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• Good afternoon



• Homework 1 is due on 7 February at 11:55 PM

▪ Automatic extensions

▪ Pay attention!



• We’re designing rational agents!

▪ Perception

▪ Logic

▪ Action



• Environment

▪ What happens next

• Perception

▪ What agent can see

• Action

▪ What agent can do

• Measure/Reward

▪ Encoded utility function



• Building a model of the real world

▪ Model is based on sensor inputs

▪ Model is �awed

• Solve problems on the model

▪ Take actions based on solution

• Model close to reality  solution useful

▪ Else: 

→



• Fully-observed problem

• Deterministic actions and state

• Well de�ned start and goal



What is the state space?





• Route planning

• Protein design

• Robotic navigation

• Scheduling

▪ Science

▪ Manufacturing



• Uncertainty

▪ State transitions known

• Adversary

▪ Nobody wants us to lose

• Cooperation

• Continuous state





Search problem includes:

• Start State

• State Space

• State Transitions

• Goal Test

State Space:

Actions & Successor States:







• Pacman positions, Wall Positions

• Food positions, Food Status?

• Ghost positions, Ghost Status?





Graph:

Tree:



Graph:

Tree:



• For any non-trivial problem, they’re big

▪ (E�ective) branching factor

▪ Depth

• Graph and tree both too large for memory

▪ Successor function (graph)

▪ Expansion function (tree)



Given:

• Starting node

• Goal test

• Expansion

Do:

• Expand nodes from start

• Test each new node for goal

▪ If goal, success

• Expand new nodes

▪ If nothing left to expand, failure











• Frontier: nodes “currently” expanded

▪ If no frontier node is goal, need to add to frontier

▪ How?

• Can we have cycles?

▪ How do we deal with cycles?



• Priority Queues

▪ Best-First Search

▪ Uniform-Cost Search1

• FIFO Queues

▪ Breadth-First Search

• LIFO Queues2

▪ Depth-First Search

1. Also known as “Dijkstra’s Algorithm,” because it is Dijkstra’s Algorithm

2. Also known as “stacks,” because they are stacks.



• Completeness

▪ If there is a solution, will we �nd it?

• Optimality

▪ Will we �nd the best solution?

• Time complexity

• Memory complexity



• FIFO Queue

• Complete

• Optimal

• 

• Nice features for equal-weight arcs:

▪ Lowest-cost path �rst

▪  collection can be a set

O( )bd

reached





Non-uniform costs  BFS inappropriate.→



• “Family” of searches

• LIFO stack

• Problems?





• Depth-Limited Search

▪ Fail if depth limit reached (why?)

• Iterative deepening

▪ vs. Breadth-First Search

• Bidirectional Search



• Think about when the searches “fail”

• Think about complexity

• Do we need an optimal solution?

▪ Are we looking for “any” solution





��









heuristic - adj - Serving to discover or �nd out.1

• We know things about the problem

• These things are external to the graph/tree structure

▪ We could model the problem di�erently

▪ We can use the information directly

1. Webster’s, 1913







• Heuristic 

▪  is the search-tree node

▪  estimates cost from  to goal

• Best-�rst search:  orders priority queue

▪ Use 

• Complete

• No optimality guarantee

▪ (expected)

h(n)

n

h(n) n

f(n)

f(n) = h(n)



• Include path-cost 

▪ 

• Complete (always)

• Optimal (sometimes)

• Painful  time and space complexity

g(n)

f(n) = g(n) + h(n)

O( )bm



• Recall:  estimates cost from  to goal

• Admissibility

• Consistency

h(n) n



• Admissibility

▪ Never overestimates cost from  to goal

▪ Cost-optimal!

• Consistency

▪ 

▪  successors of 

▪  cost from  to  given action 

n

h(n) ≤ c(n, a, ) + h( )n′ n′

n′ n

c(n, a, )n′ n n′ a



• Consistent heuristics are admissible

▪ Inverse not necessarily true

• Always reach each state on optimal path

• Implications for inconsistent heuristic?





• Yes



• Yes, but it isn’t always feasible

▪ A* search still exponentially complex in solution length

▪ Optimality is never guaranteed “inexpensively”

• We need strategies for “good enough” solutions



satisfy - verb - To give satisfaction; to a�ord grati�cation; to leave nothing
to be desired.1

su�ce - verb - To be enough, or su�cient; to meet the need (of
anything)2

1. Webster’s, 1913

2. Webster’s, 1913



• Greedy: 

• A*: 

• Uniform-Cost Search: 

…

• Weighted A* Search: 

▪ Weight 

f(n) = h(n)

f(n) = h(n) + g(n)

f(n) = g(n)

f(n) = W ⋅ h(n) + g(n)

W > 1



• Frontier Management

• Elimination of  collection

▪ Reference counts

▪ How else?

• Other searches

reached



“IDA*” Search

• Similar to Iterative Deepening with Depth-First Search

▪ DFS uses depth cuto�

▪ IDA* uses  cuto� with DFS

▪ Once cuto� breached, new cuto�:

◦ Typically next-largest 

▪  time complexity 

▪  space complexity1 

h(n) + g(n)

h(n) + g(n)

O( )bm

O(d)

1. This is slightly complicated based on heuristic branching factor .bh



Best-First Search:

• Frontier is all expanded nodes

Beam Search:

•  “best” nodes are kept on frontier

▪ Others discarded

• Alt: all nodes within  of best node

• Not Optimal

• Not Complete

k

δ



• No  table is kept

• Second-best node  retained

▪ Search from each node cannot exceed this limit

▪ If exceeded, recursion “backs up” to previous node

• Memory-e�cient

▪ Can “cycle” between branches

reached

f(n)





• What makes a “good” heuristic?

▪ We know about admissability and consistency

▪ What about performance?

• E�ective branching factor

• E�ective depth

• # of nodes expanded



• Intuition

▪ “Just Be Really Smart”

• Relaxation

▪ The problem is constrained

▪ Remove the constraint

• Pre-computation

▪ Sub problems

• Learning



• Stuart J. Russell and Peter Norvig. Arti�cial Intelligence: A
Modern Approach. 4th Edition, 2020.

• Stanford CS231

• UC Berkeley CS188


