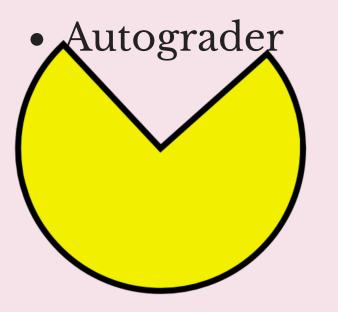
Games, Constraint Satisfaction

CSCI 4511/6511

Joe Goldfrank

Announcements

- Homework 1 is due today at 11:55 PM
 - No more than three grace days
- Homework 2 is due on 21 February at 11:55 PM



Algorithms for Games

Adversity

So far:

- The world does not care about us
- This is a simplifying assumption!

Reality:

- The world does not care about us
- ...but it wants things for "itself"
- ...and we don't want the same things

The Adversary

One extreme:

- Single adversary
 - Adversary wants the *exact opposite* from us
 - If adversary "wins," we lose

••

Other extreme:

- An entire world of agents with different values
 - They might want some things similar to us
- "Economics"

••

Simple Games

- Two-player
- Turn-taking
- Discrete-state
- Fully-observable
- Zero-sum
 - This does some work for us!

We Played A Game

- Pick a partner
- Place 11 pieces of candy between you
- Alternating turns, either:
 - Take one piece
 - Take two pieces
- Last person to take a piece wins all of the candy

Max and Min

- Two players want the opposite of each other
- State takes into account both agents
 - Actions depend on whose turn it is

Minimax

- Initial state s_0
- ACTIONS(s) and TO-MOVE(s)
- RESULT(s, a)
- IS-TERMINAL(*s*)
- UTILITY(s, p)

Minimax

Minimax

Algorithm Minimax Search

1:	function $Minimax$ -Search $(game, state)$
2:	$player \leftarrow game.To-Move(state)$
3:	$value, move \leftarrow Max-Value(game, state)$
4:	return move
5:	
6:	function Max-Value(game, state)
7:	if $game$.Is-Terminal $(state)$ then
8:	return $game.$ Utility $(state, player)$, $null$
9:	$v \leftarrow -\infty$
10:	for each a in $game$. Actions(state) do
11:	$v2, a2 \leftarrow Min-Value(game, game.Result(state, a))$
12:	if $v2 > v$ then
13:	$v, move \leftarrow v2, a$
14:	return $v, move$
15:	
16: function Min-Value($game, state$)	
17:	if $game$.Is-Terminal $(state)$ then
18:	return $game.$ Utility $(state, player)$, $null$
19:	$v \leftarrow \infty$
20:	for each a in $game$. Actions(state) do
21:	$v2, a2 \leftarrow \text{Max-Value}(game, game. \text{Result}(state, a))$
22:	if $v2 < v$ then
23:	$v, move \leftarrow v2, a$
24:	return v, move

More Than Two Players

- Two players, two values: v_A, v_B
 - Zero-sum: $v_A = -v_B$
 - Only one value needs to be explicitly represented
- > 2 players:
 - $v_A, v_B, v_C \dots$
 - Value scalar becomes $ec{v}$

Society

- ullet > 2 players, only one can win
- Cooperation can be rational!

Example:

- A & B: 30% win probability each
- C: 40% win probability
- A & B cooperate to eliminate C
 - $\blacksquare \rightarrow A \ \& \ B: 50\%$ win probability each

...what about friendship?

Minimax Efficiency

Pruning removes the need to explore the full tree.

- Max and Min nodes alternate
- Once *one* value has been found, we can eliminate parts of search
 - Lower values, for Max
 - Higher values, for Min
- Remember highest value (α) for Max
- Remember lowest value (β) for Min

Pruning

Heuristics 😌

- In practice, trees are far too deep to completely search
- Heuristic: replace utility with evaluation function
 - Better than losing, worse than winning
 - Represents chance of winning
- Chance?
 - Even in deterministic games
 - Why?

More Pruning

- Don't bother further searching bad moves
 - Examples?
- Beam search
 - Lee Sedol's singular win against AlphaGo

Other Techniques

- Move ordering
 - How do we decide?
- Lookup tables
 - For subsets of games

Monte Carlo Tree Search

- Many games are too large even for an efficient α - β search \cong
 - We can still play them
- Simulate plays of entire games from starting state
 - Update win probability from each node (for each player) based on result
- "Explore/exploit" paradigm for move selection

Choosing Moves

- We want our search to pick good moves
- We want our search to pick unknown moves
- We *don't* want our search to pick bad moves
 - (Assuming they're actually bad moves)

Select moves based on a heuristic.

Games of Luck

- Real-world problems are rarely deterministic
- Non-deterministic state evolution:
 - Roll a die to determine next position
 - Toss a coin to determine who picks candy first
 - Precise trajectory of kicked football¹
 - Others?

Solving Non-Deterministic Games

Previously: Max and Min alternate turns Now:

- Max
- Chance
- Min
- Chance

We Played Another Game

- Place 11 pieces of candy between you
- Alternating turns:
 - Choose to take one or two pieces
- Except:
 - After choosing, flip two coins, record *total* number of heads¹
 - If total is divisible by 3, take one less piece than you chose
 - If total is divisible by 5, take one more piece than you chose
 - If total divisible by 15, take no candy
- Last person to take a piece wins all of the candy

Expectiminimax

- "Expected value" of next pos n
- How does this impact branching factor of the search?

Filled With Uncertainty

What is to be done?

- Pruning is still possible
 - How?
- Heuristic evaluation functions
 - Choose carefully!

Non-Optimal Adversaries

- Is deterministic "best" behavior optimal?
- Are all adversaries rational?

• Expectimax

Factored Representation

- Encode relationships between variables and states
- Solve problems with *general* search algorithms
 - Heuristics do not require expert knowledge of problem
 - Encoding problem requires expert knowledge of problem¹

Why?

Constraint Satisfaction

- Express problem in terms of state variables
 - Constrain state variables
- Begin with all variables unassigned
- Progressively assign values to variables
- Assignment of values to state variables that "works:" *solution*

More Formally

- State variables: X_1, X_2, \ldots, X_n
- State variable domains: D_1, D_2, \ldots, D_n
 - The domain specifies which values are permitted for the state variable
 - Domain: set of allowable variables (or permissible range for continuous variables)¹
 - Some constraints C_1, C_2, \ldots, C_m restrict allowable values

1. Or a hvbrid. such as a union of ranges of continuous variables.

Constraint Types

- Unary: restrict single variable
 - Can be rolled into domain
 - Why even have them?
- Binary: restricts two variables
- Global: restrict "all" variables

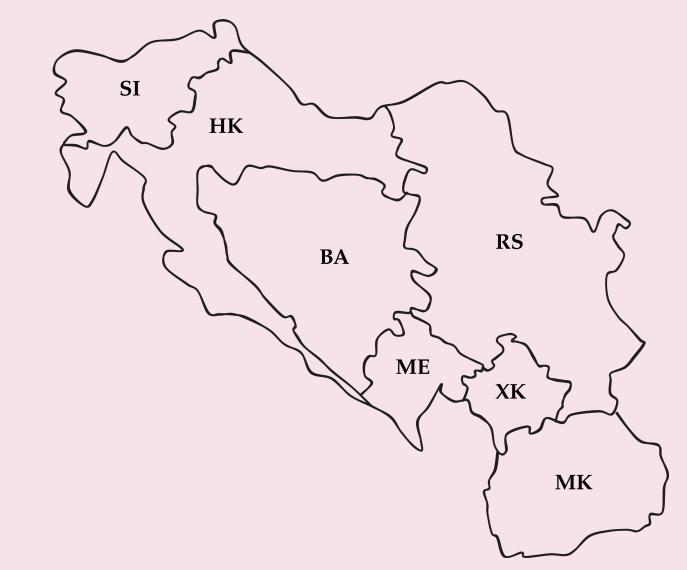
Constraint Examples

- X_1 and X_2 both have real domains, i.e. $X_1, X_2 \in \mathbb{R}$
 - A constraint could be $X_1 < X_2$
- X_1 could have domain {red, green, blue} and X_2 could have domain {green, blue, orange}
 - A constraint could be $X_1
 eq X_2$
- ullet $X_1, X_2, \dots, X_1 0 0 \in \mathbb{R}$
 - Constraint: exactly four of X_i equal 12
 - Rewrite as binary constraint?

Assignments

- Assignments must be to values in each variable's domain
- Assignment violates constraints?
 - Consistency
- All variables assigned?
 - Complete

Yugoslavia¹



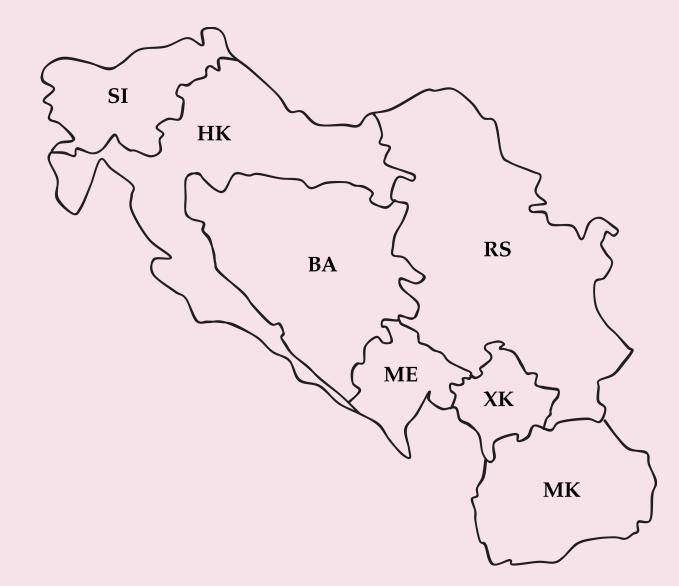
1. One of the most difficult problems of the 20th century

Four-Colorings

Two possibilities:



Formulate as CSP?



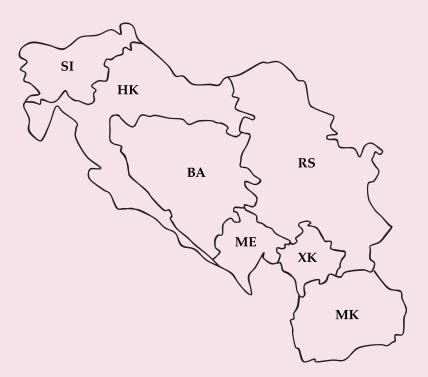
Graph Representations

- Constraint graph:
 - Nodes are variables
 - Edges are constraints
- Constraint hypergraph:
 - Variables are nodes
 - Constraints are nodes
 - Edges show relationship

Why have two different representations?

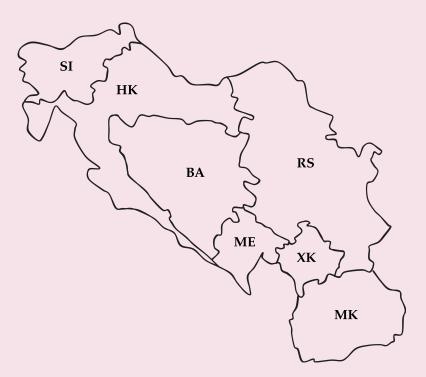
Graph Representation I

Constraint graph: edges are constraints



Graph Representation II

Constraint hypergraph: constraints are nodes



How To Solve It

- We can search!
 - ...the space of consistent assignments
- Complexity $O(d^n)$
 - Domain size d, number of nodes n
- Tree search for node assignment
 - Inference to reduce domain size
- Recursive search

How To Solve It

Algorithm Backtracking Search

1:	1: function Backtracking-Search (CSP)		
2:	return Backtrack $(CSP, \{\})$		
3:			
4:	function $Backtrack(CSP, assignment)$		
5:	if <i>assignment</i> is complete then		
6:	return $assignment$		
7:	$var \leftarrow \text{Select-Unassigned-Variable}(CSP, assignment)$		
8:	for each $value$ in Order-Domain-Variables $(CSP, var, assignment)$ do		
9:	if <i>value</i> is consistent with <i>assignment</i> then		
10:	assignment.Add(var = value)		
11:	$inferences \leftarrow \text{Inference}(CSP, var, assignment)$		
12:	if $inferences \neq failure$ then		
13:	CSP.Add(inferences)		
14:	$result \leftarrow Backtrack(CSP, assignment)$		
15:	if $result eq failure$ then		
16:	return $result$		
17:	CSP. Remove $(inferences)$		
18:	assignment.Remove $(var = value)$		

What Even Is Inference

- Constraints on one variable restrict others:
 - $X_1 \in \{A, B, C, D\}$ and $X_2 \in \{A\}$
 - $X_1 \neq X_2$
 - Inference: $X_1 \in \{B, C, D\}$
- If an unassigned variable has no domain...
 - Failure

Inference

- Arc consistency
 - Reduce domains for pairs of variables
- Path consistency
 - Assignment to two variables
 - Reduce domain of third variable

AC-3

Algorithm ΔC_{-2}			
Algorithm AC-3	Algorithm AC-3		
1: function AC-3(CS	(P)		
2: $queue \leftarrow all ar$	cs in CSP		
3: while <i>queue</i> is	not empty do		
$4: \qquad (X_i, X_j) \leftarrow$	Pop(queue)		
5: if $\operatorname{Revise}(C)$	SP, X_i, X_j) then		
6: for each	X_k in X_i . Neighbors $-\{X_i\}$ do		
7: queu	$e. Add((X_i, X_j))$		
8: return True			
9:			
10: function $\text{Revise}(C)$	SP, X_i, X_j		
11: $revised \leftarrow False$	Se g		
12: for each x in L	o _i do		
13: if $\mathcal{C}(X_i = a)$	(X_j) not satisfied for any value in D_j then		
14: $D_i. Remo$	$DVE(\mathbf{X})$		
15: revised	← True		
16: return revised			

How To Solve It (Again)

Backtracking search:

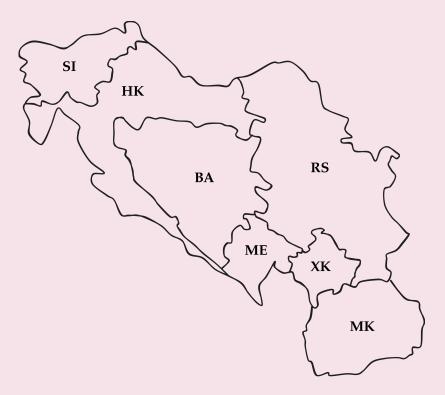
- Similar to DFS
- Variables are *ordered*
 - Why?
- Constraints checked each step
- Constraints optionally *propagated*

How To Solve It (Again)

Algorithm Backtracking Search

1:	1: function Backtracking-Search (CSP)		
2:	return Backtrack $(CSP, \{\})$		
3:			
4:	function $Backtrack(CSP, assignment)$		
5:	if <i>assignment</i> is complete then		
6:	return $assignment$		
7:	$var \leftarrow \text{Select-Unassigned-Variable}(CSP, assignment)$		
8:	for each $value$ in Order-Domain-Variables $(CSP, var, assignment)$ do		
9:	if <i>value</i> is consistent with <i>assignment</i> then		
10:	assignment.Add(var = value)		
11:	$inferences \leftarrow \text{Inference}(CSP, var, assignment)$		
12:	if $inferences \neq failure$ then		
13:	CSP.Add(inferences)		
14:	$result \leftarrow Backtrack(CSP, assignment)$		
15:	if $result eq failure$ then		
16:	return $result$		
17:	CSP.Remove $(inferences)$		
18:	assignment.Remove $(var = value)$		

Yugoslav Arc Consistency



Ordering

- SELECT-UNASSGINED-VARIABLE(CSP, assignment)
 - Choose most-constrained variable¹
- Order-Domain-Variables(CSP, var, assignment)
 - Least-constraining value
- Why?

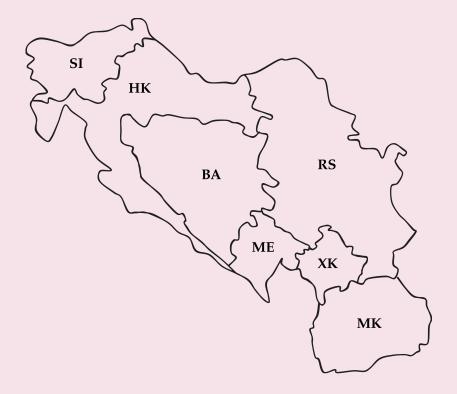
1. or MRV: "Minimum Remaining Values"

Restructuring

Tree-structured CSPs:

- *Linear time* solution
- Directional arc consistency: $X_i o X_{i+1}$
- Cutsets
- Sub-problems

Cutset Example



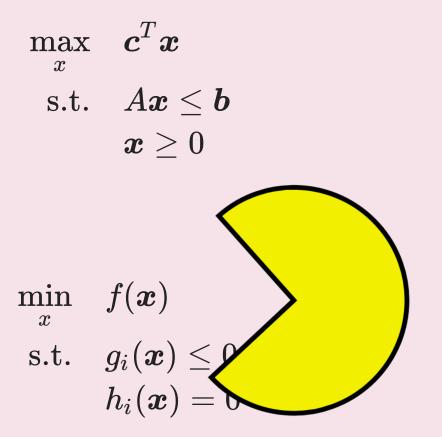
(Heuristic) Local Search

- Hill climbing
 - Random restarts
- Simulated annealing
- Fast?
- Complete?
- Optimal?

Continuous Domains

• Linear:

• Convex



Is This Even Relevant in 2025?

- Absolutely yes.
- LLMs are bad at CSPs
- CSPs are common in the real world
 - Scheduling
 - Optimization
 - Dependency solvers

Logic Preview

```
egin{aligned} R_{HK} &\Rightarrow 
eg R_{SI} \ G_{HK} &\Rightarrow 
eg G_{SI} \ B_{HK} &\Rightarrow 
eg B_{SI} \ R_{HK} &ee G_{HK} &ee B_{HK} \end{aligned}
```

...

Goal: find assignment of variables that satisifies conditions

References

- Stuart J. Russell and Peter Norvig. *Artificial Intelligence: A Modern Approach*. 4th Edition, 2020.
- Mykal Kochenderfer, Tim Wheeler, and Kyle Wray. *Algorithms for Decision Making*. 1st Edition, 2022.
- Stanford CS231
- Stanford CS228
- UC Berkeley CS188