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Announcements
• Homework 1 is due today at 11:55 PM

▪ No more than three grace days

• Homework 2 is due on 21 February at 11:55 PM

• Autograder



Algorithms for
Games



Adversity
So far:

• The world does not care about us

• This is a simplifying assumption!

Reality:

• The world does not care about us

• …but it wants things for “itself”

• …and we don’t want the same things



The Adversary
One extreme:

• Single adversary

▪ Adversary wants the exact opposite from us

▪ If adversary “wins,” we lose

Other extreme:

• An entire world of agents with di�erent values

▪ They might want some things similar to us

• “Economics”



Simple Games
• Two-player

• Turn-taking

• Discrete-state

• Fully-observable

• Zero-sum

▪ This does some work for us!



We Played A Game
• Pick a partner

• Place 11 pieces of candy between you

• Alternating turns, either:

▪ Take one piece

▪ Take two pieces

• Last person to take a piece wins all of the candy



Max and Min
• Two players want the opposite of each other

• State takes into account both agents

▪ Actions depend on whose turn it is



Minimax
• Initial state 

• ACTIONS( ) and TO-MOVE( )

• RESULT( )

• IS-TERMINAL( )

• UTILITY( )
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More Than Two Players
• Two players, two values: 

▪ Zero-sum: 

▪ Only one value needs to be explicitly
represented

•  players:

▪ 

▪ Value scalar becomes 

,vA vB

= −vA vB
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Society
•  players, only one can win

• Cooperation can be rational!

Example:

• A & B: 30% win probability each

• C: 40% win probability

• A & B cooperate to eliminate C

▪  A & B: 50% win probability each

…what about friendship?

> 2

→



Minimax E�ciency
Pruning removes the need to explore the full tree.

• Max and Min nodes alternate

• Once one value has been found, we can eliminate
parts of search

▪ Lower values, for Max

▪ Higher values, for Min

• Remember highest value ( ) for Max

• Remember lowest value ( ) for Min

α

β



Pruning





Heuristics 
• In practice, trees are far too deep to completely

search

• Heuristic: replace utility with evaluation function

▪ Better than losing, worse than winning

▪ Represents chance of winning

• Chance? 

▪ Even in deterministic games

▪ Why?



More Pruning
• Don’t bother further searching bad moves

▪ Examples?

• Beam search

▪ Lee Sedol’s singular win against AlphaGo



Other Techniques
• Move ordering

▪ How do we decide?

• Lookup tables

▪ For subsets of games



Monte Carlo Tree Search
• Many games are too large even for an e�cient

-  search 

▪ We can still play them

• Simulate plays of entire games from starting state

▪ Update win probability from each node (for
each player) based on result

• “Explore/exploit” paradigm for move selection

α β



Choosing Moves
• We want our search to pick good moves

• We want our search to pick unknown moves

• We don’t want our search to pick bad moves

▪ (Assuming they’re actually bad moves)

Select moves based on a heuristic.



Games of Luck
• Real-world problems are rarely deterministic

• Non-deterministic state evolution:

▪ Roll a die to determine next position

▪ Toss a coin to determine who picks candy �rst

▪ Precise trajectory of kicked football1

▪ Others?

1. Any de�nition of “football”



Solving Non-Deterministic
Games
Previously: Max and Min alternate turns

Now:

• Max

• Chance

• Min

• Chance



We Played Another Game
• Place 11 pieces of candy between you

• Alternating turns:

▪ Choose to take one or two pieces

• Except:

▪ A�er choosing, �ip two coins, record total number of heads1

▪ If total is divisible by 3, take one less piece than you chose

▪ If total is divisible by 5, take one more piece than you chose

▪ If total divisible by 15, take no candy

• Last person to take a piece wins all of the candy

1. Keep a running total through the game.



Expectiminimax
• “Expected value” of next position

• How does this impact branching factor of the
search?



Filled With Uncertainty
What is to be done?

• Pruning is still possible

▪ How?

• Heuristic evaluation functions

▪ Choose carefully!



Non-Optimal Adversaries
• Is deterministic “best” behavior optimal?

• Are all adversaries rational?

• Expectimax



CSPs



Factored Representation
• Encode relationships between variables and

states

• Solve problems with general search algorithms

▪ Heuristics do not require expert knowledge of
problem

▪ Encoding problem requires expert knowledge
of problem1

Why?

1. But it always does.



Constraint Satisfaction
• Express problem in terms of state variables

▪ Constrain state variables

• Begin with all variables unassigned

• Progressively assign values to variables

• Assignment of values to state variables that
“works:” solution



More Formally
• State variables: 

• State variable domains: 

▪ The domain speci�es which values are
permitted for the state variable

▪ Domain: set of allowable variables (or
permissible range for continuous variables)1

▪ Some constraints  restrict
allowable values

, , . . . ,X1 X2 Xn

, , . . . ,D1 D2 Dn

, , . . . ,C1 C2 Cm

1. Or a hybrid, such as a union of ranges of continuous variables.



Constraint Types
• Unary: restrict single variable

▪ Can be rolled into domain

▪ Why even have them?

• Binary: restricts two variables

• Global: restrict “all” variables



Constraint Examples
•  and  both have real domains,

i.e. 

▪ A constraint could be 

•  could have domain  and 
could have domain 

▪ A constraint could be 

• 

▪ Constraint: exactly four of  equal 12

▪ Rewrite as binary constraint?

X1 X2
, ∈ RX1 X2

<X1 X2

X1 {red, green, blue} X2
{green, blue, orange}

≠X1 X2

, , . . . , 00 ∈ RX1 X2 X1

Xi



Assignments
• Assignments must be to values in each variable’s

domain

• Assignment violates constraints?

▪ Consistency

• All variables assigned?

▪ Complete



Yugoslavia1

1. One of the most di�cult problems of the 20th century



Four-Colorings
Two possibilities:



Formulate as CSP?



Graph Representations
• Constraint graph:

▪ Nodes are variables

▪ Edges are constraints

• Constraint hypergraph:

▪ Variables are nodes

▪ Constraints are nodes

▪ Edges show relationship

Why have two di�erent representations?



Graph Representation I
Constraint graph: edges are constraints



Graph Representation II
Constraint hypergraph: constraints are nodes



How To Solve It
• We can search!

▪ …the space of consistent assignments

• Complexity 

▪ Domain size , number of nodes 

• Tree search for node assignment

▪ Inference to reduce domain size

• Recursive search

O( )dn

d n



How To Solve It



What Even Is Inference
• Constraints on one variable restrict others:

▪  and 

▪ 

▪ Inference: 

• If an unassigned variable has no domain…

▪ Failure

∈ {A, B, C, D}X1 ∈ {A}X2

≠X1 X2

∈ {B, C, D}X1



Inference
• Arc consistency

▪ Reduce domains for pairs of variables

• Path consistency

▪ Assignment to two variables

▪ Reduce domain of third variable



AC-3



How To Solve It (Again)
Backtracking search:

• Similar to DFS

• Variables are ordered

▪ Why?

• Constraints checked each step

• Constraints optionally propagated



How To Solve It (Again)



Yugoslav Arc Consistency



Ordering
• SELECT-UNASSGINED-

VARIABLE( )

▪ Choose most-constrained variable1

• ORDER-DOMAIN-
VARIABLES( )

▪ Least-constraining value

• Why?

CSP , assignment

CSP , var, assignment

1. or MRV: “Minimum Remaining Values”



Restructuring
Tree-structured CSPs:

• Linear time solution

• Directional arc consistency: 

• Cutsets

• Sub-problems

→Xi Xi+1



Cutset Example



(Heuristic) Local Search
• Hill climbing

▪ Random restarts

• Simulated annealing

• Fast?

• Complete?

• Optimal?



Continuous Domains
• Linear:

• Convex

max
x

s.t.

xcT

Ax ≤ b

x ≥ 0

min
x

s.t.

f(x)

(x) ≤ 0gi

(x) = 0hi



Is This Even Relevant in 2025?
• Absolutely yes.

• LLMs are bad at CSPs

• CSPs are common in the real world

▪ Scheduling

▪ Optimization

▪ Dependency solvers



Logic Preview

…

Goal: �nd assignment of variables that satisi�es
conditions

⇒ ¬RHK RSI

⇒ ¬GHK GSI

⇒ ¬BHK BSI

∨ ∨RHK GHK BHK
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