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Announcements
• Extra Credit HW: Due 4 Dec

• Project Proposals

• Final Exam: 4 Dec

• Project Deadline: 13 Dec



Reflex Agent
• Very basic form of agent function

• Percept  Action lookup table

• Good for simple games

▪ Tic-tac-toe

▪ Checkers?

• Needs entire state space in table

→



Partially-Observable State
• Most real-world problems

▪ Sensor error

▪ Model error

• Reflex agents fail1

• Agent needs a belief state

�. Unless total number of partial observations is bounded



State
What is the state space?



Search: Why?
• Fully-observed problem

• Deterministic actions and state

• Well defined start and goal



Other Applications
• Route planning

• Protein design

• Robotic navigation

• Scheduling

▪ Science

▪ Manufacturing



Not Included
• Uncertainty

▪ State transitions known

• Adversary

▪ Nobody wants us to lose

• Cooperation

• Continuous state



Search Problem
Search problem includes:

• Start State

• State Space

• State Transitions

• Goal Test

State Space:

Actions & Successor States:



State Space Graph



Search Trees
Graph:

Tree:



Let’s Talk About Trees
• For any non-trivial problem, they’re big

▪ (Effective) branching factor

▪ Depth

• Graph and tree both too large for memory

▪ Successor function (graph)

▪ Expansion function (tree)



How To Solve It
Given:

• Starting node

• Goal test

• Expansion

Do:

• Expand nodes from start

• Test each new node for goal

▪ If goal, success

• Expand new nodes

▪ If nothing left to expand, failure



Tree Search Algorithms
• BFS

• DFS

• UCS/Dijkstra

• A*

• Greedy searches



A* Search
• Include path-cost 

▪ 

• Complete (always)

• Optimal (sometimes)

• Painful  time and space complexity

g(n)

f(n) = g(n) + h(n)

O( )bm



Choosing Heuristics
• Recall:  estimates cost from  to goal

• Admissibility

• Consistency

h(n) n



Choosing Heuristics
• Admissibility

▪ Never overestimates cost from  to goal

▪ Cost-optimal!

• Consistency

▪ 

▪  successors of 

▪  cost from  to  given action 

n

h(n) ≤ c(n, a, ) + h( )n′ n′

n′ n

c(n, a, )n′ n n′ a



Consistency
• Consistent heuristics are admissible

▪ Inverse not necessarily true

• Always reach each state on optimal path



Weighted A* Search
• Greedy: 

• A*: 

• Uniform-Cost Search: 

…

• Weighted A* Search: 

▪ Weight 

f(n) = h(n)

f(n) = h(n) + g(n)

f(n) = g(n)

f(n) = W ⋅ h(n) + g(n)

W > 1



Iterative-Deepening A* Search
“IDA*” Search

• Similar to Iterative Deepening with Depth-First Search

▪ DFS uses depth cutoff

▪ IDA* uses  cutoff with DFS

▪ Once cutoff breached, new cutoff:

◦ Typically next-largest 

▪  time complexity 

▪  space complexity1 

h(n) + g(n)

h(n) + g(n)

O( )bm

O(d)

�. This is slightly complicated based on heuristic branching factor .bh



Where Do Heuristics Come From?
• Intuition

▪ “Just Be Really Smart”

• Relaxation

▪ The problem is constrained

▪ Remove the constraint

• Pre-computation

▪ Sub problems

• Learning



Local Search
Uninformed/Informed Search:

• Known start, known goal

• Search for optimal path

Local Search:

• “Start” is irrelevant

• Goal is not known

▪ But we know it when we see it

• Search for goal



“Real-World” Examples
• Scheduling

• Layout optimization

▪ Factories

▪ Circuits

• Portfolio management

• Others?



Hill-Climbing
• Objective function

• State space mapping

▪ Neighbors



Variations
• Sideways moves

▪ Not free

• Stochastic moves

▪ Full set

▪ First choice

• Random restarts

▪ If at first you don’t succeed, you fail try again!

▪ Complete 



The Trouble with Local Maxima
• We don’t know that they’re local maxima

▪ Unless we do?

• Hill climbing is efficient

▪ But gets trapped

• Exhaustive search is complete

▪ But it’s exhaustive!

▪ Stochastic methods are ʻexhaustive’



Simulated Annealing
• Doesn’t actually have anything to do with metallurgy

• Search begins with high “temperature”

▪ Temperature decreases during search

• Next state selected randomly

▪ Improvements always accepted

▪ Non-improvements rejected stochastically

▪ Higher temperature, less rejection

▪ “Worse” result, more rejection



Local Beam Search
Recall:

• Beam search keeps track of  “best” branches

Local Beam Search:

• Hill climbing search, keeping track of  successors

▪ Deterministic

▪ Stochastic

k

k



Simple Games
• Two-player

• Turn-taking

• Discrete-state

• Fully-observable

• Zero-sum

▪ This does some work for us!



Minimax
• Initial state 

• ACTIONS( ) and TO-MOVE( )

• RESULT( )

• IS-TERMINAL( )

• UTILITY( )

s0

s s

s, a

s

s, p



More Than Two Players
• Two players, two values: 

▪ Zero-sum: 

▪ Only one value needs to be explicitly represented

•  players:

▪ 

▪ Value scalar becomes 

,vA vB

= −vA vB

> 2

, , . . .vA vB vC

v ⃗ 



Minimax Efficiency
Pruning removes the need to explore the full tree.

• Max and Min nodes alternate

• Once one value has been found, we can eliminate parts of
search

▪ Lower values, for Max

▪ Higher values, for Min

• Remember highest value ( ) for Max

• Remember lowest value ( ) for Min

α

β



Solving Non-Deterministic Games
Previously: Max and Min alternate turns

Now:

• Max

• Chance

• Min

• Chance



Expectiminimax



Constraint Satisfaction
• Express problem in terms of state variables

▪ Constrain state variables

• Begin with all variables unassigned

• Progressively assign values to variables

• Assignment of values to state variables that “works:” solution



More Formally
• State variables: 

• State variable domains: 

▪ The domain specifies which values are permitted for the
state variable

▪ Domain: set of allowable variables (or permissible range for
continuous variables)1

▪ Some constraints  restrict allowable values

, , . . . ,X1 X2 Xn

, , . . . ,D1 D2 Dn

, , . . . ,C1 C2 Cm

�. Or a hybrid, such as a union of ranges of continuous variables.



Constraint Types
• Unary: restrict single variable

▪ Can be rolled into domain

▪ Why even have them?

• Binary: restricts two variables

• Global: restrict “all” variables



Constraint Examples
•  and  both have real domains, i.e. 

▪ A constraint could be 

•  could have domain  and  could have
domain 

▪ A constraint could be 

• 

▪ Constraint: exactly four of  equal 12

▪ Rewrite as binary constraint?

X1 X2 , ∈ RX1 X2

<X1 X2

X1 {red, green, blue} X2

{green, blue, orange}

≠X1 X2

, , . . . , 00 ∈ RX1 X2 X1

Xi



Assignments
• Assignments must be to values in each variable’s domain

• Assignment violates constraints?

▪ Consistency

• All variables assigned?

▪ Complete



Graph Representation I
Constraint graph: edges are constraints



Graph Representation II
Constraint hypergraph: constraints are nodes



Solving CSPs
• We can search!

▪ …the space of consistent assignments

• Complexity 

▪ Domain size , number of nodes 

• Tree search for node assignment

▪ Inference to reduce domain size

• Recursive search

O( )dn

d n



Inference
• Arc consistency

▪ Reduce domains for pairs of variables

• Path consistency

▪ Assignment to two variables

▪ Reduce domain of third variable



Ordering
• SELECT-UNASSGINED-VARIABLE( )

▪ Choose most-constrained variable1

• ORDER-DOMAIN-VARIABLES( )

▪ Least-constraining value

• Tree-structure: Linear time solution

CSP , assignment

CSP , var, assignment

�. or MRV: “Minimum Remaining Values”



Logic
• 

▪ “Not” operator, same as CS (!, not, etc.)

• 

▪ “And” operator, same as CS (&&, and, etc.)

▪ This is sometimes called a conjunction.

• 

▪ “Inclusive Or” operator, same as CS.

▪ This is sometimes called a disjunction.

¬

∧

∨



Unfamiliar Logical Operators
• 

▪ Logical implication.

▪ If ,  is always True when  is True.

▪ If  is False, the value of  is not constrained.

• 

▪ “If and only If.”

▪ If ,  and  are either both True or both
False.

▪ Also called a biconditional.

⇒

⇒X0 X1 X1 X0

X0 X1

⟺

⟺X0 X1 X0 X1



Knowledge Base & Queries
• We encode everything that we ʻknow’

▪ Statements that are true

• We query the knowledge base

▪ Statement that we’d like to know about

• Logic:

▪ Is statement consistent with KB?



Entailment
• 

▪ “Knowledge Base entails A”

▪ For every model in which  is True,  is also True

▪ One-way relationship:  can be True for models where 
is not True.

• Vocabulary:  is the query

KB ⊨ A

KB A

A KB

A



Knowing Things
Falsehood:

• 

▪ No model exists where  is True and  is True

It is possible to not know things:1

• 

• 

KB ⊨ ¬A

KB A

KB ⊬ A

KB ⊬ ¬A

�.  – “does not entail”⊬



Conjunctive Normal Form
• Literals — symbols or negated symbols

▪  is a literal

▪  is a literal

• Clauses — combine literals and disjunction using disjunctions
( )

▪  is a valid disjunction

▪  is a valid disjunction

X0

¬X0

∨

∨ ¬X0 X1

( ∨ ¬ ) ∨X0 X1 X2



Conjunctive Normal Form
• Conjunctions ( ) combine clauses (and literals)

▪ 

• Disjunctions cannot contain conjunctions:

•  not in CNF

▪ Can be rewritten in CNF: 

∧

∧ ( ∨ ¬ )X1 X0 X2

∨ ( ∧ )X0 X1 X2

( ∨ ) ∧ ( ∨ )X0 X1 X0 X2



Converting to CNF
• 

▪ 

• 

▪ 

• 

▪ 

• 

▪ 

⟺X0 X1

( ⇒ ) ∧ ( ⇒ )X0 X1 X1 X0

⇒X0 X1

¬ ∨X0 X1

¬( ∧ )X0 X1

¬ ∨ ¬X0 X1

¬( ∨ )X0 X1

¬ ∧ ¬X0 X1



Joint Distributions
• Distribution over multiple variables

▪  represents 

• Marginal distribution:

▪ 

P(x, y) P{X = x, Y = y}

P(x) = P(x, y)∑y



Independence
Conditional probability:

Bayes’ rule:

P(x|y) =
P(x, y)

P(y)

P(x|y) =
P(y|x)P(x)

P(y)



Conditional Independence

• Two variables can be conditionally independent…

▪ … when conditioned on a third variable

P(x|y) = P(x) → P(x, y) = P(x)P(y)



Markov Chains
Markov property:

“The future only depends on the past through the present.”

• State  captures “all” information about past

• No information in  (or other past states) influences 

P( | , , . . . , ) = P( | )Xt Xt−1 Xt−2 X0 Xt Xt−1

Xt−1

Xt−2 Xt



State Transitions
Stochastic matrix 

• All rows sum to 1

• Discrete state spaces implied

P

P =
⎡
⎣
⎢⎢

P1,1

⋮
Pn,1

…

⋱

P1,n

Pn,n

⎤
⎦
⎥⎥



Stationary Behavior
• “Long run” behavior of Markov chain

 for large 

• “Stationary state”  such that:

• Row eigenvector for  for eigenvalue 1

• 

x0P k k

π

π = πP

P



Absorbing States
• State that cannot be “escaped” from

▪ Example: gambling  running out of money

• Non-absorbing states: “transient” states

→

P =

⎡
⎣
⎢⎢⎢

0.5
0.3
0.1
0

0.3
0.4
0.6
0

0.1
0.3
0.2
0

0.1
0

0.1
1

⎤
⎦
⎥⎥⎥



Markov Reward Process
• Reward function :

▪ Reward for being in state 

• Discount factor 

= E[ | = s]Rs Rt+1 St

s

γ ∈ [0, 1]

=Ut ∑k γkRt+k+1



The Markov Decision Process
• Transition probabilities depend on actions

Markov Process:

Markov Decision Process (MDP):

Rewards:  with discount factor 

= Pst+1 st

=st+1 stP
a

Ra γ



MDP - Policies
• Agent function

▪ Actions conditioned on states

• Can be stochastic

▪ Usually deterministic

▪ Usually stationary

π(s) = P [ = a| = s]At st



MDP - Policies
State value function :1

State-action value function :2

Notation:  indicates expected value under policy 

U π

(s) = [ | = s]U π Eπ Ut St

Qπ

(s, a) = [ | = s, = a]Qπ Eπ Ut St At

Eπ π

�. Often simply called “value function”

�. Often simply called “action value function”



Bellman Expectation
Value function:

Action-value fuction:

(s) = [ + γ ( )| = s]U π Eπ Rt+1 U π St+1 St

(s, a) = [ + γ ( , )| = s, = a]Qπ Eπ Rt+1 Qπ St+1 At+1 St At



Bellman Equation

(s) = R(s, a) + γ T ( |s, a) ( )U ∗ max
a

∑
s′

s′ U ∗ s′



Bellman Equation

(s, a) = R(s, a) + γ T ( |s, a) ( , )Q∗ ∑
s′

s′ max
a

Q∗ s′ a′



How To Solve It
• No closed-form solution

▪ Optimal case differs from policy evaluation

Iterative Solutions:

• Value Iteration

• Policy Iteration

Reinforcement Learning:

• Q-Learning

• Sarsa



Model Uncertainty
Action-value function:

we don’t know :

Q(s, a) = R(s, a) + γ T ( |s, a)U( )∑
s′

s′ s′

T

(s) = [ + γ + + +. . . |s]U π Eπ rt rt+1 γ2rt+2 γ3rt+3

Q(s, a) = [ + γ + + +. . . |s, a]Eπ rt rt+1 γ2rt+2 γ3rt+3



Temporal Difference (TD) Learning
• Take action from state, observe new state, reward

• Update immediately given 

• TD Error: 

▪ Measurement: 

▪ Old Estimate: 

U(s) ← U(s) + α [r + γU( ) − U(s)]s′

(s, a, r, )s′

[r + γU( ) − U(s)]s′

r + γU( )s′

U(s)





Methods
• Q-Learning

• Sarsa

• Eligibility traces

• Local approximation



Monte Carlo Tree Search - Search



• If current state  (tree states):

▪ Maximize:

▪ Update  during search

∈ T

Q(s, a) + c
log N(s)
N(s,a)

− −−−−−√
Q(s, a)



Monte Carlo Tree Search - Expansion



• State 

▪ Initialize  and 

▪ Add state to 

∉ T

N(s, a) Q(s, a)

T



Monte Carlo Tree Search - Rollout



• Policy  is “rollout” policy

▪ Usually stochastic

▪ States not tracked

π0
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