You Only Look Once

CSCI 4907 Guest Lecture

Joe Goldfrank

There Is No Way I Can Possibly Speenrun All Of Neural Networks In **One Hour**

Computational Graphs

- Representation of mathematical operations using *directed acyclic* graphs
 - Used by neural networks for computation

Activation Function

• Separate *data*, *weights*, and *structure*

Updating the Graph

$$\vec{w} = \vec{w} - LR \cdot \nabla L$$

Neuron Computation

• Can also represent as vectors

$$egin{aligned} &\sum x imes w = y \ &ig[x_1 \quad x_2ig] \cdot igg[w_1 \ w_2ig] = y \ &ec x \cdot ec w = y \end{aligned}$$

Linear Regression Computational Graph

Backpropagation

Linear Regression

Multiplication - Explicit

Why?

"Simplified"

Functions

$$egin{array}{ll} f(a,b) &= a \cdot b \ g(a,b) &= a \cdot b \ \hat{y}(a,b) &= a + b \end{array}$$

Shown: $f(w_1,x_1)$ $g(w_2,x_2)$ $\hat{y}(f,g)$

Derivatives

$$egin{array}{ll} f(a,b) &= a \cdot b \ g(a,b) &= a \cdot b \ \hat{y}(a,b) &= a + b \end{array}$$

$$\frac{\partial f}{\partial a} = b \frac{\partial f}{\partial b} = a$$
$$\frac{\partial g}{\partial a} = b \frac{\partial g}{\partial b} = a$$

$$\frac{\partial y}{\partial a} = 1 \ \frac{\partial y}{\partial b} = 1$$

$$egin{array}{ll} f(a,b) &= a \cdot b \ g(a,b) &= a \cdot b \ \hat{y}(a,b) &= a + b \end{array}$$

$$rac{\partial f}{\partial a} = b \; rac{\partial f}{\partial b} = a$$
 $rac{\partial g}{\partial a} = b \; rac{\partial g}{\partial b} = a$
 $rac{\partial \hat{y}}{\partial b} = a$

$$rac{\partial \hat{y}}{\partial a} = 1 \; rac{\partial \hat{y}}{\partial b} = 1$$

$$egin{array}{ll} f(a,b) &= a \cdot b \ g(a,b) &= a \cdot b \ \hat{y}(a,b) &= a + b \end{array}$$

$$rac{\partial f}{\partial a} = b \; rac{\partial f}{\partial b} = a$$
 $rac{\partial g}{\partial a} = b \; rac{\partial g}{\partial b} = a$

$$\frac{\partial y}{\partial a} = 1 \ \frac{\partial y}{\partial b} = 1$$

$$egin{array}{ll} f(a,b) &= a \cdot b \ g(a,b) &= a \cdot b \ \hat{y}(a,b) &= a + b \end{array}$$

$$rac{\partial f}{\partial a} = b \; rac{\partial f}{\partial b} = a$$
 $rac{\partial g}{\partial a} = b \; rac{\partial g}{\partial b} = a$

$$\frac{\partial y}{\partial a} = 1 \ \frac{\partial y}{\partial b} = 1$$

• We're interested in $\frac{\partial \hat{y}}{\partial w_i}$

- Update weights
- Train model
- Use chain rule:

$$f(x) = f(g(x))$$
 $rac{\partial f}{\partial x} = rac{\partial f}{\partial g} rac{\partial g}{\partial x}$

$$egin{array}{ll} f(a,b) &= a \cdot b \ g(a,b) &= a \cdot b \ \hat{y}(a,b) &= a + b \end{array}$$

$$rac{\partial f}{\partial a} = b \; rac{\partial f}{\partial b} = a$$
 $rac{\partial g}{\partial a} = b \; rac{\partial g}{\partial b} = a$

$$\frac{\partial y}{\partial a} = 1 \frac{\partial y}{\partial b} = 1$$

$$egin{array}{ll} f(a,b) &= a \cdot b \ g(a,b) &= a \cdot b \ \hat{y}(a,b) &= a + b \end{array}$$

$$rac{\partial f}{\partial a} = b \; rac{\partial f}{\partial b} = a$$
 $rac{\partial g}{\partial a} = b \; rac{\partial g}{\partial b} = a$

$$\frac{\partial y}{\partial a} = 1 \ \frac{\partial y}{\partial b} = 1$$

Is This Loss?

Loss Decomposed

$$egin{array}{l} h = y - \hat{y} \ L = h^2 \end{array}$$

$$rac{\partial f}{\partial a} = b \; rac{\partial f}{\partial b} = a$$

$$rac{\partial g}{\partial a} = b \; rac{\partial g}{\partial b} = a$$

$$rac{\partial \hat{y}}{\partial a} = 1 \; rac{\partial \hat{y}}{\partial b} = 1 \ rac{\partial L}{\partial \hat{y}} = -2(y-\hat{y})$$

Loss Decomposed

$$egin{array}{ll} rac{\partial h}{\partial \hat{y}} &= -1 \ rac{\partial L}{\partial h} &= 2 \cdot h \ rac{\partial f}{\partial a} &= b \; rac{\partial f}{\partial b} &= a \ rac{\partial g}{\partial a} &= b \; rac{\partial g}{\partial b} &= a \ rac{\partial \hat{y}}{\partial a} &= 1 \; rac{\partial \hat{y}}{\partial b} &= 1 \ \end{array}$$

$$egin{array}{ll} rac{\partial h}{\partial \hat{y}} &= -1 \ rac{\partial L}{\partial h} &= 2 \cdot h \ rac{\partial f}{\partial a} &= b \; rac{\partial f}{\partial b} &= a \ rac{\partial g}{\partial a} &= b \; rac{\partial g}{\partial b} &= a \ rac{\partial \hat{y}}{\partial a} &= 1 \; rac{\partial \hat{y}}{\partial b} &= 1 \end{array}$$

$$egin{array}{ll} rac{\partial h}{\partial \hat{y}} &= -1 \ rac{\partial L}{\partial h} &= 2 \cdot h \ rac{\partial f}{\partial a} &= b \; rac{\partial f}{\partial b} &= a \ rac{\partial g}{\partial a} &= b \; rac{\partial g}{\partial b} &= a \ rac{\partial \hat{y}}{\partial a} &= 1 \; rac{\partial \hat{y}}{\partial b} &= 1 \ \end{array}$$

$$egin{array}{ll} rac{\partial h}{\partial \hat{y}} &= -1 \ rac{\partial L}{\partial h} &= 2 \cdot h \ rac{\partial f}{\partial a} &= b \; rac{\partial f}{\partial b} &= a \ rac{\partial g}{\partial a} &= b \; rac{\partial g}{\partial b} &= a \ rac{\partial \hat{y}}{\partial a} &= 1 \; rac{\partial \hat{y}}{\partial b} &= 1 \ \end{array}$$

$$egin{array}{ll} rac{\partial h}{\partial \hat{y}} &= -1 \ rac{\partial L}{\partial h} &= 2 \cdot h \ rac{\partial f}{\partial a} &= b \; rac{\partial f}{\partial b} &= a \ rac{\partial g}{\partial a} &= b \; rac{\partial g}{\partial b} &= a \ rac{\partial \hat{y}}{\partial a} &= 1 \; rac{\partial \hat{y}}{\partial b} &= 1 \ \end{array}$$

$$egin{array}{ll} rac{\partial h}{\partial \hat{y}} &= -1 \ rac{\partial L}{\partial h} &= 2 \cdot h \ rac{\partial f}{\partial a} &= b \; rac{\partial f}{\partial b} &= a \ rac{\partial g}{\partial a} &= b \; rac{\partial g}{\partial b} &= a \ rac{\partial \hat{y}}{\partial a} &= 1 \; rac{\partial \hat{y}}{\partial b} &= 1 \end{array}$$

Nonlinearities

• Linear activation function does a poor job approximating non-linear relationships

Introducing the ReLU

Rectified Linear Unit

$$f(x) = egin{cases} x & x > 0 \ 0 & x \leq 0 \end{cases}$$

Derivative?

ReLU Derivative

$$egin{array}{ll} rac{\partial}{\partial x} egin{cases} x & x > 0 \ 0 & x \leq 0 \ \end{array} \ = egin{cases} 1 & x > 0 \ 0 & x \leq 0 \ 0 & x \leq 0 \ \end{array} \end{array}$$

Softmax

- Used for multi-class classification problems
- Weighted probability of data representing class j
 - Given total set of classes ${\cal K}$

$$p(y=j|x) = rac{e^{x\cdot w_j}}{\sum_K e^{x\cdot w_k}}$$

• Typically used in output layers

Something About Only Looking Once

How It Started

How It Started

How It's Going

vdef deep model(optimizer='adam', init='normal'): model = Sequential() model.add(Dense(120, input dim=60, kernel initializer=init)) model.add(BatchNormalization(momentum=0.5, epsilon=0.001)) model.add(Activation('relu')) model.add(Dense(60, kernel initializer=init)) model.add(BatchNormalization(momentum=0.5, epsilon=0.001)) model.add(Activation('relu')) model.add(Dense(60, kernel initializer=init)) model.add(BatchNormalization(momentum=0.5, epsilon=0.001)) model.add(Activation('relu')) model.add(Dense(60, kernel_initializer=init)) model.add(BatchNormalization(momentum=0.5, epsilon=0.001)) model.add(Activation('relu')) model.add(Dense(60, kernel initializer=init)) model.add(BatchNormalization(momentum=0.5, epsilon=0.001)) model.add(Activation('relu')) model.add(Dense(1, kernel_initializer=init, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model

Images as Tensors

- Images represented as N-dimensional arrays
 - Two dimensions correspond to X, Y
 - Additional dimensions correspond to color

$\boxed{120}$	0	255]
0	230	0
75	0	0

Edge Detection

Brick House

Stick House

Features

filter kernel

0	0	0	0	0
0	255	0	0	0
0	0	255	0	0
0	0	0	0	0
0	0	0	0	0

Kernel Activation

Are we there yet?

- 1. Edge Detection
- 2. Feature Detection
- 3. ????
- 4. Profit (ostensibly)

3. ????

- Where do these kernels come from?
- What features are we looking for?
- What is the classification task?

filter kernel

?	?	?
?	?	?
?	?	?

Convolutional Neural Network

More Filters

- One filter \rightarrow one transformation
 - Edge detection
 - Feature detection
- Apply many filters *in parallel*

More Filters

More Layers

Parameter Explosion

 $m \cdot m \cdot n \cdot k$ parameters! $(m \cdot m \cdot n + 1) \cdot k$ with bias

input

input

Max Pooling - Why?

- Translational invariance
 - Model robust to small displacements
- Reduces size of final feature map
- Increases how much of input later layers "see"

Flattening Time

- Prepares for fully-connected classifier output
- "Unpacks" to 1 imes n tensor¹

1. For standard classifier – not for YOLO

All Together

flatten

Fully-Connected

Different Architectures

Multiple Representations

Multiple Representations

Table 1: **ConvNet configurations** (shown in columns). The depth of the configurations increases from the left (A) to the right (E), as more layers are added (the added layers are shown in bold). The convolutional layer parameters are denoted as "conv \langle receptive field size \rangle - \langle number of channels \rangle ". The ReLU activation function is not shown for brevity.

ConvNet Configuration					
A	A-LRN	В	C	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
input (224×224 RGB image)					
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
maxpool					
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
maxpool					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
FC-4096					
FC-4096					
FC-1000					
soft-max					

(Karen Simonyan and Andrew Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, International Conference on Learning Representations, 2015)

Okay, But What Even Is YOLO

Real-Time Object Detection

Divide Image Into Grid Cells

Grid Cells

Each:

- Predict bounding boxes
 - x, y, w, h, confidence
- Predict probabilities
 - P(Class|Object)
 - (for all classes)

Output Tensor

- B bounding boxes
 - x, y, w, h per box
- + S imes S grid cells
- C classes

Dimension:

(B imes 5+C) imes S imes S

Output Tensor $(B \times 5 + C) \times S \times S$

Bounding Boxes

Bounding Boxes

Bounding Boxes

Probabilities

Probabilities

Probabilities

Combining

Non-Maximal Suppression

References

- *Deep Learning* by Ian Goodfellow and Yoshua Bengio and Aaron Courville
- *Deep Learning with Python (2nd edition)* by Francois Chollet
- The Little Book of Deep Learning by François Fleuret
- You Only Look Once: Unified, Real-Time Object Detection by Joseph Redmon et al.