= Successor function (graph)

= Expansion function (tree)

How To Solve It

Given:

e Starting node
e Goal test

e Expansion

Do:

e Expand nodes from start

e Test each new node for goal
= [f goal, success

e Expand new nodes

= [fnothing left to expand, failure

Tree Search Algorithms

e BFS

e DFS

e UCS/Dijkstra
o A%

e Greedy searches

A* Search

e Include path-cost g(n)
= f(n) = g(n) + h(n)

e Complete (always)

e Optimal (sometimes)

e Painful O(b") time and space complexity

Choosing Heuristics

e Recall: h(n) estimates cost from n to goal

Manhatton Distance

e Admissibility

e Consistency

Choosing Heuristics
e Admissibility

= Never overestimates cost from n to goal
= Cost-optimal!
e Consistency
» h(n) < c(n,a,n’) + h(n')
= n successors of n

= ¢(n,a,n’) cost from n to n’ given action a

Consistency

e Consistent heuristics are admissible
= Inverse not necessarily true

e Always reach each state on optimal path

Weighted A* Search

e Greedy: f(n) = h(n)
* A% f(n) = h(n) + g(n)
e Uniform-Cost Search: f(n)

g(n)

e Weighted A* Search: f(n) = W - h(n) 4+ g(n)
= Weight W > 1

Iterative-Deepening A* Search
“IDA*” Search

e Similar to Iterative Deepening with Depth-First Search
= DFS uses depth cutoft

= IDA* uses h(n) + g(n) cutoff with DFS
= Once cutoff breached, new cutoff:
o Typically next-largest h(n) + g(n)
= O(b™) time complexity =
= O(d) space complexity! <

1. This 1s sliehtlv comnlicated based on heuristic branching factor bs.

Where Do Heuristics Come From?’

e Intuition
= “Just Be Really Smart”
e Relaxation
= The problem is constrained
= Remove the constraint
e Pre-computation
= Sub problems

e [Learning

L.ocal Search

Uninformed/Informed Search:

e Known start, known goal

e Search for optimal path

L.ocal Search:

o “Start” isirrelevant
e (Goal 1s not known
s But we know it when we see it

e Search for goal

“Real-World” Examples

e Scheduling

e Layout optimization
= Factories
= Circuits

e Portfolio management

e Others?

Hill-Climbing
e Objective function

e State space mapping

= Neighbors

Variations

e Sideways moves
= Not free
e Stochastic moves
s Full set
= First choice
e Random restarts
= If at first you don’t succeed, youfail try again!

s Complete <

The Trouble with Local Maxima

e We don’t know that they’re local maxima
s Unless we do?

e Hill climbing is efficient
= But gets trapped

e Exhaustive search is complete
= But it’s exhaustive!

s Stochastic methods are ‘exhaustive’

Simulated Annealing

e Doesn’t actually have anything to do with metallurgy
e Search begins with high “temperature”

» Temperature decreases during search
e Next state selected randomly

= Improvements always accepted

= Non-improvements rejected stochastically

» Higher temperature, less rejection

= “Worse” result, more rejection

L.ocal Beam Search
Recall:

e Beam search keeps track of £ “best” branches

L.ocal Beam Search:

e Hill climbing search, keeping track of k successors
= Deterministic

s Stochastic

Simple Games

e Two-player

e Turn-taking

e Discrete-state

e Fully-observable
e /Zero-sum

» This does some work for us!

Minimax

e Initial state sg

e ACTIONS(s) and TO-MOVE(s)
e RESULT(s, a)

e [S-TERMINAL(S)

e UTILITY(S, p)

More Than Two Players

e Two players, two values: v 4, vp

s /ero-sum: v4 = —vp

= Only one value needs to be explicitly represented
e > 2 players:

B V4,UB,0C. ..

m Value scalar becomes v

Minimax Efficiency

Pruning removes the need to explore the full tree.

e Max and Min nodes alternate

e Once one value has been found, we can eliminate parts of
search

= Lower values, for Max
» Higher values, for Min
e Remember highest value () for Max

e Remember lowest value (3) for Min

Solving Non-Deterministic Games
Previously: Max and Min alternate turns
Now:

e Max
e Chance
e Min

e Chance

« o
><
-~

Expectiminimax

Constraint Satisfaction

e Express problem in terms of state variables
= Constrain state variables

e Begin with all variables unassigned

e Progressively assign values to variables

e Assignment of values to state variables that “works:” solution

More Formally

o State variables: X1, Xo,..., X,
e State variable domains: Dy, Ds, ..., D,

» The domain specifies which values are permitted for the
state variable

= Domain: set of allowable variables (or permissible range for
continuous variables)’

= Some constraints Cq, Cs, ..., C,, restrict allowable values

1. Or a hvbrid. such as a union of ranees of continuous variables.

Constraint Types

e Unary: restrict single variable
= Can be rolled into domain
= Why even have them?

e Binary: restricts two variables

e (Global: restrict “all” variables

Constraint Examples

e X; and X5 both have real domains, i.e. X7, Xs € R
= A constraint could be X; < X

e X could have domain {red, green, blue} and X5 could have
domain {green, blue, orange}

= A constraint could be X7 # X5
¢ Xl,XQ,...,Xl()O c R
= Constraint: exactly four of X; equal 12

= Rewrite as binary constraint?

Assignments

e Assignments must be to values in each variable’s domain
e Assignment violates constraints?

= Consistency
e All variables assigned?

= Complete

Graph Representation I

Constraint graph: edges are constraints

Graph Representation 11

Constraint hypergraph: constraints are nodes

Solving CSPs

e We can search!

= ...the space of consistent assignments
e Complexity O(d")

» Domain size d, number of nodes n
e Tree search for node assignment

» Inference to reduce domain size

e Recursive search

Inference

e Arc consistency

s Reduce domains for pairs of variables
e Path consistency

= Assignment to two variables

s Reduce domain of third variable

Ordering

e SELECT-UNASSGINED-VARIABLE(C'S P, assignment)
» Choose most-constrained variable!
e ORDER-DOMAIN-VARIABLES(C'S P, var, assignment)

= [east-constraining value

o Tree-structure: Linear tzme solution

1. or MRV: “Minimum Remaining Values”

Logic
¢ —
= “Not” operator, same as CS (!, not, etc.)
° N
= “And” operator, same as CS (&&, and, etc.)
s This is sometimes called a conjunction.
o \/
s “Inclusive Or” operator, same as CS.

» This is sometimes called a disjunction.

Unfamiliar Logical Operators

¢ =
» Logical implication.
o If Xo = Xi, X; is always True when X is True.
m If X is False, the value of X is not constrained.
¢ —
= “Ifand only If.”

n If X < Xi, Xyand X; are either both True or both
False.

m Also called a biconditional.

Knowledge Base & Queries

e We encode everything that we ‘know’

= Statements that are true
e We query the knowledge base

= Statement that we’d like to know about
e [ogic:

» [s statement consistent with KB?

Entailment
e KBE A

= “Knowledge Base entails A”

= For every model in which K B is True, A is also True

= One-way relationship: A can be True for models where K B
is not True.

e Vocabulary: A is the query

Knowing Things
Falsehood:
e KB=—-A

= No model exists where K B is True and A is True

It is possible to not know things:!

e KBF A
e KBF —A

1. ¥ - “does not entail”

Conjunctive Normal Form

e [Literals — symbols or negated symbols
= X i1s aliteral
s =X 1s a literal

e Clauses — combine literals and disjunction using disjunctions
(V)
s X, V —X; is a valid disjunction

» (X V—X7)V X is avalid disjunction

Conjunctive Normal Form

o Conjunctions (/\) combine clauses (and literals)
s X5 A (X VX))
e Disjunctions cannot contain conjunctions:
e Xy V (X1 A X3)notin CNF
= Can be rewritten in CNF: (X, V X1) A (Xo V X32)

Converting to CNF

o X — X;
n (X) = X)) A (X1 = X))
e Xy = X3
=Xy VX,
e =(Xg N X71)
n =Xy VX,
e =(XoV X7)
n =Xy A Xy

Joint Distributions

e Distribution over multiple variables
» P(z,y) represents P{X = z,Y = y}

e Marginal distribution:
" P(z) =), P(z,y)

Independence
Conditional probability:

Plaly) = “pr-)
Bayes’ rule:
plaly) - PUDPE

Conditional Independence

P(zly) = P(z) = P(z,y) = P(z)P(y)

e Two variables can be conditionally independent...

m ... when conditioned on a third variable

Markov Chains

Markov property:
P(Xt‘Xt—laXt—%'“aXO) — P(Xt‘Xt—l)

“The future only depends on the past through the present.”

e State X; 1 captures “all” information about past

e No information in X; 5 (or other past states) influences X;

State Transitions

Stochastic matrix P

e All rows sumto 1

e Discrete state spaces implied

Stationary Behavior

e “Long run” behavior of Markov chain

zo P* for large k

e ‘“‘Stationary state” 7 such that:

m=mP

e Row eigenvector for P for eigenvalue 1

~
-

o T

Absorbing States

e State that cannot be “escaped” from

» Example: gambling — running out of money

0.5 0.3 0.1 0.1
0.3 04 03 O
0.1 0.6 0.2 0.1

0 0 0 1

e Non-absorbing states: “transient” states

Markov Reward Process
e Reward function R; = E|R;.1|S: = s]:

= Reward for being in state s

e Discount factor v € [0, 1]

— Zk ’Yth+k+1

The Markov Decision Process

e Transition probabilities depend on actions

Markov Process:

St+1 = §t P

Markov Decision Process (MDP):

— a
St+1 = §t P

Rewards: R® with discount factor

MDP - Policies

e Agent function

» Actions conditioned on states
7(s) = P|A; = als; = s]

e Can be stochastic
» Usually deterministic

s Usually szationary

MDP - Policies

State value function U™:!

U™(s) = E,;|U;|S; = s]

State-action value function Q™ :?

Q" (s,a) = E;|Us|S; = s, A = a

Notation: E; indicates expected value under policy 7

1. Often simply called “value function”

2. Often simplv called “action value function”

Bellman Expectation
Value function:

U™(s) = Ex|Rer1 + YU (St41)|S: = s

Action-value fuction:

Q“(s,a) — EW[RH—l + 'YQﬂ(St—I—la At+1)\5t = g, Ay = CL]

Bellman Equation

U*(s) = max R(s, a) + ’yZT(s’]s, a)U*(s")

Bellman Equation

Q' (s,0) = R(s,a) +7 Y T(s|s,0) max Q" (s,)

How To Solve It

e No closed-form solution

s Optimal case differs from policy evaluation

Iterative Solutions:

e Value Iteration

e Policy Iteration

Reinforcement Learning:

e Q-Learning

e Sarsa

Model Uncertainty

Action-value function:

Q(s,a) = R(s,a) +v2_ T(s'[s,a)U(s)

we don’t know T1:
U™(s) = E, [rt + Pei1 + V21 ire + YIres ..]s}
Q(s,a) = By [ry +Yreq1 + 7212 + 7213+ .. |8, a

Temporal Difference (TD) Learning
o Take action from state, observe new state, reward
U(s) < U(s)+alr+~U(s") — U(s)]

e Update immediately given (s, a,r, s')

o TD Error: [r +~U(s") — U(s)]
» Measurement: r + YU (s')
= Old Estimate: U(s)

Methods

e (Q-Learning
e Sarsa
e Eligibility traces

e Local approximation

Monte Carlo Tree Search - Search

e If current state € T’ (tree states):

» Maximize:

log N(s)
Q(s,a) +c N(s,a)

= Update Q(s, a) during search

Monte Carlo Tree Search - Expansion

o State ¢ T’
= Initialize N (s, a) and Q(s, a)
= Add state to T°

Monte Carlo Tree Search - Rollout

e Policy 7 is “rollout” policy
s Usually stochastic

m States not tracked

References

e Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 4th Edition,
2020.

e Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. 2nd
Edition, 2018.

Mykal Kochenderfer, Tim Wheeler, and Kyle Wray. Algorithms for Decision Making. 1st
Edition, 2022.

UC Berkeley CS188
Stanford CS234 (Emma Brunskill)
Stanford CS228 (Mykal Kochenderfer)

