
Local Search & Games
CSCI 4511/6511

Joe Goldfrank

Announcements
• Homework 1 is due on 7 February at 11∶55 PM

▪ Late submission policy

• Homework 2 is due on 21 February at 11∶55 PM

Why Are We Here?

Why Are We Here?
⠀⠀⠀⠀⠀⠀⠀⢀⣠⣤⣤⣶⣶⣶⣶⣤⣤⣄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⢀⣤⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣤⡀⠀⠀⠀⠀
⠀⠀⠀⣴⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡄⠀⠀⠀
⠀⢀⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠟⠁⠀⠀⠀
⠀⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠟⠋⠀⠀⠀⠀⠀⠀
⢠⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠟⠋ ⠀⣀⣄⡀ ⠀⠀⣠⣄⡀
⢸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣏⠀⠀⠀ ⢸⣿⣿⣿ ⠀⢸⣿⣿⣿
⠘⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣦⣀⠀ ⠉⠋⠁ ⠀⠀⠙⠋⠁
⠀⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣦⡀⠀⠀⠀⠀⠀⠀
⠀⠈⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣷⣤⠀⠀⠀⠀
⠀⠀⠀⠻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠃⠀⠀⠀
⠀⠀⠀⠀⠈⠛⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠛⠁⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠈⠙⠛⠛⠿⠿⠿⠿⠛⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀

Search: Why?
• Fully-observed problem

• Deterministic actions and state

• Well-defined start and goal

▪ “Well-defined”

Goal Tests

Goal Tests

Best-First Search

A* Search
• Include path-cost

▪

• Complete (always)

• Optimal (sometimes)

▪ Painful time and space complexity

g(n)

f(n) = g(n) + h(n)

O()bm

A* vs. Dijkstra
(example)

• Advantages?

• Disadvantages?

Choosing Heuristics
• Recall: estimates cost from to goal

• Admissibility

• Consistency

h(n) n

Choosing Heuristics
• Admissibility

▪ Never overestimates cost from to goal

▪ Cost-optimal!

• Consistency

▪

▪ successors of

▪ cost from to given action

n

h(n) ≤ c(n, a,) + h()n′ n′

n′ n

c(n, a,)n′ n n′ a

Consistency
• Consistent heuristics are admissible

▪ Inverse not necessarily true

• Always reach each state on optimal path

• Implications for inconsistent heuristic?

Is Optimality Desirable?

Is Optimality Desirable?
• Yes

Is Optimality Desirable?
• Yes, but it isn’t always feasible

▪ A* search still exponentially complex in solution length

▪ Optimality is never guaranteed “inexpensively”

• We need strategies for “good enough” solutions

Satisficing
satisfy - verb - To give satisfaction; to afford gratification; to leave
nothing to be desired.1

suffice - verb - To be enough, or sufficient; to meet the need (of
anything)2

�. Webster’s, 1913

�. Webster’s, 1913

Weighted A* Search
• Greedy:

• A*:

• Uniform-Cost Search:

…

• Weighted A* Search:

▪ Weight

f(n) = h(n)

f(n) = h(n) + g(n)

f(n) = g(n)

f(n) = W ⋅ h(n) + g(n)

W > 1

Reducing Complexity
• Frontier Management

• Elimination of collection

▪ Reference counts

▪ How else?

• Other searches

reached

Iterative-Deepening A* Search
“IDA*” Search

• Similar to Iterative Deepening with Depth-First Search

▪ DFS uses depth cutoff

▪ IDA* uses cutoff with DFS

▪ Once cutoff breached, new cutoff:

◦ Typically next-largest

▪ time complexity

▪ space complexity1

h(n) + g(n)

h(n) + g(n)

O()bm

O(d)

�. This is slightly complicated based on heuristic branching factor .bh

Beam Search
Best-First Search:

• Frontier is all expanded nodes

Beam Search:

• “best” nodes are kept on frontier

▪ Others discarded

• Alt: all nodes within of best node

• Not Optimal

• Not Complete

k

δ

Recursive Best-First Search (RBFS)
• No table is kept

• Second-best node retained

▪ Search from each node cannot exceed this limit

▪ If exceeded, recursion “backs up” to previous node

• Memory-efficient

▪ Can “cycle” between branches

reached

f(n)

Recursive Best-First Search (RBFS)

Heuristic Characteristics
• What makes a “good” heuristic?

▪ We know about admissability and consistency

▪ What about performance?

• Effective branching factor

• Effective depth

• # of nodes expanded

Where Do Heuristics Come From?
• Intuition

▪ “Just Be Really Smart”

• Relaxation

▪ The problem is constrained

▪ Remove the constraint

• Pre-computation

▪ Sub problems

• Learning

Local Search

What Even Is The Goal?
Uninformed/Informed Search:

• Known start, known goal

• Search for optimal path

Local Search:

• “Start” is irrelevant

• Goal is not known

▪ But we know it when we see it

• Search for goal

Brutal Example

Less-Brutal Example

“Real-World” Examples
• Scheduling

• Layout optimization

▪ Factories

▪ Circuits

• Portfolio management

• Others?

Objective Function
• Do you know what you want?1

• Can you express it mathematically?2

▪ A single value

▪ More is better

• Objective function: a function of state

�. If not, you might be human

�. If not, you might be human

Hill-Climbing
• Objective function

• State space mapping

▪ Neighbors

Hill-Climbing

The Hazards of Climbing Hills
• Local maxima

• Plateaus

• Ridges

Five Queens

Five Queens

Five Queens

Variations
• Sideways moves

▪ Not free

• Stochastic moves

▪ Full set

▪ First choice

• Random restarts

▪ If at first you don’t succeed, you fail try again!

▪ Complete

The Trouble with Local Maxima
• We don’t know that they’re local maxima

▪ Unless we do?

• Hill climbing is efficient

▪ But gets trapped

• Exhaustive search is complete

▪ But it’s exhaustive!

▪ Stochastic methods are ʻexhaustive’

Simulated Annealing

Simulated Annealing
• Doesn’t actually have anything to do with metallurgy

• Search begins with high “temperature”

▪ Temperature decreases during search

• Next state selected randomly

▪ Improvements always accepted

▪ Non-improvements rejected stochastically

▪ Higher temperature, less rejection

▪ “Worse” result, more rejection

Simulated Annealing

Local Beam Search
Recall:

• Beam search keeps track of “best” branches

Local Beam Search:

• Hill climbing search, keeping track of successors

▪ Deterministic

▪ Stochastic

k

k

Local Beam Search

The Real World Is Discrete

(it isn’t)

The Real World Is Not Discrete
• Discretize continuous space

▪ Works iff no objective function discontinuities

▪ What happens if there are discontinuities?

▪ How do we know that there are discontinuities?

Gradient Descent
• Minimize loss instead of climb hill

▪ Still the same idea

Consider:

• One state variable,

• Objective function

▪ How do we minimize ?

▪ Is there a closed form ?

x

f(x)

f(x)
d

dx

Gradient Descent
Multivariate

Instead of derivative, gradient:

“Locally” descend gradient:

= , , . . .x⃗ x0 x1

∇f() = [, , . . .]x⃗ ∂f

∂x0

∂f

∂x1

← + α∇f()x⃗ x⃗ x⃗

Probability

Probability

Random Events
• Always in the future

• We know something about them

▪ We don’t know the outcome with certainty

• Distinctions

• Probabilities

Games

First, We Will Play A Game
• Pick a partner

• Place 11 pieces of candy between you

• Alternating turns, either:

▪ Take one piece

▪ Take two pieces

• Last person to take a piece wins all of the candy

Algorithms for Games

Adversity
So far:

• The world does not care about us

• This is a simplifying assumption!

Reality:

• The world does not care us

• …but it wants things for “itself”

• …and we don’t want the same things

The Adversary
One extreme:

• Single adversary

▪ Adversary wants the exact opposite from us

▪ If adversary “wins,” we lose

Other extreme:

• An entire world of agents with different values

▪ They might want some things similar to us

• “Economics”

Simple Games
• Two-player

• Turn-taking

• Discrete-state

• Fully-observable

• Zero-sum

▪ This does some work for us!

Max and Min
• Two players want the opposite of each other

• State takes into account both agents

▪ Actions depend on whose turn it is

Minimax
• Initial state

• ACTIONS() and TO-MOVE()

• RESULT()

• IS-TERMINAL()

• UTILITY()

s0

s s

s, a

s

s, p

Minimax

Minimax

More Than Two Players
• Two players, two values:

▪ Zero-sum:

▪ Only one value needs to be explicitly represented

• players:

▪

▪ Value scalar becomes

,vA vB

= −vA vB

> 2

, , . . .vA vB vC

v ⃗

Society
• players, only one can win

• Cooperation can be rational!

Example:

• A & B: 30% win probability each

• C: 40% win probability

• A & B cooperate to eliminate C

▪ A & B: 50% win probability each

…what about friendship?

> 2

→

Minimax Efficiency
Pruning removes the need to explore the full tree.

• Max and Min nodes alternate

• Once one value has been found, we can eliminate parts of
search

▪ Lower values, for Max

▪ Higher values, for Min

• Remember highest value () for Max

• Remember lowest value () for Min

α

β

Pruning

Heuristics
• In practice, trees are far too deep to completely search

• Heuristic: replace utility with evaluation function

▪ Better than losing, worse than winning

▪ Represents chance of winning

• Chance?

▪ Even in deterministic games

▪ Why?

More Pruning
• Don’t bother further searching bad moves

▪ Examples?

• Beam search

▪ Lee Sedol’s singular win against AlphaGo

Other Techniques
• Move ordering

▪ How do we decide?

• Lookup tables

▪ For subsets of games

Monte Carlo Tree Search
• Many games are too large even for an efficient - search

▪ We can still play them

• Simulate plays of entire games from starting state

▪ Update win probability from each node (for each player)
based on result

• “Explore/exploit” paradigm for move selection

α β

Choosing Moves
• We want our search to pick good moves

• We want our search to pick unknown moves

• We don’t want our search to pick bad moves

▪ (Assuming they’re actually bad moves)

Select moves based on a heuristic.

Games of Luck
• Real-world problems are rarely deterministic

• Non-deterministic state evolution:

▪ Roll a die to determine next position

▪ Toss a coin to determine who picks candy first

▪ Precise trajectory of kicked football1

▪ Others?

�. Any definition of “football”

Solving Non-Deterministic Games
Previously: Max and Min alternate turns

Now:

• Max

• Chance

• Min

• Chance

Expectiminimax
• “Expected value” of next position

• How does this impact branching factor of the search?

Filled With Uncertainty
What is to be done?

• Pruning is still possible

▪ How?

• Heuristic evaluation functions

▪ Choose carefully!

Non-Optimal Adversaries
• Is deterministic “best” behavior optimal?

• Are all adversaries rational?

• Expectimax

References
• Stuart J. Russell and Peter Norvig. Artificial Intelligence: A

Modern Approach. 4th Edition, 2020.

• Mykal Kochenderfer, Tim Wheeler, and Kyle Wray. Algorithms
for Decision Making. 1st Edition, 2022.

• Stanford CS231

• Stanford CS228

• UC Berkeley CS188

