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There Is No Way I
Can Possibly
Speenrun All Of
Neural Networks In
One Hour



Computational Graphs
• Representation of mathematical operations using

directed acyclic graphs
▪ Used by neural networks for computation

Nodes can be
variables or
functions



Activation Function
• Separate data, weights, and structure



Updating the Graph
=w −w LR ⋅ ∇L



Neuron Computation
• Can also represent as vectors

x ×∑ w = y

⋅[x1 x2] =[w1

w2
] y

⋅x =w y



Linear Regression Computational
Graph



Backpropagation



Linear Regression



Multiplication - Explicit

Why?



“Simpli�ed”



Functions

Shown:

f(a, b) = a ⋅ b

g(a, b) = a ⋅ b

(a, b) =ŷ a + b

f(w , x )1 1

g(w , x )2 2

(f , g)ŷ



Derivatives
f(a, b) = a ⋅ b

g(a, b) = a ⋅ b

(a, b) =ŷ a + b

=∂a
∂f b =∂b

∂f a

=∂a
∂g b =∂b

∂g a

=∂a
∂ŷ 1 =∂b

∂ŷ 1



Forward
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∂g a

=∂a
∂ŷ 1 =∂b

∂ŷ 1
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Backward!
• We’re interested in 
▪ Update weights
▪ Train model

• Use chain rule:

∂wi

∂ŷ

f(x) = f(g(x))

=
∂x

∂f

∂g

∂f

∂x

∂g



Backward
f(a, b) = a ⋅ b

g(a, b) = a ⋅ b

(a, b) =ŷ a + b
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∂ŷ 1



Backward
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Is This Loss?
=∂a

∂f b =∂b
∂f a

=∂a
∂g b =∂b

∂g a

=∂a
∂ŷ 1 =∂b

∂ŷ 1
=∂ŷ

∂L −2(y − )ŷ



Loss Decomposed
h = y − ŷ

L = h2

=∂a
∂f b =∂b

∂f a

=∂a
∂g b =∂b

∂g a

=∂a
∂ŷ 1 =∂b

∂ŷ 1
=∂ŷ

∂L −2(y − )ŷ



Loss Decomposed
=∂ŷ

∂h −1
=∂h

∂L 2 ⋅ h

=∂a
∂f b =∂b

∂f a

=∂a
∂g b =∂b

∂g a

=∂a
∂ŷ 1 =∂b

∂ŷ 1



Forward
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∂h −1
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∂ŷ 1
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∂ŷ 1 =∂b

∂ŷ 1



Nonlinearities
• Linear activation function does a poor job

approximating non-linear relationships



Introducing the ReLU
Recti�ed Linear Unit

Derivative?

f(x) = {x

0
x > 0
x ≤ 0



ReLU Derivative

😌

∂x

∂ {x

0
x > 0
x ≤ 0

= {1
0

x > 0
x ≤ 0



Softmax
• Used for multi-class classi�cation problems
• Weighted probability of data representing class 
▪ Given total set of classes 

• Typically used in output layers

j

K

p(y = j∣x) =
e∑K

x⋅wk

ex⋅wj



Something About
Only Looking Once



How It Started



How It Started



How It’s Going





Images as Tensors
• Images represented as N-dimensional arrays
▪ Two dimensions correspond to X, Y
▪ Additional dimensions correspond to color

⎣
⎡120

0
75

0
230
0

255
0
0 ⎦

⎤



Edge Detection



Brick House



Stick House



Features



Feature Detection



Feature Detection



Feature Detection



Feature Detection



Feature Detection



Feature Detection



Feature Detection



Feature Detection



Feature Detection



Feature Detection



Feature Detection



Feature Detection



Feature Detection



Feature Detection



Feature Detection



Kernel Activation



Stride



Stride



Stride



Stride



Are we there yet?
1. Edge Detection
2. Feature Detection
3. ????
4. Pro�t (ostensibly)



3. ????
• Where do these

kernels come from?
• What features are we

looking for?
• What is the

classi�cation task?



Convolutional Neural Network



More Filters
• One �lter  one transformation
▪ Edge detection
▪ Feature detection

• Apply many �lters in parallel

→



More Filters



More Layers



Parameter Explosion

 parameters!
 with bias

m ⋅ m ⋅ n ⋅ k

(m ⋅ m ⋅ n + 1) ⋅ k



Max Pooling



Max Pooling



Max Pooling



Max Pooling



Max Pooling - Why?
• Translational invariance
▪ Model robust to small displacements

• Reduces size of �nal feature map
• Increases how much of input later layers “see”



Flattening Time

• Prepares for fully-connected classi�er output
• “Unpacks” to  tensor11 × n

1. For standard classi�er – not for YOLO



All Together



Fully-Connected



Di�erent Architectures



Multiple Representations



Multiple Representations

(Karen Simonyan and Andrew Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, International Conference on Learning Representations, 2015)



Okay, But What Even
Is YOLO



Real-Time Object Detection



Divide Image Into Grid Cells



Grid Cells
Each:
• Predict bounding boxes
▪  con�dence

• Predict probabilities
▪ 

▪ (for all classes)

x, y, w, h,

P (Class∣Object)



Output Tensor
•  bounding boxes
▪  per box

•  grid cells
•  classes

Dimension:

B

x, y, w, h

S × S

C

(B × 5 + C) × S × S



Output Tensor
(B × 5 + C) × S × S



Bounding Boxes



Bounding Boxes



Bounding Boxes



Probabilities



Probabilities



Probabilities



Combining



Non-Maximal Suppression



YOLO 
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