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Announcements
• Homework 1 is due on 7 February at 11∶55 PM

▪ Late submission policy

• Homework 2 is due on 21 February at 11∶55 PM
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Search: Why?
• Fully-observed problem

• Deterministic actions and state

• Well-defined start and goal

▪ “Well-defined”



Goal Tests



Goal Tests



Best-First Search





A* Search
• Include path-cost 

▪ 

• Complete (always)

• Optimal (sometimes)

▪ Painful  time and space complexity

g(n)

f(n) = g(n) + h(n)

O( )bm



A* vs. Dijkstra
(example)

 

• Advantages?

• Disadvantages?



Choosing Heuristics
• Recall:  estimates cost from  to goal

• Admissibility

• Consistency

h(n) n



Choosing Heuristics
• Admissibility

▪ Never overestimates cost from  to goal

▪ Cost-optimal!

• Consistency

▪ 

▪  successors of 

▪  cost from  to  given action 

n

h(n) ≤ c(n, a, ) + h( )n′ n′

n′ n

c(n, a, )n′ n n′ a



Consistency
• Consistent heuristics are admissible

▪ Inverse not necessarily true

• Always reach each state on optimal path

• Implications for inconsistent heuristic?



Is Optimality Desirable?



Is Optimality Desirable?
• Yes



Is Optimality Desirable?
• Yes, but it isn’t always feasible

▪ A* search still exponentially complex in solution length

▪ Optimality is never guaranteed “inexpensively”

• We need strategies for “good enough” solutions



Satisficing
satisfy - verb - To give satisfaction; to afford gratification; to leave
nothing to be desired.1

suffice - verb - To be enough, or sufficient; to meet the need (of
anything)2

�. Webster’s, 1913

�. Webster’s, 1913



Weighted A* Search
• Greedy: 

• A*: 

• Uniform-Cost Search: 

…

• Weighted A* Search: 

▪ Weight 

f(n) = h(n)

f(n) = h(n) + g(n)

f(n) = g(n)

f(n) = W ⋅ h(n) + g(n)

W > 1



Reducing Complexity
• Frontier Management

• Elimination of  collection

▪ Reference counts

▪ How else?

• Other searches

reached



Iterative-Deepening A* Search
“IDA*” Search

• Similar to Iterative Deepening with Depth-First Search

▪ DFS uses depth cutoff

▪ IDA* uses  cutoff with DFS

▪ Once cutoff breached, new cutoff:

◦ Typically next-largest 

▪  time complexity 

▪  space complexity1 

h(n) + g(n)

h(n) + g(n)

O( )bm

O(d)

�. This is slightly complicated based on heuristic branching factor .bh



Beam Search
Best-First Search:

• Frontier is all expanded nodes

Beam Search:

•  “best” nodes are kept on frontier

▪ Others discarded

• Alt: all nodes within  of best node

• Not Optimal

• Not Complete

k

δ



Recursive Best-First Search (RBFS)
• No  table is kept

• Second-best node  retained

▪ Search from each node cannot exceed this limit

▪ If exceeded, recursion “backs up” to previous node

• Memory-efficient

▪ Can “cycle” between branches

reached

f(n)



Recursive Best-First Search (RBFS)



Heuristic Characteristics
• What makes a “good” heuristic?

▪ We know about admissability and consistency

▪ What about performance?

• Effective branching factor

• Effective depth

• # of nodes expanded



Where Do Heuristics Come From?
• Intuition

▪ “Just Be Really Smart”

• Relaxation

▪ The problem is constrained

▪ Remove the constraint

• Pre-computation

▪ Sub problems

• Learning



Local Search



What Even Is The Goal?
Uninformed/Informed Search:

• Known start, known goal

• Search for optimal path

Local Search:

• “Start” is irrelevant

• Goal is not known

▪ But we know it when we see it

• Search for goal



Brutal Example



Less-Brutal Example



“Real-World” Examples
• Scheduling

• Layout optimization

▪ Factories

▪ Circuits

• Portfolio management

• Others?



Objective Function
• Do you know what you want?1

• Can you express it mathematically?2

▪ A single value

▪ More is better

• Objective function: a function of state

�. If not, you might be human

�. If not, you might be human



Hill-Climbing
• Objective function

• State space mapping

▪ Neighbors



Hill-Climbing



The Hazards of Climbing Hills
• Local maxima

• Plateaus

• Ridges



Five Queens



Five Queens



Five Queens



Variations
• Sideways moves

▪ Not free

• Stochastic moves

▪ Full set

▪ First choice

• Random restarts

▪ If at first you don’t succeed, you fail try again!

▪ Complete 



The Trouble with Local Maxima
• We don’t know that they’re local maxima

▪ Unless we do?

• Hill climbing is efficient

▪ But gets trapped

• Exhaustive search is complete

▪ But it’s exhaustive!

▪ Stochastic methods are ʻexhaustive’



Simulated Annealing



Simulated Annealing
• Doesn’t actually have anything to do with metallurgy

• Search begins with high “temperature”

▪ Temperature decreases during search

• Next state selected randomly

▪ Improvements always accepted

▪ Non-improvements rejected stochastically

▪ Higher temperature, less rejection

▪ “Worse” result, more rejection



Simulated Annealing



Local Beam Search
Recall:

• Beam search keeps track of  “best” branches

Local Beam Search:

• Hill climbing search, keeping track of  successors

▪ Deterministic

▪ Stochastic

k

k



Local Beam Search



The Real World Is Discrete

(it isn’t)



The Real World Is Not Discrete
• Discretize continuous space

▪ Works iff no objective function discontinuities

▪ What happens if there are discontinuities?

▪ How do we know that there are discontinuities?



Gradient Descent
• Minimize loss instead of climb hill

▪ Still the same idea

Consider:

• One state variable, 

• Objective function 

▪ How do we minimize  ?

▪ Is there a closed form  ?

x

f(x)

f(x)
d

dx



Gradient Descent
Multivariate 

Instead of derivative, gradient:

“Locally” descend gradient:

= , , . . .x⃗  x0 x1

∇f( ) = [ , , . . . ]x⃗  ∂f

∂x0

∂f

∂x1

← + α∇f( )x⃗  x⃗  x⃗ 



Probability



Probability



Random Events
• Always in the future

• We know something about them

▪ We don’t know the outcome with certainty

• Distinctions

• Probabilities



Games



First, We Will Play A Game
• Pick a partner

• Place 11 pieces of candy between you

• Alternating turns, either:

▪ Take one piece

▪ Take two pieces

• Last person to take a piece wins all of the candy



Algorithms for Games



Adversity
So far:

• The world does not care about us

• This is a simplifying assumption!

Reality:

• The world does not care us

• …but it wants things for “itself”

• …and we don’t want the same things



The Adversary
One extreme:

• Single adversary

▪ Adversary wants the exact opposite from us

▪ If adversary “wins,” we lose

Other extreme:

• An entire world of agents with different values

▪ They might want some things similar to us

• “Economics”



Simple Games
• Two-player

• Turn-taking

• Discrete-state

• Fully-observable

• Zero-sum

▪ This does some work for us!



Max and Min
• Two players want the opposite of each other

• State takes into account both agents

▪ Actions depend on whose turn it is



Minimax
• Initial state 

• ACTIONS( ) and TO-MOVE( )

• RESULT( )

• IS-TERMINAL( )

• UTILITY( )

s0

s s

s, a

s

s, p



Minimax



Minimax



More Than Two Players
• Two players, two values: 

▪ Zero-sum: 

▪ Only one value needs to be explicitly represented

•  players:

▪ 

▪ Value scalar becomes 

,vA vB

= −vA vB

> 2

, , . . .vA vB vC

v ⃗ 



Society
•  players, only one can win

• Cooperation can be rational!

Example:

• A & B: 30% win probability each

• C: 40% win probability

• A & B cooperate to eliminate C

▪  A & B: 50% win probability each

…what about friendship?

> 2

→



Minimax Efficiency
Pruning removes the need to explore the full tree.

• Max and Min nodes alternate

• Once one value has been found, we can eliminate parts of
search

▪ Lower values, for Max

▪ Higher values, for Min

• Remember highest value ( ) for Max

• Remember lowest value ( ) for Min

α

β



Pruning





Heuristics 
• In practice, trees are far too deep to completely search

• Heuristic: replace utility with evaluation function

▪ Better than losing, worse than winning

▪ Represents chance of winning

• Chance? 

▪ Even in deterministic games

▪ Why?



More Pruning
• Don’t bother further searching bad moves

▪ Examples?

• Beam search

▪ Lee Sedol’s singular win against AlphaGo



Other Techniques
• Move ordering

▪ How do we decide?

• Lookup tables

▪ For subsets of games



Monte Carlo Tree Search
• Many games are too large even for an efficient -  search 

▪ We can still play them

• Simulate plays of entire games from starting state

▪ Update win probability from each node (for each player)
based on result

• “Explore/exploit” paradigm for move selection

α β



Choosing Moves
• We want our search to pick good moves

• We want our search to pick unknown moves

• We don’t want our search to pick bad moves

▪ (Assuming they’re actually bad moves)

Select moves based on a heuristic.



Games of Luck
• Real-world problems are rarely deterministic

• Non-deterministic state evolution:

▪ Roll a die to determine next position

▪ Toss a coin to determine who picks candy first

▪ Precise trajectory of kicked football1

▪ Others?

�. Any definition of “football”



Solving Non-Deterministic Games
Previously: Max and Min alternate turns

Now:

• Max

• Chance

• Min

• Chance



Expectiminimax
• “Expected value” of next position

• How does this impact branching factor of the search?



Filled With Uncertainty
What is to be done?

• Pruning is still possible

▪ How?

• Heuristic evaluation functions

▪ Choose carefully!



Non-Optimal Adversaries
• Is deterministic “best” behavior optimal?

• Are all adversaries rational?

• Expectimax
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