Review

CSCI 4511/6511

Joe Goldfrank

Announcements

- Extra Credit HW: Due 4 Dec
- Project Proposals
- Final Exam: 4 Dec
- Project Deadline: 13 Dec

Reflex Agent

- Very basic form of agent function
- Percept \rightarrow Action lookup table
- Good for simple games
 - Tic-tac-toe
 - Checkers?
- Needs entire state space in table

Partially-Observable State

- Most real-world problems
 - Sensor error
 - Model error
- Reflex agents fail¹
- Agent needs a *belief state*

1. Unless total number of partial observations is bounded

State

What is the state space?

Search: Why?

- Fully-observed problem
- Deterministic actions and state
- Well defined *start* and *goal*

Other Applications

- Route planning
- Protein design
- Robotic navigation
- Scheduling
 - Science
 - Manufacturing

Not Included

- Uncertainty
 - State transitions known
- Adversary
 - Nobody wants us to lose
- Cooperation
- Continuous state

Search Problem

Search problem includes:

- Start State
- State Space
- State Transitions
- Goal Test

Actions & Successor States:

State Space Graph

Search Trees

Graph:

Tree:

Let's Talk About Trees

- For any non-trivial problem, they're big
 - (Effective) branching factor
 - Depth
- Graph and tree both too large for memory
 - Successor function (graph)
 - Expansion function (tree)

How To Solve It

Given:

- Starting node
- Goal test
- Expansion

Do:

- Expand nodes from start
- Test each new node for goal
 - If goal, success
- Expand new nodes
 - If nothing left to expand, failure

Tree Search Algorithms

- BFS
- DFS
- UCS/Dijkstra
- A*
- Greedy searches

A* Search

- Include path-cost g(n)
 - f(n) = g(n) + h(n)
- Complete (always)
- Optimal (sometimes)
- Painful $O(b^m)$ time and space complexity

Choosing Heuristics

• Recall: h(n) estimates cost from n to goal

- Admissibility
- Consistency

Choosing Heuristics

- Admissibility
 - Never overestimates cost from n to goal
 - Cost-optimal!
- Consistency
 - $h(n) \leq c(n,a,n') + h(n')$
 - n' successors of n
 - c(n, a, n') cost from n to n' given action a

Consistency

- Consistent heuristics are admissible
 - Inverse not necessarily true
- Always reach each state on optimal path

Weighted A* Search

- Greedy: f(n) = h(n)
- A*: f(n) = h(n) + g(n)
- Uniform-Cost Search: f(n) = g(n)

- Weighted A* Search: $f(n) = W \cdot h(n) + g(n)$
 - Weight W > 1

. . .

Iterative-Deepening A* Search

"IDA*" Search

- Similar to Iterative Deepening with Depth-First Search
 - DFS uses depth cutoff
 - IDA* uses h(n) + g(n) cutoff with DFS
 - Once cutoff breached, new cutoff:
 - $\circ\;$ Typically next-largest h(n) + g(n)
 - $O(b^m)$ time complexity \cong
 - O(d) space complexity¹ \mathfrak{S}

1. This is slightly complicated based on heuristic branching factor b_h .

Where Do Heuristics Come From?

- Intuition
 - "Just Be Really Smart"
- Relaxation
 - The problem is constrained
 - Remove the constraint
- Pre-computation
 - Sub problems
- Learning

Local Search

Uninformed/Informed Search:

- Known start, known goal
- Search for optimal path

Local Search:

- "Start" is irrelevant
- Goal is not known
 - But we know it when we see it
- Search for goal

"Real-World" Examples

- Scheduling
- Layout optimization
 - Factories
 - Circuits
- Portfolio management
- Others?

Hill-Climbing

- Objective function
- State space mapping
 - Neighbors

Variations

- Sideways moves
 - Not free
- Stochastic moves
 - Full set
 - First choice
- Random restarts
 - If at first you don't succeed, you fail try again!
 - Complete 😌

The Trouble with Local Maxima

- We don't know that they're local maxima
 - Unless we do?
- Hill climbing is efficient
 - But gets trapped
- Exhaustive search is complete
 - But it's exhaustive!
 - Stochastic methods are 'exhaustive'

Simulated Annealing

- Doesn't actually have anything to do with metallurgy
- Search begins with high "temperature"
 - Temperature decreases during search
- Next state selected randomly
 - Improvements always accepted
 - Non-improvements rejected stochastically
 - Higher temperature, less rejection
 - "Worse" result, more rejection

Local Beam Search

Recall:

• Beam search keeps track of k "best" branches

Local Beam Search:

- Hill climbing search, keeping track of k successors
 - Deterministic
 - Stochastic

Simple Games

- Two-player
- Turn-taking
- Discrete-state
- Fully-observable
- Zero-sum
 - This does some work for us!

Minimax

- Initial state s_0
- ACTIONS(s) and TO-MOVE(s)
- RESULT(s, a)
- IS-TERMINAL(s)
- UTILITY(s, p)

More Than Two Players

- Two players, two values: v_A, v_B
 - Zero-sum: $v_A = -v_B$
 - Only one value needs to be explicitly represented
- > 2 players:
 - $v_A, v_B, v_C \dots$
 - Value scalar becomes \vec{v}

Minimax Efficiency

Pruning removes the need to explore the full tree.

- Max and Min nodes alternate
- Once *one* value has been found, we can eliminate parts of search
 - Lower values, for Max
 - Higher values, for Min
- Remember highest value (α) for Max
- Remember lowest value (β) for Min

Solving Non-Deterministic Games

Previously: Max and Min alternate turns

Now:

- Max
- Chance
- Min
- Chance

Expectiminimax

Constraint Satisfaction

- Express problem in terms of state variables
 - Constrain state variables
- Begin with all variables unassigned
- Progressively assign values to variables
- Assignment of values to state variables that "works:" *solution*

More Formally

- State variables: X_1, X_2, \ldots, X_n
- State variable domains: D_1, D_2, \ldots, D_n
 - The domain specifies which values are permitted for the state variable
 - Domain: set of allowable variables (or permissible range for continuous variables)¹
 - Some constraints C_1, C_2, \ldots, C_m restrict allowable values

1. Or a hybrid. such as a union of ranges of continuous variables.
Constraint Types

- Unary: restrict single variable
 - Can be rolled into domain
 - Why even have them?
- Binary: restricts two variables
- Global: restrict "all" variables

Constraint Examples

- X_1 and X_2 both have real domains, i.e. $X_1, X_2 \in \mathbb{R}$
 - A constraint could be $X_1 < X_2$
- X_1 could have domain {red, green, blue} and X_2 could have domain {green, blue, orange}
 - A constraint could be $X_1
 eq X_2$
- $\bullet \ X_1, X_2, \ldots, X_1 0 0 \in \mathbb{R}$
 - Constraint: exactly four of X_i equal 12
 - Rewrite as binary constraint?

Assignments

- Assignments must be to values in each variable's domain
- Assignment violates constraints?
 - Consistency
- All variables assigned?
 - Complete

Graph Representation I

Constraint graph: edges are constraints

Graph Representation II

Constraint hypergraph: constraints are nodes

Solving CSPs

- We can search!
 - ... the space of consistent assignments
- Complexity $O(d^n)$
 - Domain size d, number of nodes n
- Tree search for node assignment
 - Inference to reduce domain size
- Recursive search

Inference

- Arc consistency
 - Reduce domains for pairs of variables
- Path consistency
 - Assignment to two variables
 - Reduce domain of third variable

Ordering

- Select-Unassgined-Variable (CSP, assignment)
 - Choose most-constrained variable¹
- Order-Domain-Variables (CSP, var, assignment)
 - Least-constraining value

• Tree-structure: *Linear time* solution

1. or MRV: "Minimum Remaining Values"

Logic

• ¬

• \wedge

• "Not" operator, same as CS (!, not, etc.)

- "And" operator, same as CS (&&, and, etc.)
- This is sometimes called a *conjunction*.
- ∨
 - "Inclusive Or" operator, same as CS.
 - This is sometimes called a *disjunction*.

Unfamiliar Logical Operators

 $\bullet \Rightarrow$

- Logical *implication*.
- If $X_0 \Rightarrow X_1, X_1$ is always True when X_0 is True.
- If X_0 is False, the value of X_1 is not constrained.
- $\bullet \quad \Longleftrightarrow \quad$
 - "If and only If."
 - If $X_0 \iff X_1, X_0$ and X_1 are either both True or both False.
 - Also called a *biconditional*.

Knowledge Base & Queries

- We encode everything that we 'know'
 - Statements that are true
- We query the knowledge base
 - Statement that we'd like to know about
- Logic:
 - Is statement consistent with KB?

Entailment

- $KB \models A$
 - "Knowledge Base entails A"
 - For every model in which KB is True, A is also True
 - One-way relationship: A can be True for models where KB is not True.
- Vocabulary: A is the query

Knowing Things

Falsehood:

- $KB \models \neg A$
 - No model exists where KB is True and A is True

It is possible to not know things:¹

- $KB \nvDash A$
- $KB \nvDash \neg A$

Conjunctive Normal Form

- *Literals* symbols or negated symbols
 - X_0 is a literal
 - $\neg X_0$ is a literal
- *Clauses* combine literals and disjunction using disjunctions
 (∨)
 - $X_0 \lor \neg X_1$ is a valid disjunction
 - $(X_0 \lor \neg X_1) \lor X_2$ is a valid disjunction

Conjunctive Normal Form

- *Conjunctions* (\land) combine clauses (and literals)
 - $X_1 \wedge (X_0 \vee \neg X_2)$
- Disjunctions cannot contain conjunctions:
- $X_0 \lor (X_1 \land X_2)$ not in CNF
 - Can be rewritten in CNF: $(X_0 \lor X_1) \land (X_0 \lor X_2)$

Converting to CNF

- $\bullet \,\, X_0 \,\, \Longleftrightarrow \,\, X_1$
 - $(X_0 \Rightarrow X_1) \land (X_1 \Rightarrow X_0)$
- $X_0 \Rightarrow X_1$
 - $\neg X_0 \lor X_1$
- $\bullet \ \neg (X_0 \wedge X_1)$
 - $\neg X_0 \lor \neg X_1$
- $\bullet \ \neg (X_0 \lor X_1)$
 - $\neg X_0 \wedge \neg X_1$

Joint Distributions

- Distribution over multiple variables
 - P(x, y) represents $P\{X = x, Y = y\}$
- Marginal distribution:

•
$$P(x) = \sum_{y} P(x, y)$$

Independence

Conditional probability:

$$P(x|y) = rac{P(x,y)}{P(y)}$$

Bayes' rule:

$$P(x|y) = rac{P(y|x)P(x)}{P(y)}$$

Conditional Independence

$$P(x|y) = P(x)
ightarrow P(x,y) = P(x)P(y)$$

- Two variables can be conditionally independent...
 - ... when conditioned on a third variable

Markov Chains

Markov property:

$$P(X_t|X_{t-1}, X_{t-2}, \dots, X_0) = P(X_t|X_{t-1})$$

"The future only depends on the past through the present."

- State X_{t-1} captures "all" information about past
- No information in X_{t-2} (or other past states) influences X_t

State Transitions

Stochastic matrix P

- All rows sum to 1
- Discrete state spaces implied

Stationary Behavior

• "Long run" behavior of Markov chain

 $x_0 P^k$ for large k

• "Stationary state" π such that:

 $\pi=\pi P$

• Row eigenvector for P for eigenvalue 1

Absorbing States

- State that cannot be "escaped" from
 - Example: gambling \rightarrow running out of money

$$P = \begin{bmatrix} 0.5 & 0.3 & 0.1 & 0.1 \\ 0.3 & 0.4 & 0.3 & 0 \\ 0.1 & 0.6 & 0.2 & 0.1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Non-absorbing states: "transient" states

Markov Reward Process

- Reward function $R_s = E[R_{t+1}|S_t = s]$:
 - Reward for being in state *s*
- Discount factor $\gamma \in [0,1]$

 $U_t = \sum_k \gamma^k R_{t+k+1}$

The Markov Decision Process

• Transition probabilities depend on actions

Markov Process:

 $s_{t+1} = s_t P$

Markov Decision Process (MDP):

 $s_{t+1} = s_t P^a$

Rewards: R^a with discount factor γ

MDP - Policies

- Agent function
 - Actions conditioned on states

$$\pi(s)=P[A_t=a|s_t=s]$$

- Can be stochastic
 - Usually deterministic
 - Usually stationary

MDP - Policies

State value function U^{π} : 1 $U^{\pi}(s) = E_{\pi}[U_t|S_t = s]$

State-action value function Q^{π} :² $Q^{\pi}(s,a) = E_{\pi}[U_t|S_t = s, A_t = a]$

Notation: E_{π} indicates expected value under policy π

1. Often simply called "value function"

2. Often simply called "action value function"

Bellman Expectation

Value function:

$$U^{\pi}(s) = E_{\pi}[R_{t+1} + \gamma U^{\pi}(S_{t+1})|S_t = s]$$

Action-value fuction:

 $Q^{\pi}(s,a) = E_{\pi}[R_{t+1} + \gamma Q^{\pi}(S_{t+1},A_{t+1})|S_t = s, A_t = a]$

Bellman Equation

$$U^*(s) = \max_a R(s,a) + \gamma \sum_{s'} T(s'|s,a) U^*(s')$$

Bellman Equation

$$Q^*(s,a) = R(s,a) + \gamma \sum_{s'} T(s'|s,a) \max_a Q^*(s',a')$$

How To Solve It

- No closed-form solution
 - *Optimal* case differs from policy evaluation

Iterative Solutions:

- Value Iteration
- Policy Iteration

Reinforcement Learning:

- Q-Learning
- Sarsa

Model Uncertainty

Action-value function:

$$Q(s,a) = R(s,a) + \gamma \sum_{s'} T(s'|s,a) U(s')$$

we don't know T:

$$egin{aligned} U^{\pi}(s) &= E_{\pi}\left[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} {+} \dots |s] \ Q(s,a) &= E_{\pi}\left[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} {+} \dots |s,a] \end{aligned}$$

Temporal Difference (TD) Learning

• Take action from state, observe new state, reward

 $U(s) \leftarrow U(s) + \alpha \left[r + \gamma U(s') - U(s)\right]$

• Update immediately given (s, a, r, s')

- TD Error: $[r + \gamma U(s') U(s)]$
 - Measurement: $r + \gamma U(s')$
 - Old Estimate: U(s)

Methods

- Q-Learning
- Sarsa
- Eligibility traces
- Local approximation

Monte Carlo Tree Search - Search

- If current state $\in T$ (tree states):
 - Maximize:

$$Q(s,a) + c \sqrt{rac{\log N(s)}{N(s,a)}}$$

• Update Q(s, a) during search

Monte Carlo Tree Search - Expansion

- State $\notin T$
 - Initialize N(s, a) and Q(s, a)
 - Add state to *T*

Monte Carlo Tree Search - Rollout

- Policy π_0 is "rollout" policy
 - Usually stochastic
 - States *not* tracked

References

- Stuart J. Russell and Peter Norvig. *Artificial Intelligence: A Modern Approach*. 4th Edition, 2020.
- Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. 2nd Edition, 2018.
- Mykal Kochenderfer, Tim Wheeler, and Kyle Wray. *Algorithms for Decision Making*. 1st Edition, 2022.
- UC Berkeley CS188
- Stanford CS234 (Emma Brunskill)
- Stanford CS228 (Mykal Kochenderfer)