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Announcements

e Homework 1 is due on 7 February at 11:55 PM
= [ate submission policy

e Homework 2 is due on 21 February at 11:55 PM



Why Are We Here?



Why Are We Here?



Search: Why?

e Fully-observed problem
e Deterministic actions and state
e Well-defined start and goal

n “Well-defined”
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start goal



Goal Tests




Goal Tests



Best-First Search

Algorithm Best-First Search

1: function Best-FirsT-SearcH(problem, f)
2: node <— Nopg(State=problem.INiTIAL)
3 frontier < priority queue ordered by f
4 frontier.App(node)
5: reached < lookup table
6:  reached[node] < problem.INiTiAL
7: while not Is-Empry( frontier) do
8: node < Por( frontier)
9: if problem.Is-Goar(node.State) then
10: return node
11: for each child in Expanp(problem,node) do
12 s < chald.State
13: if not s € reached or child.Para-Cost < reached|[s].Pata-Cosr then
14: reached|s| < child
15: frontier.Aop(child)
16: return failure
17:
18: function Expanp(problem, node)
19: S <— node.STATE
20: for each action in problem.Actions(s) do
21: s” < problem.Resurr(s, action)
22: cost < node.Patu-Cost +problem.Action-Cost (s, action, s”)

23: yield Nopg(State= s’, Parent=node, Action=action, Patu-Cost=cost)







A* Search

e Include path-cost g(n)
= f(n) = g(n) + h(n)

Algorithm A* Search

1: function A*-SearcH(problem)
return Best-FirsT-SearcH(problem, g(n) 4+ h(n))

e Complete (always)
e Optimal (sometimes)

= Painful O(b™) time and space complexity



A* vs. Dijkstra

(example)

e Advantages’

e Disadvantages?



Choosing Heuristics

e Recall: h(n) estimates cost from n to goal

Manhatton Distance

e Admissibility

e Consistency



Choosing Heuristics
e Admissibility

= Never overestimates cost from n to goal
= Cost-optimal!
e Consistency
» h(n) < c(n,a,n’) + h(n')
= n successors of n

= ¢(n,a,n’) cost from n to n’ given action a



Consistency

e Consistent heuristics are admissible
= Inverse not necessarily true
e Always reach each state on optimal path

e Implications for inconsistent heuristic?



Is Optimality Desirable’



Is Optimality Desirable’
e Yes



Is Optimality Desirable’

e Yes, but it isn’t always feas:ble
m A* search still exponentially complex in solution length
= Optimality is never guaranteed “inexpensively”

e We need strategies for “good enough” solutions



Satisficing

satisfy - verb - To give satisfaction; to afford gratification; to leave
nothing to be desired.!

suffice - verb - To be enough, or sufficient; to meet the need (of
anything)?

1. Webster’s, 1913
2. Webster’s. 1913



Weighted A* Search

e Greedy: f(n) = h(n)
* A% f(n) = h(n) + g(n)
e Uniform-Cost Search: f(n)

g(n)

e Weighted A* Search: f(n) = W - h(n) 4+ g(n)
= Weight W > 1



Reducing Complexity

e Frontier Management
e Elimination of reached collection
m Reference counts

s How else?

e Other searches



Iterative-Deepening A* Search
“IDA*” Search

e Similar to Iterative Deepening with Depth-First Search
= DFS uses depth cutoft

= IDA* uses h(n) + g(n) cutoff with DFS
= Once cutoff breached, new cutoff:
o Typically next-largest h(n) + g(n)
= O(b™) time complexity =
= O(d) space complexity! <

1. This 1s sliehtlv comnlicated based on heuristic branching factor bs.



Beam Search

Best-First Search:

e Frontier is all expanded nodes

Beam Search:

e k “best” nodes are kept on frontier
s Others discarded

e Alt: all nodes within ¢ of best node

e Not Optimal

e Not Complete



Recursive Best-First Search (RBFS)

e No reached table is kept
e Second-best node f(n) retained

s Search from each node cannot exceed this limit

» If exceeded, recursion ‘“backs up” to previous node
e Memory-efficient

= Can “cycle” between branches



Recursive Best-First Search (RBFS)

Algorithm Recursive Best-First Search

: function Recursive-Best-First-SearcH(problem)

1
2: solution, f_value < RFBS(problem,Nope(problem.INiTIAL), 00)
3: return solution
4:
5. function RBFS(problem, node, f_limat)
6: if problem.Is-Goar(node.State) then
7: return node
8: successors <— List(Expanp(node))
9: if Is-EmprY(Successors) then
10: return failure, oo
11 for each s in successors do
12: s.f < Max(s.Patu-Cosr + h(s), node.f)
13: while True do
14: best <— node in successors with lowest f
15; if best.f > f_limit then
16: return failure, best.f
17: alternative <— node in successors with second-lowest f
18: result, best. f < RBFS(problem, best,min( f_limait, alterative))
19: if result # failure then
20: return result, best. f




Heuristic Characteristics

e What makes a “good” heuristic?
= We know about admissability and consistency
= What about performance?

e Effective branching factor

e Effective depth

e # of nodes expanded



Where Do Heuristics Come From?’

e Intuition
= “Just Be Really Smart”
e Relaxation
= The problem is constrained
= Remove the constraint
e Pre-computation
= Sub problems

e [Learning



L.ocal Search



What Even Is The Goal?

Uninformed/Informed Search:

e Known start, known goal

e Search for optimal path

L.ocal Search:

o “Start” isirrelevant
e (Goal 1s not known
s But we know it when we see it

e Search for goal



Brutal Example

POLYMATH 1,296 by SLEUTH

ACROSS

1 Bushy male sideburns
popular during the Victorian
period (10,7)

10 Indian city in which
snooker is thought to have
originated (8)

11 Nickname of King John
of England due to his poor
inheritance (8)

12 A bishop’s move in chess
to control the board’s long
diagonal (10)

13 1986 horror film starring
Jeff Goldblum as scientist
Seth Brundle (3,3)

14 Port city in western Saudi
Arabia where pilgrims land
for the haj (6)

16 A set of principles to

do with the nature and
appreciation of beauty (10)
18 __ Knievel, US daredevil
showman and stunt rider (4)
20 Historic part of North
Yorkshire that contains the
market town of Malton (7)
22 Dannie —, Welsh poet
and physician born in 1923
(&)

23 Athletics event for which
Jonathan Edwards holds the
world record (6,4)

25 Large, fish-eating raptor
that is brown on its upper
parts (6)

27 Altered __, new wave
band whose lead vocalist is
Clare Grogan (6)

29 Town in north
Hertfordshire that was
Britain’s first garden city (10)
31 Tending to infrude on a
person’s thoughts or privacy
®

32 One who improvises lines
or a speech (2-6)

33 Fourth studio album by
The Police released in 1981
5,237

DOWN

2 Ronnie __, English
cricket all-rounder who
played in 31 ODI matches (5)
3 Irish band formed in 1970
who fused folk, rock and new
age M)

4 Explosive dropped from
a ship or aircraft to attack a
submarine (5,6)

5 __Lynn, singer who

was subject of the film Coal
Miner’s Daughter (7)

6 Body of water between
mainland China and the
Korean peninsula (6,3)

7 Theme park near
Orlando in Florida that
opened in 1982 (5)

8 Gymnasium or wrestling
school in ancient Greece and
Rome (9)

9 French tennis player
born in 1904 nicknamed The
Crocodile (4,7)

15 Norwegian artist noted
for his Frieze of Life series
6,5

17 Hereditary disorder

that affected the Romanov
dynasty in Russia (17

19 Compositions in which a
writer omits a certain letter
of the alphabet (9)

21 Cheerful and highly
energetic (9)

24 A thick meat or vegetable
soup (7)

26 The ultimate ruler in
Gilbert & Sullivan’s operetta
The Mikado (4-3)

28 Genre of literature for
which the annual Hugo
Awards are given (3-2)

30 Small domestic wooden
objects, especially antiques
©)]
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Less-Brutal Example
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“Real-World” Examples

e Scheduling

e Layout optimization
= Factories
= Circuits

e Portfolio management

e Others?



Objective Function

e Do you know what you want?!

e Can you express it mathematically??
= A single value
= More is better

e Objective function: a function of state

1. If not, you might be human

2. If not. vou might be human



Hill-Climbing
e Objective function

e State space mapping

= Neighbors

Algorithm Hill-Climbing

1: function HiL-CrLimBING (problem)

2 current <— problem.INITIAL

3 while True do

4: neitghbor <— successor of current with greatest objective function value
5 if VALue(neighbor) < Vavue(current) then

6 return current

7 current <— neighbor




Hill-Climbing



The Hazards of Climbing Hills

e [.0ocal maxima
e Plateaus

e Ridges



Five Queens




Five Queens




Five Queens




Variations

e Sideways moves
= Not free
e Stochastic moves
s Full set
= First choice
e Random restarts
= If at first you don’t succeed, youfail try again!

s Complete <



The Trouble with Local Maxima

e We don’t know that they’re local maxima
s Unless we do?

e Hill climbing is efficient
= But gets trapped

e Exhaustive search is complete
= But it’s exhaustive!

s Stochastic methods are ‘exhaustive’



Simulated Annealing




Simulated Annealing

e Doesn’t actually have anything to do with metallurgy
e Search begins with high “temperature”

» Temperature decreases during search
e Next state selected randomly

= Improvements always accepted

= Non-improvements rejected stochastically

» Higher temperature, less rejection

= “Worse” result, more rejection



Simulated Annealing

Algorithm Simulated Annealing

1: function SIMULATED-ANNEALING (problem, current)
2 current < problem.INITIAL
3 t<+1
4: while True do
5: T < schedule(t)
6 if T = miNn(schedule) then
7 return current
8 next <— random successor of current
9: AFE < Varue(current) - VALUE(next)
10: if AE > 0 then
11: current < next
12: else
13: p < sample from U(0, 1)
14: if p < e 2F/T then

15: current <— next




L.ocal Beam Search
Recall:

e Beam search keeps track of £ “best” branches

L.ocal Beam Search:

e Hill climbing search, keeping track of k successors
= Deterministic

s Stochastic



L.ocal Beam Search



The Real World Is Discrete

(it 1sn’t)



The Real World Is Not Discrete

e Discretize continuous space
= Works iff no objective function discontinuities
= What happens if there are discontinuities?

» How do we know that there are discontinuities?



Gradient Descent

e Minimize loss instead of climb hill

s Still the same idea

Consider:

e One state variable, =
e Objective function f(x)
» How do we minimize f(x) ?
5

m [s there a closed form % .



Gradient Descent

Multivariate £ = xg, 1, . - .

Instead of derivative, gradient:

S COf 0
VIZ) = _8;;,851,...}

“Locally” descend gradient:
T < T+ aVf(Z)



Probability



Probability



Random Events

e Alwaysin the future
e We know something about them

= We don’t know the outcome with certainty
e Distinctions

e Probabilities



Games



First, We Will Play A Game

e Pick a partner
e Place 11 pieces of candy between you
e Alternating turns, either:

= Take one piece

= Take two pieces

e Last person to take a piece wins all of the candy



Algorithms for Games



Adversity

So far:

e The world does not care about us

e This is a simplifying assumption!
Reality:

e The world does not care us
e ...but it wants things for “itself”

e ...and we don’t want the same things



The Adversary

One extreme:

e Single adversary
» Adversary wants the exact opposite from us

= [fadversary “wins,” we lose

Other extreme:

e An entire world of agents with different values
= They might want some things similar to us

e “Economics”



Simple Games

e Two-player

e Turn-taking

e Discrete-state

e Fully-observable
e /Zero-sum

» This does some work for us!



Max and Min

e Two players want the opposite of each other
e State takes into account both agents

= Actions depend on whose turn it is



Minimax

e Initial state sg

e ACTIONS(s) and TO-MOVE(s)
e RESULT(s, a)

e [S-TERMINAL(S)

e UTILITY(S, p)



Minimax



Minimax

Algorithm Minimax Search

: function MinmmMax-SEArRcH(game, state)
player <— game.To-Move(state)

value, move <— Max-VALUE(game, state)
return move

: function Max-VaLue(game, state)
if game.Is-TermINAL(State) then
return game. Uty (state, player),null

e *N 2 B RN &

V4 —00
for each a in game.Actions(state) do

v2, a2 <—MiN-VALUE(game, game.Resurt(state, a))
12: if v2 > v then

=
Q

[y
L

13: v, Move < v2,a

14: return v, move

15:

16: function MiN-VALUE(game, state)

17: if game.Is-TErmINAL(State) then

18: return game. Utiity (state, player),null
19: V< O

20: for each a in game.Actions(state) do

21 v2, a2 <—Max-VaLue(game, game.Resurt(state, a))
22: if v2 < v then

23 v, Move <— v2,a

24: return v, move




More Than Two Players

e Two players, two values: v 4, vp

s /ero-sum: v4 = —vp

= Only one value needs to be explicitly represented
e > 2 players:

B V4,UB,0C. ..

m Value scalar becomes v



Society

e > 2 players, only one can win

e Cooperation can be rational!

Example:

e A & B: 30% win probability each
e C: 40% win probability
e A & B cooperate to eliminate C

= — A & B: 50% win probability each

...what about friendship?



Minimax Efficiency

Pruning removes the need to explore the full tree.

e Max and Min nodes alternate

e Once one value has been found, we can eliminate parts of
search

= Lower values, for Max
» Higher values, for Min
e Remember highest value () for Max

e Remember lowest value (3) for Min



Pruning






Heuristics <

e In practice, trees are far too deep to completely search
e Heuristic: replace utility with evaluation function

= Better than losing, worse than winning

= Represents chance of winning

e Chance’ @ &

= Even in deterministic games

s Why’



More Pruning

e Don’t bother further searching bad moves
= Examples?
e Beam search

= Lee Sedol’s singular win against AlphaGo



Other Techniques

e Move ordering
= How do we decide?
e Lookup tables

= For subsets of games



Monte Carlo Tree Search

e Many games are too large even for an efficient a-3 search =
= We can still play them
o Stmulate plays of entire games from starting state

= Update win probability from each node (for each player)
based on result

o “Explore/exploit” paradigm for move selection



Choosing Moves

e We want our search to pick good moves
e We want our search to pick unknown moves
e We don’t want our search to pick bad moves

= (Assuming they’re actually bad moves)

Select moves based on a heuristic.



Games of Luck

e Real-world problems are rarely deterministic
e Non-deterministic state evolution:
= Roll a die to determine next position
= Toss a coin to determine who picks candy first

= Precise trajectory of kicked football

s Others?

1. Anv definition of “football”



Solving Non-Deterministic Games
Previously: Max and Min alternate turns
Now:

e Max
e Chance
e Min

e Chance

« o
><
-~



Expectiminimax

e “Expected value” of next position 8

e How does this impact branching factor of the search?

09
N\



Filled With Uncertainty

What is to be done?

e Pruning is still possible
= How?’
e Heuristic evaluation functions

= Choose carefully!



Non-Optimal Adversaries

e [s deterministic “best” behavior optimal?

e Are all adversaries rational?

e Expectimax
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