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Abstract
Web services, large and small, use in-memory caches

like memcached to lower database loads and quickly re-
spond to user requests. These cache clusters are typi-
cally provisioned to support peak load, both in terms of
request processing capabilities and cache storage size.
This kind of worst-case provisioning can be very expen-
sive (e.g., Facebook reportedly uses more than 10,000
servers for its cache cluster) and does not take advantage
of the dynamic resource allocation and virtual machine
provisioning capabilities found in modern public and pri-
vate clouds. Further, there can be great diversity in both
the workloads running on a cache cluster and the types
of nodes that compose the cluster, making manual man-
agement difficult. This paper identifies the challenges
in designing large-scale self-managing caches. Rather
than requiring all cache clients to know the key to server
mapping, we propose an automated load balancer that
can perform line-rate request redirection in a far more
dynamic manner. We describe how stream analytic tech-
niques can be used to efficiently detect key hotspots. A
controller then guides the load balancer’s key mapping
and replication level to prevent overload, and automati-
cally starts additional servers when needed.

1 Introduction

In-memory caching has become a popular technique for
enabling highly scalable web applications. These caches
typically store frequently accessed or expensive to com-
pute query results to lower the load on database servers
that are typically difficult to scale up. Memcached has
become the standard caching server for a wide range of
applications.

Large web companies like Facebook and Twitter pro-
vision their caching infrastructure to support the peak
load and to hold a majority of data in cache [1]. Given the
dynamic nature of Internet workloads, this kind of static

provisioning is generally very expensive. For example,
the workload handled by the Facebook cache was shown
to have a peak workload about two times higher than the
minimum seen over a 24 hour period [2], and this may
be even more dramatic for websites with a less global
reach. Thus provisioning a cache infrastructure for peak
load can be highly wasteful in terms of hardware and en-
ergy costs.

At the same time, public-facing applications need to
be wary of flash crowds that direct a large workload to
a small portion of the application’s total content. In-
memory caches are crucial for handling this type of load,
but even they may become overloaded if popular data
is not efficiently replicated or the system is unable to
scale up the number of cache nodes in time. Further, one
caching cluster is often multiplexed for several differ-
ent applications, each of which may have distinct work-
load characteristics. The cache must be able to balance
the competing needs of these applications despite differ-
ences in get/set rates, data churn, and the cost of a cache
miss.

Heterogeneity can occur not only within keys and
workloads, but also among the servers that make up the
caching cluster. A wide range of key-value store archi-
tectures (many supporting the same memcached proto-
col) have been proposed, ranging from energy efficient
FPGA designs [3] to high-powered data stores capable
of saturating multiple 10 gigabit NICs [4, 5]. These ap-
proaches provide different trade-offs in the energy ef-
ficiency, throughput, latency, and data volatility of the
cache, suggesting that a heterogeneous deployment of
different server and cache types may offer the best over-
all performance.

While many resource management systems have been
proposed for web applications, the caching tier is of-
ten ignored, leaving it statically partitioned and sized for
worst case workloads. In part, this is because caches are
typically accessed by a distributed set of clients (usually
web servers), so dynamically adjusting the cache setup



requires coordination across a large number of nodes. To
get around this problem, we eschew the traditional ap-
proach where clients know precise key-server mappings,
and instead propose a middlebox-based load balancer ca-
pable of making dynamic adaptations within the caching
infrastructure. Having a centralized load balancer is
made possible by recent advances in high performance
network cards and multi-core processors that allow net-
work functions to be run on commodity servers [6–8].
Our system will be built upon the following components:

• A high speed memcached load balancer that can for-
ward millions of requests per second.

• A hot spot detection algorithm that uses stream
data mining techniques to efficiently determine the
hottest keys.

• A two-level key mapping system that combines
consistent hashing with a lookup table to flexibly
control the placement and replication level of hot
keys.

• An automated server management system that takes
inputs from the load balancers and overall appli-
cation performance levels to determine the number
and types of servers in the caching cluster.

In this paper we describe our preliminary work on de-
signing this dynamically scalable caching infrastructure.
Our architecture provides greater flexibility than exist-
ing approaches that place complexity and intelligence in
either the clients or memcached servers. By removing
the reliance on manual, administrator specified policies,
our self-managing cache cluster can automatically tune
key placement and server settings to provide high perfor-
mance at low cost.

2 Background

In this paper we focus on the memcached in-memory key
value store. Memcached provides a simple put/get/delete
interface and is primarily used to store small (e.g., <
1KB) data values [2]. Clients, such as a PHP web ap-
plication, generally follow the pattern of first requesting
data from a cache node, but querying a database and
loading the relevant entry into the cache if it was not
found.

A memcached client can directly connect to a mem-
cached server, or a proxy can be used to help manage
the mappings of keys to servers. Individual memcached
servers are designed so that they are unaware of each
other. Many distributed key-value stores employ consis-
tent hashing [9] to determine how keys are mapped to
different servers [1, 10, 11]. This provides both an even
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Figure 1: As workloads become more skewed (larger θ ), the
imbalance across nodes rises significantly relative to the load
under a uniform workload.

key distribution and simplifies the addition and removal
of servers into the key space.

To prevent a centralized proxy from becoming a bot-
tleneck, each client machine typically runs its own lo-
cal proxy instance that maintains the mapping of all key
ranges to servers [1, 11]. While this reduces latency, co-
ordinating their consistency can be a problem if there are
a very large number of clients. As a result, the key to
server mapping in these clusters is typically kept rela-
tively static, limiting the flexibility with which the cluster
can be managed.

2.1 Workload Heterogeneity

Workload characteristics can have a large impact on the
performance of a memcached cluster since requests of-
ten follow a heavy tailed, Zipfian distribution. Figure 1
shows how the amount of skew in a Zipfian request dis-
tribution affects the number of key requests that occur
on the most loaded server in a simulated cluster of 100
machines (normalized relative to the number of requests
under a uniform workload). As the workload becomes
more focused on a smaller number of keys, the imbal-
ance across servers can rise significantly, but if the hot
keys can be replicated to even a small number of servers,
the balance is significantly improved.

In addition to varied key popularity, analysis of the
Facebook memcached workload [1, 2] shows that differ-
ent applications can have different read/write rates, churn
rates, costs for cache misses, quality-of-service demands,
etc. To handle these heterogeneous workloads, Face-
book breaks their memcached cluster into groups, each
of which services a different application or set of appli-
cations [1]. However, from their descriptions it appears
that this partitioning is done in a manual fashion. This
leaves it susceptible to inefficient allocations under dy-
namic conditions and may not be feasible for companies
with less expertise in memcached cluster management.
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Figure 2: On our test system, a Gigabit NIC achieves higher
performance for small value sizes, but the network quickly be-
comes saturated.

2.2 Server Heterogeneity
The hardware and software that make up a cache clus-
ter can also be diverse. Not only are there several re-
search [4, 10, 12] and commercial [13, 14] key-value
store software solutions, many of them support the
standard memcached protocol (even recent versions of
MySQL). These alternatives are optimized for different
use cases: e.g., couchbase [13] supports key replication
for high availability and MICA [4] provides extremely
high throughput, but only supports small value sizes.
While many alternatives exist, memcached continues to
be the most popular in-memory cache.

Figure 2 illustrates the performance of memcached us-
ing either an Intel 82599EB ten gigabit NIC or a Broad-
com 5720 gigabit NIC on the same server with dual In-
tel Xeon X5650 CPUs. The ten gigabit NIC appears
to suffer from inefficient processing of small packets,
reducing its maximum throughput for very small sized
objects. However, the gigabit network card quickly
reaches its bandwidth limit when using larger value sizes.
Since many web applications store primarily small ob-
jects [2], the added energy and hardware cost of ten gi-
gabit adapters is not always necessary, suggesting that an
intelligently scheduled mixed deployment could provide
the best performance per dollar spent. Other hardware
options such as low-power Atom CPUs have also been
shown to provide valuable trade-offs when designing a
memcached cluster [15].

3 Memcached Load Balancer Design

This section describes our preliminary design for a scal-
able, in-network dynamic load balancer for memcached
clusters. Our overall architecture is shown in Figure 3.
The load balancer is composed of a Lossy Counter used
to detect key hot spots, a two level Key Director that
stores where a key should be routed, and Key and Server
managers that run the control algorithms to decide how
the system should respond to workload changes. We de-
scribe these components in the following subsections.

3.1 Middlebox Platform

Recent advances in network interface cards (NICs) and
user-level packet processing libraries [6, 7, 16] have
enabled high speed packet processing on commodity
servers. We are using these techniques to build an ef-
ficient load-balancing platform that can direct traffic to a
large number of back-end memcached servers. Further,
the load balancer’s placement within the network path
allows it to observe important statistics about the servers
and their workloads.

Our prior work has demonstrated that even when a
load balancer such as this is run inside a virtual machine,
it is possible to achieve full 10 Gbps line rates [8]. A
typical memcached request packet is approximately 96
bytes1, so the maximum rate that can be handled by a
single 10 Gbps NIC port is 13 million requests per sec-
ond. Our current prototype can handle approximately 10
million 64-byte requests per second when using a sin-
gle core to run a simplified version of the key redirection
system described below.

As shown in Figure 3, client requests are sent as UDP
packets to the IP of the load balancer, but replies are re-
turned directly from the memcached servers back to the
client. This significantly lowers the processing require-
ments of the load balancer since memcached responses
are often much larger (and thus more expensive to pro-
cess) than requests. The load balancer acts as a “bump in
the wire”, so it does not need to maintain any connection
state, unlike existing proxies such as Twemproxy which
establishes separate socket connections with each client
and each server [11].

3.2 Hot Spot Detection

The load balancer must determine how to efficiently for-
ward requests to memcached servers, while preventing
some of them from becoming overloaded. Currently, our
focus is on handling skewed workloads that cause a small
number of servers to become overloaded. To prevent this,
the load balancer must be able to detect which keys are
causing the greatest load imbalance.

Since memcached does not store much data per key
(e.g., true frequency over time) to limit overheads, we
cannot simply rely on the servers sending this info. We
propose a frequency counting mechanism to build a table
of hot items in the request stream. Once hot keys are de-
tected, requests for them can be either directed to more
powerful servers or to replicas spread across several ma-
chines. The Lossy Counting algorithm [17] is a one-pass

1 This is calculated based on 52 bytes for the MAC, IP, and UDP head-
ers, 8 bytes for memcached application level header, plus the median
memcached key size for Facebook’s ETC pool [2]
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Figure 3: Requests are intercepted by the load balancer and directed based on either the forwarding table (hot items) or consistent
hashing. Replies return directly back to the clients, minimizing the processing requirements of the load balancer.
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Figure 4: Number of (Steady-State) Hot Items with Different
Workloads−Here, s is 1%, and ε is 0.1%

deterministic algorithm that efficiently calculates fre-
quency counts over data streams by guaranteeing to iden-
tify hot items based on user-defined parameters−support
threshold s and error rate ε , where ε << s. When the
stream length is N, the lossy counting algorithm returns
all keys with frequency at least sN, and there are no false
negatives, which means no item with true frequency less
than (s− ε)N is returned.

Depending on the workload’s skew, the actual num-
ber of hot items can be very different as shown in Fig-
ure 4. Thus the number of hot items found by the counter
for a given s parameter depends both on the total num-
ber of keys being accessed in the cache and the work-
load distribution. Unfortunately, it is non-trivial to pre-
dict in advance what a workload will look like, and it
may change with time. As a result, we have modified the
Lossy Counting algorithm so that it will adjust itself to
store a specified number of hot keys; we then adapt the
target number of hot keys based on our observations of
the workload during the previous observation window.

Hot Key Analysis: Figure 5 shows the estimated fre-
quency (i.e., request rate) seen by the top keys mea-
sured by the Lossy Counter for a sample workload; the
frequencies are an estimate guaranteed to be at most
ε ∗N smaller than the true counts [17]. Clearly, not all

items reported by the counter should be treated identi-
cally since they have very different loads. The goal of
our hot key analysis phase is to determine which of these
potential keys need to be replicated or moved to faster
servers.

The Lossy Counter can be used to separate keys into
groups with similar request rates. Due to the nature of
long tail distributions common in web workloads, the
number of keys in the group with the highest average
frequency will be smaller than the number of keys in the
group with the second highest, and so on. This is shown
in Figure 5 by the increasing width of each step. We con-
sider the workload as a set of groups g1,g2, ...,gi, ...,gn
ordered such that g1 is the key group with the highest re-
quest frequency, f1. Our goal is to find the group gi that
splits the groups into two sets: g1...gi represents the hot
keys while gi+1...gn are the “regular” keys.

The intuition behind our approach is to select gi such
that |gi|, the number of keys in the group, is large enough
to be evenly distributed. Any subsequent g j where j > i
will have |g j|> |gi| since we expect a heavy tailed work-
load distribution, and thus can be load balanced with sim-
ple consistent hashing.

We can use the common Balls and Bins analysis to
understand how many keys (balls) are expected to be
placed on each server (bin), if keys are uniformly as-
signed to each server. For a given group, we consider
the request rate of all keys to be equivalent, so bound-
ing the number of keys from a group that can be as-
signed to the most loaded server in turn bounds the max-
imum request rate it can achieve. For the case where
there are fewer keys in a group than there are servers
(i.e., |g j| < #servers/log(#servers), which is common
for the hottest sets of keys) we can adapt the theorem
from Mitzenmacher [18] that bounds the number of balls
assigned to the most loaded bin with high probability
(p = 1−1/#servers):

MaxLoad ≤ f j×
log(#servers)

log(#servers/|g j|)
(1)

where f j is the maximum request frequency to keys in



 0

 5

 10

 15

 20

 25

 0  20  40  60  80  100  120

F
re

q
u

en
cy

 (
x

1
0

0
0

)

Item Number

Figure 5: Frequency of each key measured by a Lossy Counter
where s is 1%, ε is 0.1%.

g j. The Hot Spot Detector considers each group in or-
der starting with j = 1. If the maximum load exceeds
a threshold, then group g j+1 will be considered for the
split point. Once the split point gi is found, all groups
less than i are replicated as described in Section 3.3, and
the rest are forwarded using consistent hashing.

Adaptive Sized Lossy Counter: The above analysis
assumes that group gi is included in the groups of keys
returned by the Lossy Counter. However, if the counter
is not configured with the appropriate support parameter,
s, then the counter will track either too few groups (and
not enough keys will be replicated) or too many groups
(wasting memory and increasing the cost of lookups in
the counter). To prevent this, we adapt the size of the
Lossy Counter during each measurement interval to en-
sure it is tracking the correct number of keys.

The key request stream passes through the lossy count-
ing algorithm for a configurable time window. At the end
of the window, the algorithm compares the number of re-
turned keys with T , which is a target level of hot items.
We adapt T based on the request rates of the groups re-
turned by the counter; if the last group returned by the
counter will cause too much skew if it is not replicated,
then T must be increased since the optimal gi is not in-
cluded in the counter’s results.

Figure 6 illustrates the generic lossy counting algo-
rithm and our autonomic lossy counting algorithm to
show how we can adjust the desired level. Under the
same workload, the generic lossy counting algorithm
shows a steady amount of hot items, where as our auto-
nomic lossy counting algorithm tries to reach the target
level−here, the target level is defined as 200.

Lossy Counter Overhead: Since the Lossy Counter
runs within the packet processing path, minimizing its
overhead is critical. Our tests give an average total pro-
cessing time of 367 nanoseconds per key counted (269 ns
for lookup and 98 ns for insertion). Memcached request
latencies are typically in the hundreds of microseconds,
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so this processing will add negligible performance im-
pact. However, to achieve full line rate with a single core
on the load balancer, each packet must be examined and
redirected within about 80 nanoseconds. We are inves-
tigating how the counter operations can be done outside
the critical path by separate cores that only sample a por-
tion of the requests passing through the load balancer.
The memory size is also very small: only 48 bytes plus
8 bytes (key hash and frequency) + key size per key.

3.3 Request Redirection

Directing keys to servers should be as fast as possible.
Consistent Hashing is well known to effectively balance
load across servers while supporting fast lookups and the
flexibility to add or remove servers. We use consistent
hashing to direct most keys to their destination, but use
a lookup table to provide a more flexible mapping for
hot keys. Incoming requests are first queried against the
lookup table, and if not found there they are handled by
the consistent hash ring.

The Hot Spot Detector provides a set of key/frequency
pairs (k1, f1)...(ki, fi) where ki is the last key in gi. The
Key Redirector can then either replicate each key propor-
tionally to its request frequency, or select some keys to
be forwarded to servers that are known to be more pow-
erful or less loaded. Recently there have been several
efficient, concurrent hash table data structures proposed
which we are exploring to allow the load balancer to ef-
ficiently check whether an incoming request is for a hot
or regular key [19–21].

3.4 Server Management

The final component of our load balancer is the server
manager. This component aggregates information from
both the hot spot detector and from the memcached



servers themselves. This will allow the load balancer to
also respond to broader workload dynamics that require
servers to be added or removed from the memcached
cluster.

There has been a significant amount of related work on
how to dynamically manage virtual servers in response to
workload changes. For example, VMware’s Distributed
Resource Scheduler can dynamically adjust CPU and
memory allocations or migrate virtual machines. Yet
without insight into statistics such as the cache’s hit rate
and the overall application’s performance, these manage-
ment actions will not be effective. An important dis-
tinction when managing caching servers is that workload
skew can have a significant effect not only on request
rates (as described in the previous sections), but also on
the cache hit rate. Skewed workloads are actually easier
to cache, meaning that an intelligent controller may be
able to safely reduce the number of cache servers with
minimal impact on the cache’s hit rate [22]. Therefore,
we are investigating what new control mechanisms and
algorithms are necessary to provide a QoS management
system that controls a cache cluster based on its internal
behavior and the overall application’s needs.

4 Related Work

There has been a large amount of work on improving the
performance and scalability of individual memcached
servers. Some work proposes using new hardware such
as RDMA [23], high speed NICs [4], and FPGAs[24],
while others have improved memcache’s internal data
structures [1, 20, 21]. These approaches all focus on
maximizing the performance or energy efficiency of a
single cache node.

A large scale analysis of Facebook’s workload was
presented by Atikoglu et al., which illustrates the high
skew and time variation seen by what is probably the
largest memcached deployment [2]. Facebook has also
improved the efficiency of individual nodes and has de-
ployed a key replication system to help balance load and
increase the chance of finding multiple related keys in
one server lookup [1]. Their system relies on individ-
ual clients knowing the mapping of all keys to servers,
which we argue reduces the agility of the system com-
pared to an in-network load balancer like we propose.
They also appear to rely on manual classification of ap-
plication workloads into different pools.

Fan et al. propose using a fast, small cache in front
of a memcached cluster to prevent workload skew across
servers even under adversarial workloads [25]. Our load
balancer could potentially include a cache for fast lo-
cal lookups, although the scalability of such an approach
may be limited. This also increases the complexity of
maintaining consistency. Our approach of forwarding

some requests to high powered servers should provide
a similar load balancing effect. Replication of Mem-
cached keys was proposed by Hong et al [26]. Their sys-
tem requires modification to both the clients and servers
to maintain state about replicated keys, which we try to
avoid with our transparent middle-box approach.

5 Conclusions and Future Work

Large-scale web applications rely on in-memory caches
such as memcached to reduce the cost of processing
common user requests. However, memcached deploy-
ments are typically statically sized and provisioned for
peak workloads. We are developing a load balancing net-
work middlebox that can automatically detect hotspots
and balance load across memcached servers through re-
quest redirection and replication. Contrary to most re-
source management systems that require software to be
installed either on clients or on the servers being man-
aged, our in-network approach can be transparently de-
ployed without any changes to applications. We believe
that recent advances that allow such middleboxes to run
at high speed even in virtual machines will open up new
possibilities for a wide range of resource management
systems that can be flexibly reconfigured and deployed.

In our ongoing work, we are continuing to extend
our load balancer to optimize the number of servers and
replicas of hot keys. We are also exploring how this
kind of middle-box platform can be used to transparently
monitor and manage other types of data center applica-
tions.
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