Search

CSCI4511/6511

Joe Goldfrank

Good Afternoon

e Good afternoon

Announcements

e Homework 1 is due on 7 February at 11:55 PM
m Automatic extensions

0 Pay attention!

Why Are We Here?

o We're designing rational agents!
0 Perception
O Logic

m Action

In Practice

e Environment

= What happens next
e DPerception

= What agent can see
e Action

s What agent can do
e Measure/Reward

» Encoded utility function

Reframed

e Building a model of the real world
= Model is based on sensor inputs
s Model is flawed

e Solve problems o7 the model
m Take actions based on solution

e Model close to reality — solution useful

)
m Else: ™

Search: Why?

e Fully-observed problem
e Deterministic actions and state

o Well defined start and goal

/\@\

@/@

start goal

State

What is the state space?

()«
MEE

K

........

—————————

RN

»,
%’%k @ g

& Metro is accessible.

Mag ln mct 1o scale

Other Applications

e Route planning
e Protein design
e Robotic navigation
e Scheduling
= Science

» Manufacturing

Not Included

o Uncertainty

m State transitions known
e Adversary

= Nobody wants us to lose
e Cooperation

e Continuous state

Who Is The Pac-Man?

Search Problem

Search problem includes: State Space:

o Start State H ! u ! -

e State Space

s Acti, .
o S Trarmacieie ctions €9 Successor States

e Goal Test Worth"

/

Tour of Croatia

Zagrel: Virovitica

PV

Tour of Croatia

o (osiek>
4
Zagrel: @ 2

5
5 11 3
Rickad 3
(Zedor) 4

State Space Size?

e Pacman positions, Wall Positions
e Food positions, Food Status?

e Ghost positions, Ghost Status?

State Space Graph

Search Trees

Graph:

N2 =

K-\

Iree:

Node Representation

Graph:

= =es)
\\ (/ N T G

Tree:
~= \\
SN

Let’s Talk About Trees

e For any non-trivial problem, they’re big
» (Effective) branching factor
= Depth

e Graph and tree both too large for memory
= Successor function (graph)

= Expansion function (tree)

How To Solve It

Given:

e Starting node
e Goal test

o Expansion

Do:

e Expand nodes from start

e Test each new node for goal
= If goal, success

e Expand new nodes

= If nothing left to expand, failure

Best-First Search

Algorithm Best-First Search

1: function Best-FirsT-SearcH(problem, f)
2: node <— Nopg(State=problem.INiTIAL)
3 frontier < priority queue ordered by f
4 frontier.App(node)
5: reached < lookup table
6: reached[node] < problem.INiTiAL
7: while not Is-Empry(frontier) do
8: node < Por(frontier)
9: if problem.Is-GoaL(node.State) then
10: return node
11: for each child in Expanp(problem,node) do
12 s <— child.StatE
13: if not s € reached or child.Para-Cost < reached|[s].Pata-Cosr then
14: reached|s| < child
15: frontier.Aop(child)
16: return failure
17:
18: function Expanp(problem, node)
19: S <— node.STATE
20: for each action in problem.Actions(s) do
21: s” < problem.Resurr(s, action)
22: cost < node.Patu-Cost +problem.Action-Cost (s, action, s”)

23: yield Nopg(State= s’, Parent=node, Action=action, Patu-Cost=cost)

Frontier Expansion

Frontier Expansion

e Frontier: nodes “currently” expanded
= If no frontier node is goal, need to add to frontier
= How?

e Can we have cycles?

» How do we deal with cycles?

Queues & Searches

o Priority Queues

m Best-First Search

» Uniform-Cost Search!
e FIFO Queues

m Breadth-First Search
e LIFO Queues?

» Depth-First Search

1. Also known as “Dijkstra’s Algorithm,” because it is Dijkstra’s Algorithm

2. Also known as “stacks.” because thev are stacks.

Search Features

e Completeness

m [f there is a solution, will we find it?
e Optimality

s Will we find the best solution?
e Time complexity

e Memory complexity

Breadth-First Search

e FIFO Queue

e Complete

e Optimal

e O(b%)

e Nice features for equal-weight arcs:
» Lowest-cost path first

m reached collection can be a set

Breadth-First Search

Algorithm Breadth-First Search

. function BReaDTH-FIRST-SEARCH (pToblem)

node < Nopg(State=problem.NiTiAL)

if problem.Is-GoaL(node.State) then
return node

Jfrontier <— FIFO queue
frontier.Aop(node)
reached < set
reached <— problem.INiTIAL
while not Is-Empry(frontier) do
node < Por(frontier)
for each child in Exeanp(problem,node) do
s <— child.State
if problem.Is-GoaL(s) then
return child

e *N 220 B XN R

I el o ~
B QN R Q

if not s € reached then
reached.Aop(child)
frontier.App(child)

return failure

[= S Y

Uniform-Cost Search

Non-uniform costs — BFS inappropriate.

Algorithm Uniform-Cost Search

1: function UNirorRM-CoST-SEARCH (problem.)
2: return Best-FirsT-SEarcH (problem, Paru-Cosr)

Depth-First Search

e “Family” of searches
e [LIFO stack

e Problems?

Algorithm Depth-First Search

. function DeptH-FirsT-SEARCH (problem)
node <— Nopg(StaTE=problem.NITIAL)
frontier < LIFO stack
frontier.Pusu(node)
while not Is-Empry(frontier) do
node < Por(frontier)
if problem.Is-GoaL(node.State) then
return node
else if not [s-CycLe(node) then
for each child in Exeanp(problem,node) do
frontier.Pusu(child)

return failure

e ®F 2N AR N

[y
e

[y
[

[y
N

Uninformed Search Variants

e Depth-Limited Search

» Fail if depth limit reached (why?)
e Jterative deepening

m vs. Breadth-First Search

e Bidirectional Search

How to Choose?

e Think about when the searches “fail”
e Think about complexity
e Do we need an optimal solution?

= Are we looking for “any” solution

Informed Search

It Is Possible To Know Things

7 TN
v

\ 4

It Is Possible To Know Things

@ L\arlottesvi“e

‘ Harrislaurg

Mid-Atlantic

68, b
LAY

DC Metro Area

Léngley Zark/ﬁollege/Park

bl)
v

Betl

hesd
\

%

| ‘

| N —

APITOL HILL

) g > o

\ 3 ..~ NORT

.. ~Washing ton™ ¥
m g\:///
A\ 1 e
N
%
37

/\Al’ex,and(ia

\-\7 ',"' =
(;."’ Oxon-Hill)
T Ui 2 igygece
e 495 2
Springfield .: S
(1] | National
St / Harbor
Sorinafield -~ _7 / | \\ i = Rosaryvil

Heuristics

heuristic - adj - Serving to discover or find out.!

e We know things about the problem
e These things are external to the graph/tree structure
s We could model the problem difterently

» We can use the information directly

1. Webster’s. 1913

Best-First Search (reprise)

Algorithm Best-First Search

1: function Best-FirsT-SearcH(problem, f)

2: node <— Nopg(State=problem.INiTIAL)

3: frontier < priority queue ordered by f

4 frontier.Aop(node)

5: reached < lookup table

6: reached[node] < problem.INiTiAL

7: while not Is-Empry(frontier) do

8: node < Por(frontier)

9: if problem.Is-GoaL(node.State) then

10: return node

11: for each child in Expanp(problem,node) do
12 s <— child.StatE

13; if not s € reached or child.Para-Cost < reached|[s].Pata-Cosr then
14: reached|s| < child

15: frontier.Aop(child)

16: return failure

17:

18: function Expanp(problem, node)

19: S <— node.STATE
20: for each action in problem.Actions(s) do

21: s” < problem.Resurr(s, action)
22: cost < node.Patu-Cost +problem.Action-Cost (s, action, s”)

23: yield Nopg(State= s’, Parent=node, Action=action, Patu-Cost=cost)

Greedy Best-First Search

e Heuristic h(n)
= n is the search-tree node
" h(n) estimates cost from n to goal

e Best-first search: f(n) orders priority queue
m Use f(n) = h(n)

e Complete

e No optimality guarantee

m (expected)

A* Search

e Include path-cost g(n)
= f(n) = g(n) + h(n)

Algorithm A* Search

1: function A*-SearcH(problem)
return Best-First-SearcH(problem, g(n) + h(n))

e Complete (always)
e Optimal (sometimes)

e Painful O(b™) time and space complexity

Choosing Heuristics

e Recall: h(n) estimates cost from n to goal

Manhattan Distance

e Admissibility

o Consistency

Choosing Heuristics

e Admissibility
» Never overestimates cost from n to goal
= Cost-optimal!
e Consistency
= h(n) < c(n,a,n’) + h(n')
= 1/ successors of n

" ¢(n,a,n’) cost from n to n’ given action a

Consistency

e Consistent heuristics are admissible
» Jnverse not necessarily true
e Always reach each state on optimal path

e Implications for inconsistent heuristic?

Is Optimality Desirable?

Is Optimality Desirable?

e Yes

Is Optimality Desirable?

e Yes, butitisn’t always feasible
m A" search still exponentially complex in solution length
= Optimality is never guaranteed “inexpensively”

e We need strategies for “good enough” solutions

Satisficing

satisty - verb - To give satisfaction; to afford gratification; to leave nothing
to be desired.!

suftice - verb - To be enough, or suflicient; to meet the need (of

anything)?

1. Webster’s, 1913
2. Webster’s. 1913

Weighted A* Search

e Greedy: f(n) = h(n)
* A% f(n) = h(n) +g(n)
e Uniform-Cost Search: f(n) = g(n)

e Weighted A* Search: f(n) = W - h(n) + g(n)
n Weight W > 1

Reducing Complexity

e Frontier Management
e Elimination of reached collection
m Reference counts

m How else?

e Other searches

Iterative-Deepening A* Search
“IDA*” Search

e Similar to Iterative Deepening with Depth-First Search

= DEFS uses depth cutoft
= [DA* uses h(n) + g(n) cutoft with DES
m Once cutoff breached, new cutoft:
o Typically next-largest h(n) + g(n)
= O(b™) time complexity =

= O(d) space complexity! <

1. This is sliechtlv comblicated based on heuristic branchine factor b...

Beam Search

Best-First Search:

e Frontier is all expanded nodes

Beam Search:

e k “best” nodes are kept on frontier
m Others discarded

e Alt: all nodes within § of best node

e Not Optimal

e Not Complete

Recursive Best-First Search (RBFS)

e No reached table is kept
e Second-best node f(n) retained

m Search from each node cannot exceed this limit

» Jf exceeded, recursion “backs up” to previous node
e Memory-efficient

» Can “cycle” between branches

Recursive Best-First Search (RBFS)

Algorithm Recursive Best-First Search

. function Recursive-BestT-First-SEarcH (problem)

1
2: solution, f_value < RFBS(problem,Nope(problem.INiTIAL), 00)
3: return solution
4:
5. function RBFS(problem, node, f_limat)
6: if problem.Is-Goar(node.State) then
7: return node
8: successors <— List(Expanp(node))
o: if Is-EmprY(Ssuccessors) then
10: return failure, oo
11 for each s in successors do
12: s.f < Max(s.Patu-Cosr + h(s), node.f)
13: while True do
14: best <— node in successors with lowest f
15; if best.f > f_limit then
16: return failure, best.f
17: alternative <— node in successors with second-lowest f
18: result, best. f < RBFS(problem, best,min(f_limait, alterative))
19: if result # failure then
20: return result, best. f

Heuristic Characteristics

e What makes a “good” heuristic?
» We know about admissability and consistency
s What about performance?

e Effective branching factor

e Effective depth

e #of nodes expanded

Where Do Heuristics Come From?

e [ntuition
m “Just Be Really Smart”
e Relaxation
= The problem is constrained
m Remove the constraint
® Pre-computation
= Sub problems

o Learning

References

e Stuart J. Russell and Peter Norvig. Artificial Intelligence: A
Modern Approach. 4th Edition, 2020.

e Stanford CS231

e UC Berkeley CS188

