Review

CSCI 4511/6511

Joe Goldfrank

Announcements

- Extra Credit HW: Due 4 Dec
- **Project Proposals**
- Final Exam: 4 Dec
- Project Deadline: 13 Dec

Reflex Agent

- Very basic form of agent function
- Percept \rightarrow Action lookup table
- Good for simple games
	- \blacksquare Tic-tac-toe
	- Checkers?
- Needs *entire state space* in table

Partially-Observable State

- Most real-world problems
	- Sensor error
	- Model error
- Reflex agents fail¹
- Agent needs a *belief state*

�. Unless total number of partial observations is bounded

State

What is the state space?

Search: Why?

- Fully-observed problem
- Deterministic actions and state
- Well defined *start* and *goal*

Other Applications

- Route planning
- Protein design
- Robotic navigation
- Scheduling
	- **E** Science
	- Manufacturing

Not Included

- Uncertainty
	- State transitions known
- Adversary
	- Nobody wants us to lose
- Cooperation
- Continuous state

Search Problem

Search problem includes:

- Start State
- State Space
- State Transitions
- Goal Test

Actions & Successor States:

State Space Graph

Search Trees

Graph:

Tree:

Let's Talk About Trees

- For any non-trivial problem, they're *big*
	- \blacksquare (Effective) branching factor
	- Depth
- Graph and tree both too large for memory
	- Successor function (graph)
	- Expansion function (tree)

How To Solve It

Given:

- Starting node
- Goal test
- Expansion

Do:

- Expand nodes from start
- Test each new node for goal
	- **If goal, success**
- Expand new nodes
	- **If nothing left to expand, failure**

Tree Search Algorithms

- BFS
- DFS
- UCS/Dijkstra
- \bullet A^*
- Greedy searches

A* Search

- Include path-cost *g*(*n*)
	- $f(n) = g(n) + h(n)$
- Complete (always)
- Optimal (sometimes)
- Painful $O(b^m)$ time and space complexity

Choosing Heuristics

• Recall: $h(n)$ estimates cost from n to goal

- Admissibility
- Consistency

Choosing Heuristics

- Admissibility
	- \blacksquare *Never* overestimates cost from n to goal
	- Cost-optimal!
- Consistency
	- \blacksquare $h(n) \leq c(n, a, n') + h(n')$
	- \blacksquare *n'* successors of *n*
	- \bullet $c(n, a, n')$ cost from *n* to *n'* given action *a*

Consistency

- Consistent heuristics are admissible
	- Inverse not necessarily true
- Always reach each state on optimal path

Weighted A* Search

- Greedy: $f(n) = h(n)$
- $A^*: f(n) = h(n) + g(n)$
- Uniform-Cost Search: $f(n) = g(n)$

- Weighted A* Search: $f(n) = W \cdot h(n) + g(n)$
	- \blacksquare Weight $W > 1$

…

Iterative-Deepening A* Search

"IDA*" Search

- Similar to Iterative Deepening with Depth-First Search
	- **DFS** uses depth cutoff
	- \blacksquare IDA* uses $h(n) + g(n)$ cutoff with DFS
	- Once cutoff breached, new cutoff:
		- \circ Typically next-largest $h(n) + g(n)$
	- \bullet *O*(b^m) time complexity
	- \bullet *O*(*d*) space complexity¹

�. This is slightly complicated based on heuristic branching factor *bh*.

Where Do Heuristics Come From?

- Intuition
	- "Just Be Really Smart"
- Relaxation
	- The problem is constrained
	- Remove the constraint
- Pre-computation
	- Sub problems
- Learning

Local Search

Uninformed/Informed Search:

- Known start, known goal
- Search for optimal path

Local Search:

- "Start" is irrelevant
- Goal is not known
	- \blacksquare But we know it when we see it
- Search for *goal*

"Real-World" Examples

- Scheduling
- Layout optimization
	- Factories
	- Circuits
- Portfolio management
- Others?

Hill-Climbing

- Objective function
- State space mapping
	- **Exercise Neighbors**

Variations

- Sideways moves
	- Not free
- Stochastic moves
	- \blacksquare Full set
	- \blacksquare First choice
- Random restarts
	- **If at first you don't succeed, you fail try again!**
	- Complete \odot

The Trouble with Local Maxima

- We don't know that they're local maxima
	- \blacksquare Unless we do?
- Hill climbing is efficient
	- But gets trapped
- Exhaustive search is complete
	- But it's exhaustive!
	- Stochastic methods are 'exhaustive'

Simulated Annealing

- Doesn't actually have anything to do with metallurgy
- Search begins with high "temperature"
	- **Temperature decreases during search**
- Next state selected randomly
	- **Improvements always accepted**
	- Non-improvements rejected stochastically
	- **EXECUTE:** Higher temperature, less rejection
	- "Worse" result, more rejection

Local Beam Search

Recall:

• Beam search keeps track of k "best" branches

Local Beam Search:

- \bullet Hill climbing search, keeping track of k successors
	- **•** Deterministic
	- **Exercise Stochastic**

Simple Games

- Two-player
- Turn-taking
- Discrete-state
- Fully-observable
- Zero-sum
	- **This does some work for us!**

Minimax

- Initial state *s*0
- ACTIONS(s) and TO-MOVE(s)
- RESULT (s, a)
- IS-TERMINAL (s)
- UTILITY (s, p)

More Than Two Players

- Two players, two values: v_A, v_B
	- Zero-sum: $v_A = -v_B$
	- Only one value needs to be explicitly represented
- \bullet > 2 players:
	- \bullet v_A, v_B, v_C ...
	- \blacksquare Value scalar becomes \vec{v}

Minimax Efficiency

Pruning removes the need to explore the full tree.

- Max and Min nodes alternate
- Once *one* value has been found, we can eliminate parts of search
	- Lower values, for Max
	- **EXECUTE:** Higher values, for Min
- Remember highest value (α) for Max
- Remember lowest value (β) for Min

Solving Non-Deterministic Games

Previously: Max and Min alternate turns

Now:

- Max
- Chance
- Min
- Chance

Expectiminimax

Constraint Satisfaction

- Express problem in terms of state variables
	- Constrain state variables
- Begin with all variables unassigned
- Progressively assign values to variables
- Assignment of values to state variables that "works:" *solution*

More Formally

- State variables: X_1, X_2, \ldots, X_n
- State variable domains: D_1, D_2, \ldots, D_n
	- The domain specifies which values are permitted for the state variable
	- Domain: set of allowable variables (or permissible range for continuous variables)¹
	- \blacksquare Some constraints C_1, C_2, \ldots, C_m restrict allowable values

�. Or a hybrid, such as a union of ranges of continuous variables.
Constraint Types

- Unary: restrict single variable
	- Can be rolled into domain
	- Why even have them?
- Binary: restricts two variables
- Global: restrict "all" variables

Constraint Examples

- X_1 and X_2 both have real domains, i.e. $X_1, X_2 \in \mathbb{R}$
	- \blacksquare A constraint could be $X_1 < X_2$
- X_1 could have domain {red, green, blue} and X_2 could have domain {green, blue, orange}
	- **•** A constraint could be $X_1 \neq X_2$
- \bullet X_1, X_2, \ldots, X_1 00 $\in \mathbb{R}$
	- **Constraint: exactly four of** X_i **equal 12**
	- Rewrite as binary constraint?

Assignments

- Assignments must be to values in each variable's domain
- Assignment violates constraints?
	- Consistency
- All variables assigned?
	- Complete

Graph Representation I

Constraint graph: edges are constraints

Graph Representation II

Constraint hypergraph: constraints are nodes

Solving CSPs

- We can search!
	- …the space of consistent assignments
- Complexity $O(d^n)$
	- **•** Domain size d , number of nodes n
- Tree search for node assignment
	- **Inference to reduce domain size**
- Recursive search

Inference

- Arc consistency
	- Reduce domains for pairs of variables
- Path consistency
	- Assignment to two variables
	- Reduce domain of third variable

Ordering

- SELECT-UNASSGINED-VARIABLE(CSP, assignment)
	- \blacksquare Choose most-constrained variable¹
- ORDER-DOMAIN-VARIABLES(CSP, var, assignment)
	- **EXECUTE:** Least-constraining value

• Tree-structure: *Linear time* solution

�. or MRV: "Minimum Remaining Values"

Logic

• ¬

• ∧

■ "Not" operator, same as CS (!, not, etc.)

- "And" operator, same as CS (&&, and, etc.)
- This is sometimes called a *conjunction*.
- ∨
	- "Inclusive Or" operator, same as CS.
	- This is sometimes called a *disjunction*.

Unfamiliar Logical Operators

 $\bullet \Rightarrow$

- Logical *implication*.
- **•** If $X_0 \Rightarrow X_1, X_1$ is always True when X_0 is True.
- If X_0 is False, the value of X_1 is not constrained.
- $\bullet \iff$
	- "If and only If."
	- **•** If $X_0 \iff X_1, X_0$ and X_1 are either both True or both False.
	- Also called a *biconditional*.

Knowledge Base & Queries

- We encode everything that we 'know'
	- Statements that are true
- We query the knowledge base
	- Statement that we'd like to know about
- Logic:
	- \blacksquare Is statement consistent with KB?

Entailment

- $KB \models A$
	- "Knowledge Base entails A"
	- For every model in which KB is True, A is also True
	- One-way relationship: *A* can be True for models where KB is not True.
- Vocabulary: A is the *query*

Knowing Things

Falsehood:

- $KB \models \neg A$
	- No model exists where *KB* is True and *A* is True

It is possible to not know things: $¹$ </sup>

- *KB* ⊬ *A*
- $KB \nvdash \neg A$

Conjunctive Normal Form

- *Literals* symbols or negated symbols
	- \blacksquare *X*₀ is a literal
	- $\blacksquare \neg X_0$ is a literal
- *Clauses* combine literals and disjunction using disjunctions (\vee)
	- X_0 ∨ $\neg X_1$ is a valid disjunction
	- $(X_0 \vee \neg X_1) \vee X_2$ is a valid disjunction

Conjunctive Normal Form

- *Conjunctions* (\land) combine clauses (and literals)
	- $X_1 \wedge (X_0 \vee \neg X_2)$
- Disjunctions cannot contain conjunctions:
- $X_0 \vee (X_1 \wedge X_2)$ not in CNF
	- Can be rewritten in CNF: $(X_0 \vee X_1) \wedge (X_0 \vee X_2)$

Converting to CNF

- \bullet $X_0 \iff X_1$
	- $(X_0 \Rightarrow X_1) \land (X_1 \Rightarrow X_0)$
- $X_0 \Rightarrow X_1$
	- $\neg X_0 \lor X_1$
- $\bullet \ \neg (X_0 \land X_1)$
	- $\neg X_0 \vee \neg X_1$
- $\bullet \ \neg (X_0 \lor X_1)$
	- $\neg X_0 \wedge \neg X_1$

Joint Distributions

- Distribution over multiple variables
	- $P(x, y)$ represents $P\{X = x, Y = y\}$
- Marginal distribution:

$$
\blacksquare P(x) = \sum_{y} P(x, y)
$$

Independence

Conditional probability:

$$
P(x|y) = \frac{P(x,y)}{P(y)}
$$

Bayes' rule:

$$
P(x|y) = \frac{P(y|x)P(x)}{P(y)}
$$

Conditional Independence

$$
P(x|y)=P(x)\rightarrow P(x,y)=P(x)P(y)
$$

- Two variables can be conditionally independent...
	- … when conditioned on a third variable

Markov Chains

Markov property:

$$
P(X_t|X_{t-1},X_{t-2},\ldots,X_0)=P(X_t|X_{t-1})
$$

"The future only depends on the past through the present."

- State X_{t-1} captures "all" information about past
- No information in X_{t-2} (or other past states) influences X_t

State Transitions

Stochastic matrix *P*

- All rows sum to 1
- Discrete state spaces implied

Stationary Behavior

• "Long run" behavior of Markov chain

 $x_0 P^k$ for large k

• "Stationary state" π such that:

 $\pi = \pi P$

• Row eigenvector for P for eigenvalue 1

Absorbing States

- State that cannot be "escaped" from
	- Example: gambling \rightarrow running out of money

$$
P = \left[\begin{matrix} 0.5 & 0.3 & 0.1 & 0.1 \\ 0.3 & 0.4 & 0.3 & 0 \\ 0.1 & 0.6 & 0.2 & 0.1 \\ 0 & 0 & 0 & 1 \end{matrix}\right]
$$

• Non-absorbing states: "transient" states

Markov Reward Process

- Reward function $R_s = E[R_{t+1} | S_t = s]$:
	- Reward for being in state *s*
- Discount factor $\gamma \in [0,1]$

 $U_t = \sum_k \gamma^k R_{t+k+1}$

The Markov Decision Process

• Transition probabilities depend on actions

Markov Process:

 $s_{t+1} = s_t P$

Markov Decision Process (MDP):

 $s_{t+1} = s_t P^a$

 ${\rm Rewards:}$ R^a with discount factor γ

MDP - Policies

- Agent function
	- Actions conditioned on states

$$
\pi(s)=P[A_t=a|s_t=s]
$$

- Can be stochastic
	- **Usually deterministic**
	- Usually *stationary*

MDP - Policies

State value function $U^{\pi};^{1}$ $U^{\pi}(s) = E_{\pi}[U_t|S_t = s]$

State-action value function Q^{π} :² $Q^{\pi}(s, a) = E_{\pi}[U_t|S_t = s, A_t = a]$

 $Notation: E_{\pi}$ indicates expected value under policy π

1. Often simply called "value function"

2. Often simply called "action value function"

Bellman Expectation

Value function:

$$
U^{\pi}(s)=E_{\pi}[R_{t+1}+\gamma U^{\pi}(S_{t+1})|S_t=s]
$$

Action-value fuction:

 $Q^{\pi}(s, a) = E_{\pi}[R_{t+1} + \gamma Q^{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$

Bellman Equation

$$
U^*(s) = \max_a R(s,a) + \gamma \sum_{s'} T(s'|s,a) U^*(s')
$$

Bellman Equation

$$
Q^*(s,a) = R(s,a) + \gamma \sum_{s'} T(s'|s,a) \max_a Q^*(s',a')
$$

How To Solve It

- No closed-form solution
	- *Optimal* case differs from policy evaluation

Iterative Solutions:

- Value Iteration
- Policy Iteration

Reinforcement Learning:

- Q-Learning
- Sarsa

Model Uncertainty

Action-value function:

$$
Q(s,a) = R(s,a) + \gamma \sum_{s'} T(s'|s,a) U(s')
$$

we don't know T :

$$
U^{\pi}(s) = E_{\pi}\left[r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \gamma^{3} r_{t+3} {+} \dots { |s]}\right.\\ Q(s,a) = E_{\pi}\left[r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \gamma^{3} r_{t+3} {+} \dots { |s,a]}\right]
$$

Temporal Difference (TD) Learning

• Take action from state, observe new state, reward

 $U(s) \leftarrow U(s) + \alpha \left[r + \gamma U(s') - U(s) \right]$

• Update immediately given (s, a, r, s')

- TD Error: $[r + \gamma U(s') U(s)]$
	- **•** Measurement: $r + \gamma U(s')$
	- \blacksquare Old Estimate: $U(s)$

Methods

- Q-Learning
- Sarsa
- Eligibility traces
- Local approximation

Monte Carlo Tree Search - Search

- If current state $\in T$ (tree states):
	- Maximize:
		- $Q(s,a) + c \sqrt{\frac{\log N(s)}{N(s,a)}}$ $\sqrt{\log N(s)}$ √
	- **•** Update $Q(s, a)$ during search

Monte Carlo Tree Search - Expansion

- State $\notin T$
	- Initialize $N(s, a)$ and $Q(s, a)$
	- \blacksquare Add state to T

Monte Carlo Tree Search - Rollout

- Policy π_0 is "rollout" policy
	- **Usually stochastic**
	- States *not* tracked

References

- Stuart J. Russell and Peter Norvig. *Artificial Intelligence: A Modern Approach.* 4th Edition, 2020.
- Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction.* 2nd Edition, 2018.
- Mykal Kochenderfer, Tim Wheeler, and Kyle Wray. *Algorithms for Decision Making.* 1st Edition, 2022.
- UC Berkeley CS188
- Stanford CS234 (Emma Brunskill)
- Stanford CS228 (Mykal Kochenderfer)