Games, Constraint
Satisfaction

CSCI 4511/6511

Joe Goldfrank

Announcements
e Homework 1 is due today at 11:55 PM

= No more than three grace days
e Homework 2 is due on 21 February at 11:55 PM

o Autograde

Algorithms for
Games

Adversity

So far:

o T

ne world does not care about us

o T

nis 1s a simplifying assumption!

Reality:

e The world does not care about us

e ..but it wants things for “itselt”

e ..and we don't want the same things

The Adversary

One extreme:

e Single adversary

= Adversary wants the exact opposite from us

» [f adversary “wins,” we lose

Other extreme:

e An entire world of agents with different values

» They might want some things similar to us

e “Economics”

Simple Games
e Two-player

e Turn-taking

e Discrete-state

e Fully-observable
e ZE€ro-sum

= This does some work for us!

We Played A Game

e Pick a partner

e Place 11 pieces of candy between you

e Alternating turns, either:
» Take one piece
» Take two pieces

e Last person to take a piece wins all of the candy

Max and Min

e Two players want the opposite of each other
e State takes into account both agents

= Actions depend on whose turn it is

Minimax

e Initial state s

e ACTIONS(S) and TO-MOVE(S)
e RESULT(s, a)

e IS-TERMINAL(S)

o UTILITY(S, p)

Minimax

Minimax

Algorithm Minimax Search

: function MinmmMax-SEArRcH(game, state)
player <— game.To-Move(state)

value, move <— Max-VALUE(game, state)
return move

: function Max-VaLue(game, state)
if game.Is-TermINAL(State) then
return game. Uty (state, player),null

e *N 2 B RN &

V4 —00
for each a in game.Actions(state) do

v2, a2 <—MiN-VALUE(game, game.Resurt(state, a))
12: if v2 > v then

[y
Q

[y
L

13: v, Move < v2,a

14: return v, move

15:

16: function MiN-VALUE(game, state)

17: if game.Is-TErmINAL(State) then

18: return game. Utiity (state, player),null
19: V< O

20: for each a in game.Actions(state) do

21 v2, a2 <—Max-VaLue(game, game.Resurt(state, a))
22: if v2 < v then

23 v, Move <— v2,a

24: return v, move

More Than Two Players

e Two players, two values: v4, vp
= ZEero-sum: v4 = —UpR

» Only one value needs to be explicitly
represented

e > 2 players:

" VgQ,UB,0UC. ..
= Value scalar becomes v

Society

e > 2 players, only one can win

e Cooperation can be rational!

Example:

e A & B: 30% win probability each
e C:40% win probability
e A & B cooperate to eliminate C
= — A & B: 50% win probability each

..what about friendship?

Minimax Efficiency

Pruning removes the need to explore the full tree.

e Max and Min nodes alternate

e Once one value has been found, we can eliminate
parts of search

» Lower values, for Max
» Higher values, for Min
e Remember highest value () for Max

e Remember lowest value (£) for Min

Pruning

Heuristics <

e In practice, trees are far too deep to completely
search

e Heuristic: replace utility with evaluation function
» Better than losing, worse than winning
» Represents chance of winning

e Chance? €€

» Even in deterministic games
» Why?

More Pruning

e Don’t bother further searching bad moves
= Examples?
e Beam search

» Lee Sedol’s singular win against AlphaGo

Other Techniques

e Move ordering
= How do we decide?
o Lookup tables

» For subsets of games

Monte Carlo Tree Search

e Many games are too large even for an eflicient
a- search <

» We can still play them
o Stmulate plays of entire games from starting state

» Update win probability from each node (for
each player) based on result

e “Explore/exploit” paradigm for move selection

Choosing Moves

e We want our search to pick good moves
« We want our search to pick unknown moves
e We don’t want our search to pick bad moves

» (Assuming they re actually bad moves)

Select moves based on a heuristic.

Games of Luck

e Real-world problems are rarely deterministic
e Non-deterministic state evolution:
= Roll a die to determine next position
= Toss a coin to determine who picks candy first

= Precise trajectory of kicked football!
» Others?

1. Anv definition of “football”

Solving Non-Deterministic
Games

Previously: Max and Min alternate turns
Now:

e Max

e Chance

e Min

e Chance

« o
><
-~

We Played Another Game

e Place 11 pieces of candy between you

e Alternating turns:
= Choose to take one or two pieces

o Except:
= After choosing, flip two coins, record fotal number of heads!
= If total is divisible by 3, take one less piece than you chose
= If total is divisible by 5, take one more piece than you chose
» If total divisible by 15, take no candy

e Last person to take a piece wins all of the candy

1 Keean 2 rimimnina tatal thvrnaiioh tha acameae

Expectiminimax
e “Expected value” of next po@n

e« How does this impact branching factor of the
search?

Filled With Uncertainty

What is to be done?

e Pruning is still possible
= How?’
e Heuristic evaluation functions

» Choose carefully!

Non-Optimal Adversaries

e Is deterministic “best” behavior optimal?

e Are all adversaries rational?

e Expectimax

CSPs

Factored Representation

e Encode relationships between variables and
states

e Solve problems with general search algorithms

» Heuristics do not require expert knowledge of
problem

» Encoding problem requires expert knowledge
of problem!

Why?

1. But it alwavs does.

Constraint Satisfaction

e Express problem in terms of state variables
» Constrain state variables

e Begin with all variables unassigned

e Progressively assign values to variables

e Assignment of values to state variables that
“works:” solution

More Formally

e State variab.

les: Xl,Xz, .« . ,Xn

e State variabl

e domains: Dy, D>, ..., D,

» The domain specifies which values are
permitted for the state variable

» Domain: set of allowable variables (or
permissible range for continuous variables)!

= Some constraints Cq, Cy, ..., C,, restrict
allowable values

1. Or a hvbrid. such as a union of raneges of continuous variables.

Constraint Types

e Unary: restrict single variable
» Can be rolled into domain
» Why even have them?

e Binary: restricts two variables

e Global: restrict “all” variables

Constraint Examples

e X7 and X5 both have real domains,
le. X1,X9 € R

= A constraint could be X7 < X5

e X; could have domain {red, green, blue} and X5
could have domain {green, blue, orange}

= A constraint could be X; # X5
e X1,X9,..., X700 e R
= Constraint: exactly four of X; equal 12

» Rewrite as binary constraint?

Assignments

e Assignments must be to values in each variable’s
domain

e Assignment violates constraints?
» Consistency

e All variables assigned?

» Complete

Yugoslavial

T
e

MK

1. One of the most difficult nroblems of the 20th centurv

Four-Colorings

Two possibilities:

Formulate as CSP’

e
o

MK

Graph Representations

e Constraint graph:
= Nodes are variables
» Edges are constraints
e Constraint hypergraph:
= Variables are nodes
= Constraints are nodes

» Edges show relationship

Why have two different representations?

Graph Representation I

Constraint graph: edges are constraints

Graph Representation 11

Constraint hypergraph: constraints are nodes

How To Solve It

e We can search!

» ..the space of consistent assignments
o Complexity O(d")

» Domain size d, number of nodes n
e Tree search for node assignment

» Inference to reduce domain size

e Recursive search

How To Solve It

Algorithm Backtracking Search

1: function BACKTRACKING-SEARCH(C'S P)
2. return Backtrack(C'SP, {})

3:
4: function Backtrack(C'S P, assignment)
5: if assignment is complete then
6: return assignment
7: var <— SELECT-UNassSIGNED-VARIABLE(C'S P, assignment)
8: for each value in OrRpDER-DoMAIN-VARIABLES(C'S P, var, assignment) do
o: if value is consistent with assignment then
10 assignment.App(var = value)
11: inferences < INrerence(C'S P, var, assignment)
12: if inferences # failure then
13: CSP.App(inferences)
14: result < Backtrack(C'S P, assignment)
15: if result #+ failure then
16: return result
17: C'S P.Remove(in ferences)

18: asstgnment.Remove(var = value)

What Even Is Inference

e Constraints on one variable restrict others:
» X; € {A,B,C,D} and X, € {A}
= X1 # X
» Inference: Xy € {B,C, D}

e If an unassigned variable has no domain...

» Failure

Inference

e Arc consistency

» Reduce domains for pairs of variables
e Path consistency

» Assignment to two variables

» Reduce domain of third variable

AC-3

Algorithm AC-3

. function AC-3(C'SP)
queue < all arcs in C'S P
while queue is not empty do
(X;, X;) < Por(queue)
if Revise(C'SP, X;, X ;) then
for each X in X; Neicusors —{ X} do
queue.App((X;, X))

return True

L N 2R RN

. function Revise(C'S P, Xi,Xj)
revised < False
for each z in D, do

[.
= O

[y
N

13: if C(X; = z, X;) not satisfied for any value in D; then
14: D, .ReMovE(X)
15: revised < True

return revised

=
ISA

How To Solve It (Again)

Backtracking search:

e Similar to DFS
e Variables are ordered
= Why?
o Constraints checked each step

o Constraints optionally propagated

How To Solve It (Again)

Algorithm Backtracking Search

1: function BACKTRACKING-SEARCH(C'S P)
2. return Backtrack(C'SP, {})

3:
4: function Backtrack(C'S P, assignment)
5: if assignment is complete then
6: return assignment
7: var <— SELECT-UNassSIGNED-VARIABLE(C'S P, assignment)
8: for each value in OrRpDER-DoMAIN-VARIABLES(C'S P, var, assignment) do
o: if value is consistent with assignment then
10 assignment.App(var = value)
11: inferences < INrerence(C'S P, var, assignment)
12: if inferences # failure then
13: CSP.App(inferences)
14: result < Backtrack(C'S P, assignment)
15: if result #+ failure then
16: return result
17: C'S P.Remove(in ferences)

18: asstgnment.Remove(var = value)

Yugoslav Arc Consistency

A
&

Ordering
e SELECT-UNASSGINED-
VARIABLE(C'S P, assignment)

» Choose most-constrained variable!l

e ORDER-DOMAIN-
VARIABLES(C'S P, var, assignment)

» Least-constraining value
e Why?

1. or MRV: “Minimum Remaining Values”

Restructuring
Tree-structured CSPs:

e Linear time solution
e Directional arc consistency: X; — X1
o Cutsets

e Sub-problems

Cutset Example

A
&

(Heuristic) Local Search
e Hill climbing

» Random restarts
e Simulated annealing
e Fast’
o« Complete?

e Optimal?’

Continuous Domains

e Linear:
max clax
g5
s.t. Ax <b
x >0
e Convex
min f(x)
xr

Is This Even Relevant in 20257

e Absolutely yes.

e LLMs are bad at CSPs

e CSPs are common in the real world
» Scheduling
» Optimization

» Dependency solvers

Logic Preview

Rux = —Rgr
Grrx = Gy
Brkx = —Bgr
Ryx V Gk V Bk

Goal: find assignment of variables that satisifies
conditions

References
e Stuart J. Russell and Peter Norvig. Artificial
Intelligence: A Modern Approach. 4th Edition, 2020.

e Mykal Kochendertfer, Tim Wheeler, and Kyle
Wray. Algorithms for Decision Making. 1st Edition,
2022.

e Stantord CS231
e Stantord CS228
e« UC Berkeley CSI88

