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ABSTRACT
Virtualization promised to dramatically increase server utilization
levels, yet many data centers are still only lightly loaded. In some
ways, big data applications are an ideal fit for using this residual
capacity to perform meaningful work, but the high level of interfer-
ence between interactive and batch processing workloads currently
prevents this from being a practical solution in virtualized environ-
ments. Further, the variable nature of spare capacity may make it
difficult to meet big data application deadlines.

In this work we propose two schedulers: one in the virtualization
layer designed to minimize interference on high priority interactive
services, and one in the Hadoop framework that helps batch pro-
cessing jobs meet their own performance deadlines. Our approach
uses performance models to match Hadoop tasks to the servers that
will benefit them the most, and deadline-aware scheduling to ef-
fectively order incoming jobs. We use admission control to meet
deadlines even when resources are overloaded. The combination
of these schedulers allows data center administrators to safely mix
resource intensive Hadoop jobs with latency sensitive web applica-
tions, and still achieve predictable performance for both. We have
implemented our system using Xen and Hadoop, and our evalua-
tion shows that our schedulers allow a mixed cluster to reduce web
response times by more than ten fold compared to the existing Xen
Credit Scheduler, while meeting more Hadoop deadlines and low-
ering total task execution times by 6.5%.
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1. INTRODUCTION
Virtualization has facilitated the growth of infrastructure cloud

services by allowing a single server to be shared by multiple cus-
tomers. Dividing a server into multiple virtual machines (VMs)
provides both a convenient management abstraction and resource
boundaries between users. However, the performance isolation pro-
vided by virtualization software is not perfect, and interference be-
tween guest VMs remains a challenge. If the hypervisor does not
enforce proper priorities among guests, it is easy for one virtual
machine’s performance to suffer due to another guest.

This article is an extended version of [24], which appeared in CC-
Grid 2014
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Despite the danger of interference, resource sharing through vir-
tualization has been crucial for lowering the cost of cloud comput-
ing services. Multiplexing servers allows for higher average utiliza-
tion of each machine, giving more profit for a given level of hard-
ware expense. Yet the reality is that many data centers, even those
employing virtualization, are still unable to fully utilize each server.
This is due in part to fears that if a data center is kept fully utilized
there will be no spare capacity if workloads rise, and part due to
the risk of VM interference hurting performance even if servers are
left underloaded.

In this paper, we first study the causes of interference through
virtualization scheduler profiling. We observe that even when set to
the lowest possible priority, big data VMs (e.g., Hadoop jobs) inter-
rupt interactive VMs (e.g., web servers), increasing their time spent
in the runnable queue, which hurts response times. We control and
reduce VM CPU interference by introducing a new scheduling pri-
ority for “background” batch processing VMs, allowing them to
run only when other VMs are not actively utilizing the CPU.

Our changes in the VM scheduler improve the performance of
interactive VMs, but at the cost of unpredictable Hadoop perfor-
mance. To resolve this challenge, we implement a second sched-
uler within the Hadoop framework designed for hybrid clusters of
dedicated and shared VMs that only use residual resources. We
find that when given the same available resources, different tasks
will progress at different rates, motivating the need to intelligently
match each Hadoop task to the appropriate dedicated or shared
server. Our scheduler combines performance models that predict
task affinity with knowledge of job deadlines to allow Hadoop to
meet SLAs, despite variability in the amount of available resources.

Together, these schedulers form the Minimal Interference Max-
imal Productivity (MIMP) system, which enhances both the hy-
pervisor scheduler and the Hadoop job scheduler to better manage
their performance. Our primary contributions include:

• A new priority level built into Xen’s Credit Scheduler that
prevents batch processing VMs from hurting interactive VM
performance.

• Task affinity models that match each Hadoop task to the ded-
icated or shared VM that will provide it the most benefit.

• A deadline and progress aware Hadoop job scheduler that al-
locates resources to jobs in order to meet performance goals
and maximize the efficiency of a hybrid cluster.

• An admission control mechanism which ensures high prior-
ity jobs meet deadlines, even when a cluster is heavily over-
loaded.

We have implemented the proposed schedulers by modifying the
Xen hypervisor and Hadoop scheduler. Our evaluation shows that
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Figure 1: Colocated Hadoop jobs degrade web application perfor-
mance, despite using the Xen scheduler priority mechanisms.

MIMP can prevent nearly all interference on a web application,
doubling its maximum throughput and providing nearly identical
response times to when it is run alone. For a set of batch jobs,
the algorithm can meet more deadlines than EDF(Earliest Deadline
First), and reduces the total execution time by over four and a half
CPU hours, with minimal impact on interactive VM performance.

Our paper is structured as follows: Section 2 provides the mo-
tivation of our paper, and Section 3 provides the problem and sys-
tem overview for our work. In Section 4 and Section 5, we give a
description about interactive VM scheduling in Xen and progress-
aware deadline scheduling in Hadoop. Section 6 provides our eval-
uation using different benchmarks. We discuss related work in Sec-
tion 7, and conclude in Section 8.

2. MAP REDUCE IN VIRTUALIZED
CLUSTERS

Map Reduce is a popular framework for distributing data inten-
sive computation [6]. Hadoop is an open source implementation of
Map Reduce developed by Yahoo. Users write a program that di-
vides the work that must be performed into two main phases: Map
and Reduce. The Map phase processes each piece of input data and
generates some kind of intermediate value, which is in turn aggre-
gated by the Reduce phase.

In this paper we investigate how to run Map Reduce jobs in a hy-
brid cluster consisting of both dedicated and shared (also known
as volunteer) nodes. This problem was first tackled by Clay et
al., who described how to pick the appropriate number of shared
nodes in order to maximize performance and minimize overall en-
ergy costs [5]. Like their work, we focus on scheduling and mod-
eling the Map phase since this is generally the larger portion of the
program, and is less prone to performance problems due to slow
nodes. Our work extends their ideas both within the virtualization
layer to prevent interference, and at the Map Reduce job scheduling
level to ensure that multiple jobs can make the best use of a hybrid
cluster and effectively meet deadlines.

A key issue that has not yet been fully explored is how to prevent
batch processing jobs such as Map Reduce from interfering with
foreground workloads. Our results suggest that interference can
be quite severe if the important performance metric is interactive
latency as opposed to coarse grained timing measures (e.g., the time
to compile a linux kernel).

As a motivating experiment, we have measured the achieved
throughput and response time when running the TPC-W online
book store benchmark both alone and alongside a VM running
Hadoop jobs. Our results in Figure 1 show that the response time
of the web application can be dramatically increased when run with
a Pi or WordCount (WC) job. This happens even when the Xen
scheduler’s parameters are tuned to give Hadoop the lowest possi-
ble weight (i.e., the lowest priority). However, the throughput of
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Figure 2: TCT varies by job, and increases non linearly as the web
service consumes a larger quantity of CPU (out of 2 cores).

TPC-W remains similar, as does the amount of CPU that it con-
sumes. Further, we find that if Hadoop is given a separate CPU
from TPCW, there is no interference at all. This suggests that the
performance interference is due to poor CPU scheduling decisions,
not IO interference.

A second major challenge when running in shared environments
is that different Hadoop jobs are affected by limitations on available
resources in different ways. Figure 2 shows that as the amount of
resources consumed by a foreground interactive VM rises, the nor-
malized task completion time (relative to Hadoop running alone)
can increase significantly for some jobs. For example, Pi, a very
CPU intensive job, suffers more than Sort, which is IO intensive.
As a result, the best performance will be achieved by carefully
matching a Hadoop job to the servers that will allow it to make
the most efficient progress.

3. PROBLEM AND SYSTEM OVERVIEW
This section presents the formal problem MIMP targets, and then

gives an overview of the system.

3.1 Problem Statement
The scenario where we believe MIMP will provide the most ben-

efit is in a hybrid cluster containing a mix of dedicated nodes (vir-
tual or physical) and “volunteer” or “shared” nodes that use vir-
tualization to run both interactive applications and Hadoop tasks.
We assume that the interactive applications are higher priority than
the Hadoop tasks, which is generally the case since users are di-
rectly impacted by slowdown of interactive services, but may be
willing to wait for long running batch processes. While we focus
on web applications, the interactive applications could represent
any latency-sensitive service such as a streaming video server or re-
mote desktop application. Although we treat Hadoop jobs as lower
priority, we still take into account their performance by assuming
they arrive with a deadline by which time they must be complete.

As discussed previously, we focus on the Map phase of Map
Reduce, as this is generally more parallelizable and is less prone
to straggler performance problems (i.e., a single slow reduce task
can substantially hurt the total completion time). As in [5], we use
dedicated servers to run both the shared Hadoop file system and all
reduce tasks.

We assume that the interactive applications running in the high
priority VMs have relatively low disk workloads, meaning that shar-
ing the IO path with Hadoop tasks does not cause a resource bot-
tleneck. While this is not true for some disk intensive applications
such as databases, for others it can be acceptable, particularly due
to the increasing use of networked storage (e.g., Amazon’s Elastic
Block Store) rather than local disks.

Given this type of cluster, a key question is how best to allo-
cate the available capacity in order to maximize Hadoop job per-
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Figure 3: The MI CPU scheduler only runs Hadoop VMs when others are blocked, so VM-2 immediately preempts VM-3 once it becomes
ready. The MP Job Scheduler gathers resource availability information from all nodes and schedules jobs based on performance model
results.

formance (i.e., minimize the number of deadline misses and the to-
tal job completion times) while minimizing the interference on the
interactive services (i.e., minimizing the change in response time
compared to running the web VMs alone).

3.2 MIMP Overview
We have developed MIMP to tackle this pair of challenges. The

system is composed of two scheduling components, as illustrated
in Figure 3.

Minimal Interference CPU Scheduler: The MI CPU Sched-
uler tries to prevent lower priority virtual machines from taking
CPU time away from interactive VMs. We do this by modifying
the Xen CPU scheduler to define a new priority level that will al-
ways be preempted if an interactive VM becomes runnable.

Maximal Productivity Job Scheduler: Next we modify the
Hadoop Job scheduler to be aware of how available resources af-
fects task completion time. The MP Scheduling system is com-
posed of a training module that builds performance models, a mon-
itoring system that measures residual capacity throughout the data
center, and a scheduling algorithm. Our MP Scheduler combines
this information to decide which available resources to assign to
each incoming Hadoop Job to ensure it meets its deadline while
making the most productive use of all available capacity.

4. VM SCHEDULING IN XEN
This section diagnoses the performance issues in the Xen current

Credit scheduler when mixing latency sensitive and computation-
ally intensive virtual machines. We then describe how we have
enhanced the Xen scheduler to help minimize this interference.

4.1 Performance with Xen Credit Scheduler
Xen Credit scheduler is a non-preemptive weighted fair-share

scheduler. As a VM runs, its VCPUs are dynamically assigned one
of three priorities - over, under, or boost, ordered from lowest to
highest. Each physical CPU has a local run queue for runnable VC-
PUs, and VMs are selected by their priority class. Every 30ms, a
system-wide accounting thread updates the credits for each VCPU
according to its weight share and resorts the queue if needed. If
the credits for a VCPU are negative, Xen assigns “over” priority to
this VCPU since it has consumed more than its share. If the credits
are positive, it is assigned “under” priority. Every 10ms, Xen up-
dates the credits of the currently running VCPU based on its run-
ning time. In order to improve a virtual machine’s I/O performance,
if a VCPU is woken up (e.g., because an IO request completes) and
it has credits left, it will be given “boost” priority and immediately
scheduled. After the boosted VCPU consumes a non-negligible
amount of CPU resources, then Xen resets the priority to “under”.

As this is a weight-based scheduler, it primarily focuses on allo-
cating coarse grained shares of CPU to each virtual machine. The

TPC-W 600 clients Alone +WC (min weight)
Avg. Resp. Time 25 msec 175.5 msec

Avg. CPU Utilization 84.8% 91.1%
Running (sec) 605.9 656.4
Runnable (sec) 1.9 524.4
Blocked (sec) 1092.4 520.2

Table 1: Xen Credit Scheduler statistics when running a web appli-
cation alone or with a Word Count VM.

Boost mechanism is relied upon to improve performance of inter-
active applications, but as shown previously, it has limited effect.

Table 1 shows how much time was spent in each scheduler state
when a TPCW VM is run either alone or with a VM running the
Word Count Hadoop job that has been given the lowest possible
scheduler weight. As was shown in Figure 1, this significantly af-
fects TPCW performance, raising average response time by seven
times. We find that the Credit Scheduler weight system does do a
good job of ensuring that TPCW gets the overall CPU time that it
needs—the CPU utilization (out of 200% since it is a 2-core ma-
chine) and time spent in the Running state are similar whether TPC-
W is run alone or with word count. In fact, TPC-W actually gets
more CPU time when run with word count, although the perfor-
mance is substantially worse. While the overall CPU share is sim-
ilar, the timeliness with which TPC-W is given the CPU becomes
very poor when word count is also running. The time spent in the
Runnable state (i.e., TPC-W could be servicing requests) rises sub-
stantially, causing the delays that increase response time.

This happens because Credit uses coarse grain time accounting,
which means that 1) at times TPC-W may be woken up to handle
IO, but it is not able to interrupt Hadoop; and 2) at times Hadoop
may obtain boost priority and interrupt TPC-W if it is at the begin-
ning of an accounting interval and has not yet used up its quantum.

4.2 Minimal Interference CPU Scheduler
Our goal is to run processor or data intensive virtual machines in

the background, without affecting the more important interactive
services. Therefore, we have modified the Xen scheduler to define
a new extra low priority class. Virtual machines of this class are
always placed at the end of the Runnable queue, after any higher
priority VMs. We also adjust the Boost priority mechanism so that
“background” VMs can never be boosted, and so that if a regular
VM is woken up due to an I/O interrupt, it will always be able to
preempt a background VM, regardless of its current priority (i.e.,
under or over).

This scheduling algorithm minimizes the potential CPU interfer-
ence between interactive and Hadoop virtual machines, but it can
cause starvation for background VMs. To prevent this, we allow a
period, p, and execution time, e, to be specified. If over p seconds
the VM has not been in the Running state for e milliseconds, then
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its priority is raised from background to over. After it is scheduled
for the specified time slice, it reverts back to background mode.
We use this to ensure that Hadoop VMs do not become completely
inaccessible via SSH, and so they can continue to send heartbeat
messages to the Hadoop job scheduler. While this mechanism is
not necessary when running interactive VMs that typically leave
the CPU idle part of the time, it can be important if MIMP is run
either with CPU intensive foreground tasks, or with a very large
number of interactive VMs.

5. PROGRESS AWARE DEADLINE
SCHEDULING IN HADOOP

A Hadoop Job is broken down into multiple tasks, which each
perform processing on a small part of the total data set. When run
on dedicated servers, the total job completion time can be reliably
predicted based on the input data size and previously trained mod-
els [25, 17]. The challenge in MIMP is to understand how job
completion times will change when map tasks are run on servers
with variable amounts of spare capacity. Using this information,
MIMP then instructs the Hadoop Job Tracker on how to allocate
“slots” (i.e., available shared or dedicated workers) to each job.

Monitoring Cluster Resource Availability: MIMP monitors
resource usage information on each node to help guide task place-
ment and prevent overload. MIMP runs a monitoring agent on each
dedicated and shared node, and sends periodic resource measure-
ments to the centralized MP Job Scheduler component. MIMP
tracks the CPU utilization and disk read and write rates of each
virtual machine on each host. These resource measurements are
then passed on to the modeling and task scheduling components as
described in the following sections.

5.1 Modeling Background Hadoop Jobs
MIMP uses Task Completion Time models to predict the progress

rate of different job types on a shared node with a given level of re-
sources. As shown previously in Figure 2, each job needs its own
task completion time model. The model is trained by running map
tasks on shared nodes with different available CPU capacities. This
can either be done offline in advance, or the first set of tasks for a
new job can be distributed to different nodes for measurement, and
then a model can be generated and updated as tasks complete. Our
current implementation assumes that all jobs have been trained in
advance on nodes with a range of utilization levels. Once a job
has been trained for one data input size, it can generally be easily
scaled to accurately predict other data sizes [17].

Job Progress: The progress model for a job of type j is a func-
tion that predicts the task completion time on a shared node with
residual capacity r. From Figure 2 we see that this relationship is
highly non-linear, so we use a double exponential formula, exp2,
provided by MATLABs Non-linear Least Squares functionality :

TCT
j

(r) = a ⇤ eb⇤r + c ⇤ ed⇤r (1)

where a, b, c, and d are the coefficients of the regression model
trained for each job. The coefficients b and d represent the rate
at which TCT

j

(r) exponentially grows. In order to compare the
progress that will be made by a job on an available slot, we use the
normalized TCT:

NormTCT
j

(r) =
TCT

j

(r)
TCT

j

(r
dedicated

)
(2)

where the denominator represents the task completion time when
running on a dedicated node. This allows MIMP to compare the
relative speeds of different jobs.

Checking Deadlines: The task completion time model can then
be used to determine if a job will be able to meet its deadline given
its current slot allocation. MIMP tracks a resource vector, R, for
each active job. The entry R

i

represent the amount of resources
available on worker slot i that this job has been allocated for use:
100% for an available dedicated slot, 0% for a slot assigned to a
different job, or something in between for a shared slot allocated
to this job. If there is currently t

remaining

seconds until the job’s
deadline, then MIMP can check if it will meet its deadline using:

CompletableTasks(j, R) =
nX

slot i=1

t
remaining

TCT
j

(R
i

)
(3)

If CompletableTasks(R) is greater than n
tasks

, the number of
remaining tasks for the job, then it is on track to meet its deadline.

Map Phase Completion Time: We can also obtain a direct pre-
diction of the map phase completion time using:

CompletionT ime(j, R) = n
tasks

nX

slot i=1

TCT
j

(R
i

)
n

(4)

which estimates the total map phase completion time based on the
average TCT of each slot and the number of remaining tasks.

Data Node I/O: Hybrid clusters like the ones considered in MIMP
are particularly prone to disk I/O bottlenecks since there may be a
relatively small number of dedicated nodes acting as the data store.
If too many I/O intensive tasks are run simultaneously, task com-
pletion times may begin to rise [5]. To prevent this, we use a model
to predict the I/O load incurred by starting a new map task. During
MIMP model training phase, we measure the read request rate sent
to the data nodes by a dedicated worker. Since I/O accesses can
be erratic during map tasks, we use the 90th percentile of the mea-
sured read rates to represent the I/O required by a single worker,
per data node available. In order to calculate the read I/O load in-
curred by a new task on a shared worker, we use the normalized
TCT from Equation 2 as a scaling factor:

IO
j

(r) =
read90

th

j

NormTCT
j

(r)
(5)

to predict its I/O requirement. This can then be used to determine
whether running the task will cause the data nodes to become over-
loaded, as described in the following section.

5.2 Progress Aware Earliest Deadline First
We now present two standard Hadoop job schedulers, and then

discuss how we enhance these in MIMP so that it accounts for both
deadlines and the relative benefit of assigning a worker to each job.

FIFO Scheduler: The simplest approach to scheduling Hadoop
jobs is to service them in the order they arrive—all tasks for the first
job are run until it finishes, then all tasks of the second job, and so
on. Not surprisingly, this can lead to many missed deadlines since
it has no concept of more or less urgent tasks to perform.

EDF Scheduler: Earliest Deadline First (EDF) is a well known
scheduling algorithm that always picks the job with the earliest
deadline when a worker becomes available; that job will continue
to utilize all workers until it finishes or a new job arrives with a
smaller deadline. EDF is known to be optimal in terms of pre-
venting deadline misses as long as the system is preemptive and
the cluster is not over-utilized. In practice, Hadoop has somewhat
coarse grained preemption—each task runs to completion, but a
job can be preempted between tasks. It is also difficult to predict
whether a Hadoop cluster is over-utilized since tasks do not arrive
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on strict schedules as is typically assumed in Real Time Operating
Systems work. Despite this, we still expect EDF to perform well
when scheduling jobs since it will organize them to ensure they will
not miss deadlines.

MP Scheduler: Our Maximum Progress (MP) Scheduler uses
the models described in the previous section to enhance the EDF
scheduler. Whenever a worker slot becomes free, we determine
which job to assign to it based on the following criteria.

• First, MP examines each job in the queue to determine whether
it can meet its deadline with its currently allocated set of slots
using Equation 3. If one or more jobs are predicted to miss
their deadline, then MP allocates the slot to whichever of
those jobs has the closest deadline and returns.

• If all jobs are currently able to meet their deadlines, MP con-
siders each job in the queue and uses Equation 2 to calculate
its normalized task completion time if assigned the resources
of the free slot. It finds the job with the smallest normTCT
value, since that job is best matched for the available re-
sources.

• Before assigning the slot, MP calculates the IO cost of run-
ning the selected job using Equation 5. If starting a new task
of this type will cause any of the data nodes to become over-
loaded, then the job with the next highest normTCT is con-
sidered, and so on.

This algorithm ensures that the selected job is either currently
unable to meet its deadline, or the job that will make the most
progress with the slot, without causing the data nodes to become
overloaded.

5.3 Admission-Control
High number of incoming jobs can cause the cluster resources to

be overloaded. When cluster resources are over-utilized, naturally,
due to resource contention, we will have more jobs that will miss
their deadlines than usual. EDF scheduler does not have a mecha-
nism that can control resource overload, instead, it tries to schedule
as many jobs at it can fit in the incoming job queue. This aggres-
sive approach not only can make a new job miss the deadline but
can also cause other jobs in the queue to miss their deadlines as
well.

To prevent a cluster from becoming overloaded, we present Ad-
mission Control mechanism in MIMP scheduler. The Admission
Control maximizes the number of jobs that can meet their dead-
lines by accepting or rejecting a new incoming job to be executed
in the cluster based on whether or not it will overload the resources
of that cluster.

We assume that jobs with earlier deadlines always have the high-
est priority. This means that if a new job arrives with an earlier
deadline than some job already in the queue, it may be accepted
even though this could cause the job in the queue may now miss its
deadline. A job will only be accepted into the queue if MIMP pre-
dicts it can meet its deadline with the available resources.We design
the admission controller based on the following criteria:

• When a new job J
new

with deadline Deadline
new

is sub-
mitted, the controller finds the jobs J1, J2, . . . , J

N

in the job
processing queue that have an earlier deadline than J

new

.
For instance, if J1 and J2 are the only jobs that have an ear-
lier deadline than J

new

, then the controller will find the jobs
J1, J2, J

new

to be evaluated. Remember that we assume the
jobs J

new+1, J
new+2, ..., J

N

will meet their deadlines.

• In order to accept J
new

, MIMP must determine if doing so
will cause any higher priority job (i.e., one with an earlier
deadline) to miss its deadline. The Admission Controller
does this by estimating the processing time required by each
higher priority job. To make a conservative estimate, we cal-
culate each job’s estimated completion time assuming it runs
by itself on the cluster, using equation 6. In practice, MIMP
will be progress-aware, and will attempt to assign each job
to its most efficient slots, so it is likely that this will be an
overestimate; this makes the admission controller more con-
servative, reducing the likelihood of a missed deadline.

JCT (j, R) = n
task remaining

nX

slot i=1

TCT
j

(R
i

)
n2

(6)

• Once we estimate the processing time, the Admission Con-
troller accepts the new job if and only if all the jobs that has
their deadlines lesser than Deadline

new

can complete suc-
cessfully. The acceptance condition for a new job is shown
in equation 7. If this condition is not met, there is a high pro-
bibility that some jobs will miss their deadlines and we thus
reject J

new

.

Deadline
new

�
newX

job i=1

JCT
i

(7)

Figure 4 shows the decision making process of our MIMP sched-
uler with Admission Control. First, when a new job is submitted,
the admission controller, based on the above criteria predicts the
new jobs completion time and then makes a decision whether to
accept or reject the job. In the case where a job is accepted, the
newly accepted job would then be put into a job processing queue
where it waits to get scheduled. When the scheduler finds some
free task slots that free up, it allocates those free slots to the jobs in
the queue based on deadline-aware or progress-aware scheduling.
Finally, once the free slots are allocated to the jobs, they are run on
their assigned task trackers.

6. EVALUATION
In this section, we present the evaluation results to validate the

effectiveness of reducing interference using our Minimizing Inter-
ference Scheduler. We then evaluate the accuracy and prediction

66 Performance Evaluation Review, Vol. 42, No. 4, March 2015



error of the TCT models and show the performance improvement
as we progressively satturate the data nodes with I/O. We then show
how the admission controller improves the performance when the
cluster is overloaded. We also describe details of our testbed and
three different job scheduling alogorithms in the case study.

6.1 Setup - machines, benchmarks
For our tests we use Xen 4.2.1 with Linux 3.7, running on a

heterogeneous cluster of Dell servers with Intel E5-2420 and Xeon
X3450 CPUs with each having 16GB of RAM. The E5-2420 has
six physical cores at 1.90GHz with 64KB of L1 cache and 256KB
of L2 cache per core, and a shared 15MB L3 cache, and X3450 has
four physical cores at 2.67GHz with 128KB of L1 cache and 1MB
of L2 cache per core, and a shared 8MB L3 cache. The Hadoop
version is 1.0.4.

Our virtual cluster contains 13 physical servers with 7 servers
running 4VMs per server, two for web server with 1GB of RAM
and 2VCPUs each and another two for Hadoop with 4GB of RAM
with 2VCPUs each. Four servers run 6 dedicated Hadoop VMs
(each with their own disk). Two more servers run web clients.

The web server VM is always pinned to shared CPU cores and
Hadoop VMs are pinned to either two dedicated or shared CPU
cores depending on the server it runs. Xens Domain-0, which hosts
drivers used by all VMs, is given the servers remaining cores.

Benchmarks: We use interactive workloads and batch work-
loads as our workloads. For transactional workloads, we use two
applications: TPC-W, which models a three-tier online book store
and Micro Web App, a PHP/MySQL application that emulates a
multi-tier application and allows the user to adjust the rate and type
of requests to control of CPU computation and I/O activities per-
formed on the test system. For batch workloads, we choose the fol-
lowing Hadoop jobs. PiEstimator: estimates Pi value using 1 mil-
lion points; WordCount: computes frequencies of words in 15GB
data; Sort: sorts 18GB data; Grep: finds match of randomly chosen
regular expression on 6GB data; TeraSort: samples the 1GB input
data and sort the data into a total order; Kmeans: clusters 6GB of
numeric data. Both Kmeans and Grep are divided into two types of
jobs.

6.2 Minimizing Interference Scheduler
We start our evaluation by studying how our Minimal Interfer-

ence Scheduler is able to provide greater performance isolation
when mixing web and processor intensive tasks. We repeat a vari-
ation of our original motivating experiment, and adjust the number
of TPC-W clients when running either Pi or Word Count Hadoop
jobs on a shared server. As expected, Figure 5(a) shows that the re-
sponse time when using Xen’s default scheduler quickly becomes
unmanageable, only supporting about 500 clients before interfer-
ence causes the response time to rise over 100ms. In contrast, our
MI scheduler provides performance almost equivalent to running
TPC-W alone, allowing it to support twice the throughput before
response time starts to rise. A closer look at the response time CDF
in Figure 5(b) illustrates that MIMP incurs only a small overhead
when there are 700 clients.

6.3 Task Affinity Models
In this section, we illustrate the accuracy of our task completion

time models and how they guide slot allocation.

6.3.1 TCT models
Figure 6 shows the training data and model curves generated by

MIMP (green curve is obtained from our model). Each Hadoop
VM has one core that is shared with a Micro Web App VM. We run
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Figure 5: The MIMP scheduler provides response time almost
equivalent to running a web application alone.
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Figure 7: MIMP accurately predicts Map-phase completion time
(MCT) and appropriately allocates slots to meet deadlines.

a set of Hadoop jobs across our cluster using a randomly generated
web workload ranging from 10 to 100% CPU utilization for each
shared node. The x-axis represents the CPU utilization of the web
VM before each task is started; we normalize the measured task
completion time by the average TCT when running the same type
of task on a node with no web workload.

These figures show the wide range of TCTs that are possible
even for a fixed level of CPU availability. This variation occurs be-
cause the MI scheduler can give an unpredictable amount of CPU to
the low priority Hadoop VM depending on fluctuations in the web
workload.1 Thus, it is quite difficult to make accurate predictions,
although our models do still capture the overall trends.

When we apply these models to our case study workload de-
scribed in Section 6.6, we find that 57% of the time our models
over predict task completion time, and that the average over pre-
diction is by 35%. The average under prediction is 29%. This is
good since we would prefer our model to over predict task comple-
tion times, causing it to be more conservative, and thus less likely
to miss deadlines.
1The variation is not simply related to differences in data node I/O
levels, since even the PI job (which does not make any storage ac-
cesses) sees a particularly high variation in TCT.
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Figure 6: MIMP trains different models for each Hadoop job type.
Jobs NRMSE Jobs NRMSE
Pi 7.74% KmeansClass 8.61%
Sort 8.02% KmeansIterator 9.53%
Terasort 8.17% Grepsearch 8.26%
Wordcount 7.25% Grepsort 9.64%

Table 2: NRMSE

6.3.2 Total Map phase time prediction
The TCT models of MIMP are used to predict whether a job will

meet its deadline given its current slot allocation. Figure 7 shows
how the predictions change as slots are allocated and removed from
a job. We first start a Pi job at time 0 with a deadline of 700 seconds.
Within 10 seconds, Pi has been allocated all of the available slots,
so its predicted map phase completion time (MCT) quickly drops to
about 370 seconds. At time 80 sec, a Sort job is started, causing the
MIMP scheduler to divide the available slots between the two jobs.
It reduces from Pi, but only enough to ensure that Sort will finish
before its deadline. The predicted MCT of each job fluctuates as the
number of slots it is given varies, but it remains accurate throughout
the run.

6.3.3 Prediction Error
To evaluate the accuracy of the TCT models, we compare the er-

ror between the predicted task completion times and the actual task
completion times. The accuracy is measured by the normalized
root mean square error (NRMSE). We use the following formula 8
to calculate the RMSE. Figure 8 shows the RMSE for the different
Hadoop jobs. The solid bars represent the difference between the
fastest and slowest task completion time, while the error bars rep-
resent the RMSE; this shows that the error of our predictor is small
compared to the natural variation in completion times on different
servers.

RMSE =

rP
n

i=1(Xobs,i

�X
predict,i

)2

n
(8)

Where X
obs

is the observed values and X
predict

is the predicted
values at time/place i. We use the formula 9 to calculate the
NMRSE. Table 2 shows the NRMSE values for different Hadoop
jobs.

NRMSE = RMSE/(X
obs,max

�X
obs,min

) (9)

To illustrate how the prediction error affects the MIMP sched-
uler, we injected errors into the prediction. We run a trace of
Hadoop jobs (pi, terasort) in 4 shared nodes for 1 hour. Figure
9 shows that the total task completion time slightly fluctuates when
the insert error was within 10%. The inserted error does not influ-
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Figure 9: Impact of TCT error
ence the scheduler obviously since from Figure 8 we can clearly
see that our TCT model prediction error is around 10%. However,
when the error is increased from 15% to 20%, the total time com-
pletion time increases significantly from 12100 second to 13790
second.

6.4 Data Node I/O Saturation
Allocating more shared worker nodes to a Hadoop job will only

increase performance if the data nodes that serve that job are not
overloaded. To evaluate this behavior, we measure the map phase
completion time (MCT) when the number of available shared nodes
is increased from 0 to 10; there are also three dedicated nodes that
run map tasks and act as data nodes. Each shared node runs a web
server that leaves 164% of the CPU available for the Hadoop VM.

Figure 10 shows the impact of the data node IO bottleneck on the
Pi and Grep jobs. We normalize the map phase completion time by
the measured time without any shared nodes. Initially, both job
types perform similarly, but the Grep job soon sees diminishing
returns as the data nodes become saturated. In contrast, Pi is an
entirely CPU bound job, so it is able to scale optimally, i.e., ten
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Figure 11: Meet, Miss, Reject jobs vs Utilization
shared servers lowers the completion time by a factor of nearly ten.

6.5 Admission Control
To evaluate how our admission controller affects the performance

when the cluster is overloaded, we varied the level of cluster over-
load and then compare the number of jobs meeting deadlines, miss-
ing deadlines, or being rejected among MIMP with admission con-
trol(MIMP w/ac), MIMP without admission control and EDF sched-
uler. With different cluster utilization, we generate 30 minute traces
using pi and terasort jobs. Figure 11 shows that when the cluster
is slightly overloaded, the number of met deadlines is almost the
same for the MIMP w/AC, MIMP and EDF scheduler. However,
when the cluster is highly overloaded, most of the jobs will miss
deadline for EDF and MIMP. Since MIMP w/AC can detect the
overload and reject some jobs, it ensures that the other jobs in the
queue will meet their deadlines.

To show how our progress-aware MIMP scheduler affects TCT
with varied cluster utilization, in figure 12, we compare the average
TCT for MIMP w/AC and EDF scheduler while changing the clus-
ter utilization. We can see that if the cluster is lightly loaded, for
example when the utilization is 1, the average TCT of terasort task
with MIMP w/AC is less than the EDF scheduler. This is because,
while using MIMP w/AC all the jobs can meet their deadline, so
our progress-aware rule is used to select which jobs to run. For
the same utilization, the average TCT of Pi task in MIMP w/AC is
more than the one in EDF scheduler.

One reasonable explanation is that the TCT model for Pi is lower
than the TCT model for terasort. At the start of the experiment,
almost all slots in the scheduler are running Pi task. However,
in order to avoid the terasort job from missing its deadline, the
MIMP scheduler also chooses the terasort task to run. In addi-
tion, the Hadoop slot which has a low CPU utilization would have
shorter schedule time period than the one with high CPU utiliza-
tion. Therefore, terasort task has a greater chance to gain the slot
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with low CPU utilization than the Pi job. Furthermore, with the uti-
lization increasing, the behavior of MIMP scheduler will be more
similar with EDF scheduler. The deviation of TCT between the two
types of scheduler will decrease around zero.

Figure 13 and 14 shows CDFs of the TCT for terasort and pi
with the 0.8 utilization. One can see that when the utilization is
light, the MIMP scheduler tends to be progress-aware, and TCTs
of terasort and Pi in MIMP scheduler are shorter than the TCTs
in EDF scheduler. In this case, the progress-aware scheduler is
only providing a modest benefit since the experimental cluster only
has four slots, and only one of those slots provides a significant
boost when terasort jobs are scheduled there (as shown by the larger
number of jobs finishing within 10 seconds for terasort. We expect
that a larger cluster with a more diverse set of servers and jobs
would provide even greater benefit.

6.6 Case study
To evaluate our overall system, we perform a large scale exper-

iment where we run a trace of Hadoop jobs on a shared cluster
and evaluate the performance of three different job scheduling al-
gorithms. We use a total of 20 Hadoop VMs each with two cores:
6 dedicated hosts, 6 with a light web workload (20-35% CPU uti-
lization), 6 with a medium load (85-95%), and 2 that are highly
loaded (130-170%). We generate these workloads based on our
observations of the DIT(Division of Information Technology) and
Wikipedia data traces, although we use a higher overall utilization
level than was found in those traces since this puts more stress on
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Figure 15: Slot allocation for the first 10 minutes - MIMP vs. EDF

FIFO EDF MIMP
#Miss Deadline 67 2 1
Total TCT(h) 72.17 72.61 67.95
#Failed Jobs 17 0 0
#Failed Tasks 1080 1 0

Avg Lateness(s) 217.8 6.2 7.9

Table 3: Workload Performance Statistics

making intelligent scheduling decisions. The web workloads are
generated using httperf clients connected to our Micro Web App
benchmark.

We generate a random Hadoop trace composed of our six rep-
resentative job types. Jobs of each type arrive following a Poisson
distribution; the mean inter-arrival period is used as the deadline
for that type of job, with the exception of KMeans jobs which we
set to have no deadline. The job trace lasts 2.5 hours and contains
174 jobs in total.

Scheduler Comparison: Table 3 shows the performance statis-
tics of each job scheduler when processing this trace. Unsurpris-
ingly, FIFO performs very poorly, missing deadlines for 67 out of
174 jobs, with an additional 17 jobs failing to complete at all. The
EDF scheduler performs much better, but still misses two jobs, with
an average lateness of 6.2 seconds. The total task completion time
(i.e., the sum of all successful task execution times) is 72.61 hours
for EDF; FIFO is slightly lower only because it has failed tasks
which do not add to the total.

MIMP provides the best performance, missing only one job dead-
line by 7.9 seconds. Most importantly, it achieves this while using
4.66 hours less total execution time than EDF. This is possible be-
cause MIMP makes smarter decisions about which tasks to run on
which nodes, better matching them to the available resources.

Job Distribution: To understand why MIMP improves perfor-
mance, we now examine how each scheduler assigns workers to
jobs. Figure 15(b) shows the number of slots assigned to each job
during a 10 minute portion of the trace. This shows that EDF as-
signs all task slots to whatever job has the earliest deadline, even
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pi wordcount terasort sort grepCsearch
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Figure 16: Job Distribution on high vs. low load server

though some slots may be better suited for a different job type. In
contrast, MIMP tends to run multiple jobs at the same time, allo-
cating the best fitting slots to each one. While this can result in
longer job completion times, MIMP still ensures that all jobs will
meet their deadlines and improves overall efficiency due to resource
affinity.

Figure 16 breaks down the percent of tasks completed by the
highly loaded and lightly loaded servers when using MIMP. Since
each job has a different arrival period, some jobs (such as Pi) have
more total tasks than infrequent jobs (such as K-means). However,
the results still follow our expectations based on the models shown
in Figure 6. For example, Pi and grep-search have particularly high
normalized TCT when the web server utilization rises, so MIMP
runs relatively fewer of those tasks on the highly loaded servers.
In contrast, the completion time of sort does not change much, so
MIMP runs more of those tasks on the highly loaded servers.

7. RELATED WORK
Virtual Machine Scheduling: Several previous works propose

to improve the efficiency of Xen Credit CPU scheduler. For exam-
ple, [3] proposes a modification to the scheduler that asynchronously
assigns each virtual CPU to a physical CPU in order to reduce CPU
sleep time. Lin et al. [12] developed VSched that schedules batch
workloads within interactive VMs without compromising the us-
ability of interactive applications. The drawback of this system is
that it was not designed to run on a cluster. Xi et al., use techniques
from Real-Time scheduling to give stricter deadline guarantees to
each virtual machine [19].

Other work has looked at avoiding interference between these
tasks by careful VM placement [7, 21] or dedicating resources [10].
Paragon [7] proposes a heterogeneous and interference-aware data
center scheduler. The system prefers to assign the applications on
the heterogeneous hardware platform that the application can ben-
efit from and have less interference with the co-scheduled applica-
tions. MIMP extends our preliminary study [23] to reduce inter-
ference through minor changes to Xen scheduler and then uses the
residual resources for big data applications.

To improve I/O performance, Xu et al. [20] propose the use of
vTurbo cores that have a much smaller time-slice compared to nor-
mal cores, reducing the overall IRQ processing latency. Cheng et
al. [2] improves I/O performance for Symmetric MultiProcessing
VMs by dynamically migrating the interrupts from a preempted
VCPU to a running VCPU thereby avoiding interrupt processing
delays. Our current focus is on shared environments where disk
I/O is not the bottleneck for interactive applications, but view this
as important future work.

Hadoop Scheduling & Modeling: Job scheduling in MapRe-
duce environments has focused on topics like fairness [9, 22] and
dynamic cluster sharing among users [16]. HybridMR [17] consid-
ered running Hadoop across mixed clusters composed of dedicated
and virtual servers, but does not consider VM interference. Bu
et al. [1] propose a new Hadoop scheduler based on the existing
fair scheduler. They present an interference and locality-aware task
scheduler for MapReduce in virtual clusters and design a task per-
formance prediction model for an interference-aware policy. Mor-
ton et al. [14] provide a time-based progress indicator for a series
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of Map Reduce jobs, which can be used to predict job completion
times. Polo et al. provide a system to dynamically adjust the num-
ber of slots provided for Map Reduce jobs on each host to maximize
the resource utilization of a cluster and to meet the deadline of the
jobs [15]. [18] decides the appropriate number of slots allocated
to Map and Reduce based on the upper and lower bounds of batch
workload completion time obtained from the history of job profil-
ing. Our work is distinct from prior work in that we estimate the
job completion time of the batch jobs that are running in clusters
with unpredictable resource availability due to other foreground ap-
plications.

Previous works [5, 8, 11, 13] have shown heterogeneous cluster
designs wherein a core set of dedicated nodes running batch jobs
are complemented by residual resources from volunteer nodes, or
in some cases using “spot instances” from EC2 [4]. The closest
work to ours is by Clay et al [5]. They present a system that deter-
mines the appropriate cluster-size to harness the residual resources
of under utilized interactive nodes to meet user-specified deadlines
and minimize cost and energy. Our work extends this by focusing
on how groups of jobs should be scheduled across a shared cluster
in order to both minimize interference and meet job deadlines.

8. CONCLUSIONS
Virtualization allows servers to be partitioned, but resource mul-

tiplexing can still lead to high levels of performance interference.
This is especially true when mixing latency sensitive applications
with data analytic tasks such as Hadoop jobs. We have designed
MIMP, a Minimal Interference, Maximal Progress scheduling sys-
tem that manages both VM CPU scheduling and Hadoop job schedul-
ing to reduce interference and increase overall efficiency.

MIMP works by exposing more information to both the Hadoop
job scheduler and the Xen CPU scheduler. By giving these systems
information about the priority of different VMs and the resources
available on different servers, MIMP allows cluster utilization to be
safely increased. MIMP allows high priority web applications to
achieve twice the throughput compared to the default Xen sched-
uler, and has response times nearly identical to running the web
application alone. Despite the increased variability this causes in
Hadoop task completion times, MIMP is still able to meet more
deadlines than an Earliest Deadline First scheduler and lowers the
total execution time by nearly five hours in one of our experiments.
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