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Announcements

e Homework 2 is due on 21 February at 11:55 PM
e Homework 3 is released

» Working with one partner is optionally permitted



Games



Minimax

o Initial state sg

e ACTIONS(s) and TO-MOVE(s)
e RESULT(s, a)

e [S-TERMINAL(S)

e UTILITY(S, p)



Minimax



Games of Luck

e Real-world problems are rarely deterministic
e Non-deterministic state evolution:
= Roll a die to determine next position
= Toss a coin to determine who picks candy first

= Precise trajectory of kicked football

s Others?

1. Anv definition of “football”



Solving Non-Deterministic Games
Previously: Max and Min alternate turns
Now:

e Max
e Chance
e Min

e Chance
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We Played Another Game

e Place 11 pieces of candy between you

e Alternating turns:
= Choose to take one or two pieces

o Fuxcept:
= After choosing, flip two coins, record fofa/ number of heads'
= [f total is divisible by 3, take one less piece than you chose
= [f total is divisible by 5, take one more piece than you chose
= [f total divisible by 15, take no candy

e Last person to take a piece wins all of the candy

1 Koaan a rminnina tatal thranioch tha cama



Expectiminimax

e “Expected value” of next position 8

e How does this impact branching factor of the search?
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Filled With Uncertainty

What is to be done?

e Pruning is still possible
= How?’
e Heuristic evaluation functions

= Choose carefully!



Non-Optimal Adversaries

e [s deterministic “best” behavior optimal?

e Are all adversaries rational?

e Expectimax



CSPs



Factored Representation

e Encode relationships between variables and states
e Solve problems with general search algorithms
» Heuristics do not require expert knowledge of problem

= Encoding problem requires expert knowledge of problem’

Why?

1. But it alwavs does.



Constraint Satisfaction

e Express problem in terms of state variables
= Constrain state variables

e Begin with all variables unassigned

e Progressively assign values to variables

e Assignment of values to state variables that “works:” solution



More Formally

o State variables: X1, Xo,..., X,
e State variable domains: Dy, Ds, ..., D,

» The domain specifies which values are permitted for the
state variable

= Domain: set of allowable variables (or permissible range for
continuous variables)’

= Some constraints C'1, Cs, . .., C,, restrict allowable values

1. Or a hvbrid. such as a union of ranees of continuous variables.



Constraint Types

e Unary: restrict single variable
= Can be rolled into domain
= Why even have them?

e Binary: restricts two variables

e (Global: restrict “all” variables



Constraint Examples

e X; and X5 both have real domains, i.e. X7, Xs € R
= A constraint could be X; < X

e X could have domain {red, green, blue} and X5 could have
domain {green, blue, orange}

= A constraint could be X7 # X5
¢ Xl,XQ,...,Xl()O c R
= Constraint: exactly four of X; equal 12

» Rewrite as binary constraint?



Assignments

e Assignments must be to values in each variable’s domain
e Assignment violates constraints?

= Consistency
e All variables assigned?

= Complete



Yugoslavia'

1. One of the most difficult nroblems of the 20th centurv



Four-Colorings

Two possibilities:







Graph Representations

e Constraint graph:
= Nodes are variables
= Edges are constraints
e Constraint hypergraph:
= Variables are nodes
= Constraints are nodes

» Edges show relationship

Why have two different representations?



Graph Representation I

Constraint graph: edges are constraints




Graph Representation 11

Constraint hypergraph: constraints are nodes




How To Solve It

e We can search!

= ...the space of consistent assignments
e Complexity O(d")

» Domain size d, number of nodes n
e Tree search for node assignment

» Inference to reduce domain size

e Recursive search



How To Solve It

Algorithm Backtracking Search

1: function BACKTRACKING-SEARCH(C'S P)
2. return Backtrack(C'SP, {})

3:
4: function Backtrack(C'S P, assignment)
5: if assignment is complete then
6: return assignment
7: var <— SELECT-UNassSIGNED-VARIABLE(C'S P, assignment)
8: for each value in OrRpDER-DoMAIN-VARIABLES(C'S P, var, assignment) do
o: if value is consistent with assignment then
10 assignment.App(var = value)
11: inferences < INrerence(C'S P, var, assignment)
12: if inferences # failure then
13: CSP.App(inferences)
14: result < Backtrack(C'S P, assignment)
15: if result #+ failure then
16: return result
17: C'S P.Remove(in ferences)

18: asstgnment.Remove(var = value)




What Even Is Inference

e Constraints on one variable restrict others:
» X; €{A,B,C,D}and X, € {A}
= X5 # Xo
= Inference: X7 € {B,C, D}

e If an unassigned variable has no domain...

» Failure



Inference

e Arc consistency

= Reduce domains for pairs of variables
e Path consistency

= Assignment to two variables

s Reduce domain of third variable



AC-3

Algorithm AC-3

. function AC-3(C'SP)
queue < all arcs in C'S P
while queue is not empty do
(X;, X;) < Por(queue)
if Revise(C'SP, X;, X ;) then
for each X in X; Neicusors —{ X} do
queue.App((X;, X))

return True
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. function Revise(C'S P, Xi,Xj)
revised < False
for each z in D, do
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13: if C(X; = z, X;) not satisfied for any value in D; then
14: D, .ReMovE(X)
15: revised < True

return revised

=
ISA




How To Solve It (Again)

Backtracking search:

e Similar to DFS
e Variables are ordered
s Why?
e Constraints checked each step

e Constraints optionally propagated



How To Solve It (Again)

Algorithm Backtracking Search

1: function BACKTRACKING-SEARCH(C'S P)
2. return Backtrack(C'SP, {})

3:
4: function Backtrack(C'S P, assignment)
5: if assignment is complete then
6: return assignment
7: var <— SELECT-UNassSIGNED-VARIABLE(C'S P, assignment)
8: for each value in OrRpDER-DoMAIN-VARIABLES(C'S P, var, assignment) do
o: if value is consistent with assignment then
10 assignment.App(var = value)
11: inferences < INrerence(C'S P, var, assignment)
12: if inferences # failure then
13: CSP.App(inferences)
14: result < Backtrack(C'S P, assignment)
15: if result #+ failure then
16: return result
17: C'S P.Remove(in ferences)

18: asstgnment.Remove(var = value)




Yugoslav Arc Consistency
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Ordering

e SELECT-UNASSGINED-VARIABLE(C'S P, assignment)
» Choose most-constrained variable!
e ORDER-DOMAIN-VARIABLES(C'S P, var, assignment)

= [east-constraining value

e Why?

1. or MRV: “Minimum Remaining Values”



Restructuring
Tree-structured CSPs:

o [Linear time solution
e Directional arc consistency: X; — X1
o Cutsets

e Sub-problems



Cutset Example
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(Heuristic) Local Search

e Hill climbing

= Random restarts
e Simulated annealing
e Fast’?
e Complete’

e Optimal?



Continuous Domains

e Linear:
max clax
xTr
st. Az <b
x>0
e Convex
min f(x)
xZr



Is This Even Relevant in 2025°

e Absolutely yes.

e LLMs are bad at CSPs

e CSPs are common in the real world
= Scheduling
= Optimization

= Dependency solvers



Logic



Yugoslav Logic

Rux = —Rgy
Gux = ~Ggr
Brx = —Bg;
Rrrx V Gk V Brk

Goal: find assignment of variables that satisfies conditions



Is It Possible To Know Things?

Yes.

((\



How Even Do We Know Things?

e What color is an apple?
= Red?
s Green’

= Blue’

e Are you sure?



Symbols

e Propositional symbols
= Similar to boolean variables

s Either True or False



The Unambiguous Truth

e IT IS A NICE DAY.

= It 1s difficult to discern an unambiguous truth value.

e IT IS WARM OUTSIDE.

= This has some truth value, but it is ambiguous.

e THE TEMPERATURE IS AT LEAST /8°F OUTSIDE.

= This has an unambiguous truth value.’

1. Provided that ‘outside’ is well-defined.



What Matters, Matters

o Non-ambiguity required
e Abitrary detail is not

e THE TEMPERATURE IS EXACTLY /7/8°F OUTSIDE.

= We don’t necessarily need any other “related” symbols
e What is the problem?

e What do we care about?



Sentences

e What is a linguistic sentence?
= Subject(s)
= Verb(s)
= Object(s)
» Relationships
e What is a logical sentence?
= Symbols
= Relationships



Familiar Logical Operators

¢ —
= “Not” operator, same as CS (!, not, etc.)
o N
= “And” operator, same as CS (&&, and, etc.)
s This is sometimes called a conjunction.
o \/
s “Inclusive Or” operator, same as CS.

» This is sometimes called a disjunction.



Unfamiliar Logical Operators

¢ =
s Logical implication.
o If Xog = X;, X; is always True when X 1s True.
n If X is False, the value of X is not constrained.
¢ —
= “Ifand only If.”

n If Xog < Xi, Xy and X; are either both True or both
False.

m Also called a biconditional.



Equivalent Statements

e Xy = X alternatively:
s (X9 AX7) V=X
e Xy < X, alternatively:
s (Xo AX)V (—Xg A —X7)

e Can we make an XOR?



Knowledge Base & Queries

e We encode everything that we ‘know’

= Statements that are true
e We query the knowledge base

= Statement that we’d like to know about
e [ogic:

m [s statement consistent with KB?



Models

e Mathematical abstraction of problem
= Allows us to solve it

e [ogic:
= Set of truth values for all sentences
= ...sentences comprised of symbols...
= Set of truth values for all symbols

= New sentences, symbols over time



Entailment
e KBE A

= “Knowledge Base entails A”

= For every model in which K B is True, A is also True

= One-way relationship: A can be True for models where K B
is not True.

e Vocabulary: A is the query



Knowing Things
Falsehood:
e KB=—-A

= No model exists where K B is True and A is True

It is possible to not know things:!

e KBF A
e KBV¥F —A

1. ¥ - “does not entail”



It Is Possible To Not Know Things

I have a plastic platter with eighteen hamburgers on it. I eat one
hamburger, rotate the platter upside down, rotate it back
rightside up, and offer one hamburger to Alan. How many
hamburgers are left on the platter?

Initially, you have 18 hamburgers on the platter. After you eat one, you have:

18 - 1 =17 hamburgers left.

Next, when you rotate the platter upside down and then back to the right side up, the

hamburgers stay on the platter. You then offer one hamburger to Alan. So now, you have:

17 -1 =16 hamburgers left on the platter.

Therefore, there are 16 hamburgers left on the platter.




L.exicon

o Valid

n AV -A
o Satisfiable

» True for some models
o Unsatisfiable

n AN-A



Inference
e K B models real world

= Truth values unambiguous
» K B coded correctly
e KB=A

= A is true in the real world




Inference - How?
e Model checking

» Enumerate possible models
= We can do better
= NP-complete <

e Theorem proving

m Prove KBE A




Satisfiability

e Commonly abbreviated “SAT”
= Not the Scholastic Assessment Test
s Much more difficult

» First NP-complete problem
e The

Delzberate typographical error!



Satisfiability

e Commonly abbreviated “SAT”

o (X9 AX7)V X,
» Satisfied by X¢g = True, X; = False, Xo = True
» Satisfied for any Xy and X; if X9 = True

e Xo N =Xy ANXy
= Cannot be satisfied by any values of Xy and X;



Satisfaction

e SAT reminiscent of Constraint Satisfaction Problems

e CSPsreduce to SAT
= Solving SAT — solving CSPs
s Restricted to specific operators

= CSP global constraints — refactor as binary

e Still NP-Complete



Why Do I Keep On Doing This To You

This s the entire point of the course.

Theory and practice are the same, in theory, but in practice they differ.



CSP Solution Methods

e They all work

e Backtracking search
e Hill-climbing

e Ordering (?)



SAT Solvers

e Heuristics

e PicoSAT
= Python bindings: pycosat
» (Solver written in C) (it’s fast)

e You don’t have to know anything about the problem
= This is not actually true

e Conjunctive Normal Form



Conjunctive Normal Form

e [Literals — symbols or negated symbols
= X i1s aliteral
s X 1s a literal

e Clauses — combine literals and disjunction using disjunctions
(V)
s X V —=X; is a valid disjunction

» (X V—X7)V Xsis avalid disjunction



Conjunctive Normal Form

o Conjunctions (/\) combine clauses (and literals)
s X5 A (X VX))
e Disjunctions cannot contain conjunctions:
e Xy V (X1 A X3)notin CNF
= Can be rewritten in CNF: (X, V X7) A (Xo V X3)



Converting to CNF

o Xy — X;
n (X) = X)) A (X1 = X))
e Xy = X3
n =Xy VX,
e =(Xg N X71)
n =Xy VX,
e =(XgV X7)
n =Xy A Xy



Limitations

e Consider: No CAT IS A VEGETARI

e Express in propositional symbols?

e = FIRST CAT IS A VEGETARIAN
¢ = SECOND CAT IS A VEGETARIAN

e = [HIRD CAT IS A VEGETARIAN ...



Solutions
First-Order Logic:

o V (“forall”)

e J (“there exists at least one”)

Loops < :

for cat in cats:
t = Expr(f"{cat} 1s not a vegetarian")
Exprs.push (t)

Goal: find assignment of variables that satisifies conditions
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