
IOrchestra: Supporting High-Performance Data-Intensive
Applications in the Cloud via Collaborative Virtualization

Ron C. Chiang
University of St. Thomas

cchiang@stthomas.edu

H. Howie Huang, Timothy Wood
George Washington University

{howie,timwood}@gwu.edu

Changbin Liu, Oliver Spatscheck
AT&T Labs, Inc.

{changbl,spatsch}@research.att.com

Abstract
Multi-tier data-intensive applications are widely deployed
in virtualized data centers for high scalability and reliabil-
ity. As the response time is vital for user satisfaction, this
requires achieving good performance at each tier of the ap-
plications in order to minimize the overall latency. However,
in such virtualized environments, each tier (e.g., application,
database, web) is likely to be hosted by different virtual ma-
chines (VMs) on multiple physical servers, where a guest VM
is unaware of changes outside its domain, and the hypervi-
sor also does not know the configuration and runtime status
of a guest VM. As a result, isolated virtualization domains
lend themselves to performance unpredictability and vari-
ance. In this paper, we propose IOrchestra, a holistic collab-
orative virtualization framework, which bridges the semantic
gaps of I/O stacks and system information across multiple
VMs, improves virtual I/O performance through collabora-
tion from guest domains, and increases resource utilization
in data centers. We present several case studies to demon-
strate that IOrchestra is able to address numerous draw-
backs of the current practice and improve the I/O latency
of various distributed cloud applications by up to 31%.

1. INTRODUCTION
Servicing requests quickly is critical for enhancing user ex-
perience of cloud applications. For example, the instant
predictions of the Google search system require very short
response times (within a few tens of milliseconds) to seam-
lessly update query results as a user types [14]. The latency
of cloud service could incur nontrivial loss in business, e.g.,
Amazon.com would lose sales by 1% for every 100 ms delay
in page load time and a similar test at Google also revealed
that a 500 ms increase in displaying the search results could
reduce revenue by 20% [28]. More importantly, for such
cloud applications, improving the average latency is insuf-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SC ’15, November 15-20, 2015, Austin, TX, USA
Copyright 2015 ACM 978-1-4503-3723-6/15/11 ...$15.00
DOI: http://dx.doi.org/10.1145/2807591.2807633

ficient because it is the maximum latency that dictates the
response time. In other words, the tail of the latency dis-
tribution, instead of the mean or median, determines the
quality of service for cloud applications [25,42].

The problem of long-tail latency is not new and has been dis-
cussed extensively in networked systems [2,35,40]. However,
the widespread use of virtualization in cloud services poses
a new set of challenges. Cloud applications often rely on a
large number of different systems, e.g., a page request on
Amazon typically involves hundreds of services with many
inter-dependencies [15]. The problem is further exacerbated
as the scale and complexity of cloud systems continue to
increase. The I/O performance in virtualized systems has
been identified as one of the culprits [12, 33], which is also
the focus of this work. Because a cloud application that re-
sides in a virtual machine (VM) does not have control over
the host operating systems and physical devices, it can ex-
perience wide fluctuations in I/O performance even when
the resource allocations are unchanged. In other words, a
guest VM is normally unaware of changes outside its do-
main, and the VM monitor (VMM) or hypervisor also does
not know the configuration and runtime status inside a guest
VM, which in this paper we refer to as the semantic gap be-
tween VMs and the hypervisor. The causes of the gap are
from both sides - the hypervisor treats VMs as black boxes
and vice versa for the VMs.

Traditional computer systems are usually tuned for specific
applications when working with a set of devices, as shown
in Fig. 1(a). A harmonious status is achieved when the sys-
tem is configured to suit the current context including appli-
cation, hardware, background activities, etc. On the other
hand, as the virtualization technique abstracts hardware de-
vices, many assumptions no longer hold. Fig. 1(b) demon-
strates the block I/O flow from applications in a guest VM
to physical devices on a paravirtualized host machine. An
I/O request starts its journey from the user space of a guest
VM. Then, it travels through the complete I/O stack in the
kernel space of the VM, and arrives at the frontend driver
of the hypervisor. Paravirtualization utilizes shared mem-
ory space and event channels to connect frontend drivers
to backend drivers, which will deliver I/O requests to the
generic block layer in the host OS. Finally, the I/O request
arrives at physical devices through the block device driver.
Clearly, system tuning becomes more complex in such vir-
tualized environments.

Fortunately, we have observed that virtualized systems can

Storage devices

File system:
VFS, file system (EXT4, GFS2, …),
page cache, etc.

Block I/O layer:
merging, queuing, scheduling
(CFQ, NOOP, …), etc.

Device drivers

Globally
optimized
system

Web
server

Database
Applications

(a) Physical machines

Applications

Optimized
VM

Applications

Optimized
VM

Applications

Backend block driver

Block I/O layer

Device drivers

HDD
Shared devices

Optimized
VM

Optimized host

Virtualization

Collaborative
Virtualization

SSD

File system

Block I/O layer

Frontend block driver

(b) Virtualized systems

Figure 1: (a) Physical machines where the systems are tuned for specific applications and I/O devices (b) Virtual machines
where I/O performance tuning is challenging

deliver high performance if they are well-informed and prop-
erly configured. In this work, we design a new virtualization
architecture, IOrchestra, to bridge the semantic gaps of sys-
tem information across the domains, and coordinate them
to improve the virtual I/O performance. While many prior
works focus on modifying specific virtualization modules or
reducing the overheads of virtualization [1, 17, 21, 26, 29, 31,
37], IOrchestra creates a communication channel for system
management and keeps the original OS and virtualization
design intact. That is, IOrchestra aims to facilitate auto-
matic collaboration between VMs and the hypervisor. We
have implemented a prototype in Linux and Xen [6]. The
major features of IOrchestra are summarized as follows:

• An automatic collaboration framework, which makes
key performance statistics readily available and makes
use of cross-VM knowledge to determine the best sys-
tem setting. A self-tuning system is desired because
manually tuning all VMs is not feasible in the produc-
tion environment.

• Flexibility. IOrchestra is designed for inter-domain
communication and control. That is, it can be easily
applied to other issues that require cross-domain col-
laboration. In this paper, we use several design cases
to validate the usability and performance of IOrches-
tra.

• Scalability. IOrchestra is scalable because it has no
centralized control. The VMs will work together to
achieve high I/O performance.

It is easy to adopt IOrchestra - the cost is comparable to par-
avirtualization as it only modifies the hypervisor and drivers,
that is, the changes to the guest OS is minimal. In virtual-
ized data centers, IOrchestra can provide valuable benefit of

coordinating many critical OS functions across the host OS
and the guest OSes.

The rest of the paper is organized as follows: The next sec-
tion gives the background and motivation. Sec. 3 presents
the architecture of IOrchestra as well as its versatile func-
tions. Sec. 4 describes the implementation of IOrchestra in
Linux and Xen. The experiment setups and results are pre-
sented in Sec. 5. We discuss related works in Sec. 6 and
conclude in Sec. 7.

2. BACKGROUND AND MOTIVATION
A number of studies have shown that various settings of I/O
stack can lead to significant improvement in performance
and resource utilization [7, 30, 43]. Table 1 lists a number
of configurable I/O components and tuning methods1. One
can see that some components are only adjustable in one do-
main, e.g., hardware-related settings, and others may exist
in both the guest and host domains. In the latter case, it is
likely that they work independently and can not be automat-
ically tuned in event of new changes in the other domain.
In this work, instead of controlling hardware and applica-
tion specific settings, we focus on collaborative optimization
between the guest and host domains.

Here we will use a simple test to illustrate the impact on I/O
latency from the congestion control mechanism in Linux. In
this test we run two VMs and each VM has four VCPUs and
four GBs memory. Both VMs are using eight threads con-
currently to read eight 1 GB files. Linux has a congestion
avoidance scheme to reduce the performance impact caused

1Actual settings and practice might be different depending
virtualization type (full, para, or hardware-assisted virtual-
ization), deployment policy, etc.

Table 1: Virtual I/O System Parameters

Layer
Configuration
or Function

Controlled
by

Preferred
Tuning Method

Application
Database schema

Guest By app users
File format

File System
Flush dirty pages Guest &

Host
Via

collaborationRead ahead

Block I/O
Congestion control Guest &

Host
Via

collaborationScheduling

Hardware
RAID settings

Host
By host

administratorsParity check

by a congested request queue. When using the default set-
tings in the driver domain and VMs, the congestion avoid-
ance scheme is activated in both guest VMs, which leads
to the average measured latency of 220 ms. It turns out
that the workloads from both VMs did not saturate the I/O
bandwidth of the storage device, but the VMs were unaware
that more I/O requests could be supported. If the default
Linux congestion avoidance were disabled, the average mea-
sured latency would become 160 ms, a 37% improvement.
In other words, falsely triggered congestion avoidance could
introduce negative impacts on virtual I/O performance. It
is important to note that this semantic gap problem also ex-
ists in many other system components, e.g., network, CPU,
and memory.

In all, the semantic gap is a by-product of isolation pro-
vided by the virtualization architecture. Though isolation is
a property that can not be compromised, it has prevented
potentially useful communication across different domains.
IOrchestra aims to achieve collaborative virtualization with-
out compromising the isolation. The evaluation results of
IOrchestra also show performance improvement when the
guest OSes are integrated with IOrchestra’s driver code.

3. ARCHITECTURE
IOrchestra allows different domains on the host to collab-
orate with each other through four major components as
shown in Fig. 2:

• A shared system store for information exchange;

• An interface between the system store and all the VMs;

• A monitoring module in the hypervisor for collecting
system status;

• A management module also in the hypervisor for up-
dating the parameters.

In IOrchestra, each physical machine runs an IOrchestra-
enabled hypervisor independently. We utilize a shared key-
value store (KVS) in the hypervisor for exchanging infor-
mation across the domains. Each guest domain stores their
configuration data in KVS. All VMs have access to the store,
but not all data fields. For security and privacy, each VM
can only access its own data via certain system functions.
Only the hypervisor has the access to the data of all VMs.
IOrchestra also includes the monitoring and the manage-
ment modules to facilitate the collective system optimiza-
tion. The monitoring module collects and processes system
statistics, such as latency, throughput, performance counters
and access patterns. Through analyzing collected data, the

VM
VM

VM

Hypervisor
Management module

Monitoring

module

(c) System status

(a) Update the system store

(b) Notify the management

module of changes
(a) Update the system store

(d) Update domains

System store

System store driver

Guest OS

Figure 2: IOrchestra system architecture. Common actions
are (a) The domains or the management module makes
changes to the system store; (b) The system store notifies
the management module about the updates; (c) The moni-
toring module periodically reports the system status for de-
cision making; (d) The system store notifies the domains
about newly updated configurations. The gray parts repre-
sent the IOrchestra modules. Various shapes inside the VM
and the store are used to illustrate different system modules
or parameters.

hypervisor can obtain the information of all VMs. The man-
agement module then utilizes this information and KVS val-
ues to calculate new configurations for guest domains. The
hypervisor stores these configurations in the KVS, which in
turn notifies the guest domains to retrieve these updated
values and adjust the corresponding settings.

The design of IOrchestra uses the publish-subscribe model.
That is, additional modules and functions can be easily in-
cluded. Also, IOrchestra has low overheads in runtime be-
cause it only reacts to certain system events. By utilizing the
observed behaviors and insights from our studies, IOrches-
tra makes decisions promptly with less than a hundred lines
of code in each function.

While IOrchestra enables more control within domains, it is
still as secure as paravirtualization in the sense that both of
them use customized interfaces for improving manageability
and performance. The access control to the system store is
enforced by the hypervisor. That is, all attempts to access
the system store require appropriate permissions. IOrches-
tra can be configured to identify malicious VMs by enabling
anomaly detection in the management module. Although
the features of current prototype do not result in any con-
flict, the management module can also be used to resolve
potential configuration conflicts when extending IOrchestra
to more functions.

In the following, we present three I/O functions and show
how IOrchestra helps critical I/O components to close the
semantic gap and achieve high-performance I/O.

3.1 Flushing Dirty Pages
In order to reduce the latency of write requests, operat-
ing systems tend to keep modified data in memory. These
buffered data, known as dirty pages, will be written to disks
when the system runs out of memory, the dirty pages have
existed for too long, or there are too many dirty pages.
There could be multiple flushing threads responsible for dif-
ferent device queues to avoid the write-back process from
being blocked at a single device. The idea of multi-threaded

flushing is to improve the overall throughput by keeping high
utilization across multiple disks.

In virtualized environments, the virtual disks in a VM could
still be files or partitions on the same disk. As a result, the
original idea of avoiding bursty and congested traffic on one
device becomes meaningless. Moreover, multiple VMs could
simultaneously flush many dirty pages onto the same disk
because they are not aware of the real loading on the physical
I/O subsystem. Consequently, bursty write requests may
saturate the I/O subsystems and cause traffic congestions
on all VMs, which represents a control gap in the flushing
mechanism in virtualized environments.

To address this problem, IOrchestra designs a cross-domain
flush control technique. The idea is to spread out the flush-
ing activities in the VMs to reduce the possibility of over-
loading the system. The management module actively flushes
VMs’ dirty pages when the underlying storage device is idle.
To reduce the system overhead, only VMs with dirty pages
will be scheduled to write back. In the prototype, a boolean
variable has dirty pages for indicating the existence of dirty
pages is maintained in the system store for each virtual disk.
Linux uses a bdi writeback structure for tracking dirty pages.
On an IOrchestra-enabled platform, a guest OS sets a vari-
able has dirty pages=1 in the system store if there exists
dirty pages, that is, the parameter nr is greater than zero in
the bdi writeback of its virtual disk. The monitoring mod-
ule collects physical disk status using blktrace and reports
it to the management module. When the bandwidth usage
of a block device is lower than one tenth of its capacity,
the management module sets a variable flush now=1 of the
guest domain with the most dirty pages in the system store.
The affected guest VM will be notified about this change.
Then, the guest OS will trigger the sync system call, which
will invoke wakeup flusher threads to flush dirty pages, and
set flush now=0. Algorithm 1 shows the pseudocode of the
control algorithm.

Algorithm 1: Policy for flushing dirty pages

Data:
nri: number of dirty pages of VMi;
flush nowi: to notify VMi to flush dirty pages;

//VMi set dirty pages
if the number of dirty pages is changed to zero then

has dirty pagesi = 0;
else

has dirty pagesi = 1;
end

//Management module notifies a guest to flush
if has dirty pagesi = 1, ∀i and the device has low utilization then

i = arg max
i

nri

//notify VMi to flush dirty pages
flush nowi = 1;

end

//VMi is notified to check flush status
if flush nowi = 1 then

sync();
end

3.2 Congestion Control
If the number of pending read/write requests in the OS
reaches a pre-defined limit, the processes that try to sub-
mit read/write requests will be placed in a waiting queue

and forced to sleep until the job scheduler wakes them up.
Putting processes to sleep subverts the performance because
of the excessive sleep time and extra operations for context
switching [9]. In order to reduce the performance impact
caused by a congested request queue, a congestion avoid-
ance scheme is implemented in Linux. The basic idea is to
slow down the rate of generating new requests before the
queue is full and processes are forced to sleep. Linux uses
fixed ratios to turn on/off the congestion avoidance scheme.
When the number of pending requests is larger than 7/8 of
the queue limit, Linux kernel slows down the generating rate
of new requests. When the number of pending requests is
smaller than 13/16 of the queue limit, Linux kernel turns off
the congestion avoidance process. Similarly, the semantic
gap in virtualized systems prevents VMs to achieve a good
congestion control on the whole system level.

IOrchestra designs a collaborating congestion control tech-
nique shown in Algorithm 2.

Algorithm 2: Policy for congestion control

Data:
congestedj

i : 1 when device devj of VMi is congested, and 0
otherwise;

release requestji : to notify VMi to flush requests to devj ;

//VMi requests congestion status on devj
if congestion avoidance function is called on devj of VMi then

if Host device is overcrowded then

congestedj
i = 1;

else

congestedj
i = 0;

release requestji = 1;

end

end

//when release_requestji is set

if congestedj
i = 1 then

notify VMi to flush devj ’s request queue;

congestedj
i = 0;

release requestji = 0;

end

//When a host device is relived
if ∃ congestedj

i = 1 on this host device then
notify VMi to flush devj ’s request queue;

congestedj
i = 0;

release requestji = 0;

end

We first create two new boolean entries: congested for each
device request queue, and release request for each VM in the
system store. When a guest VM wants to enable the con-
gestion avoidance scheme, it will set congested as one in the
corresponding device. The management module is then no-
tified with this change and checks if the host I/O subsystem
is congested. If the I/O subsystem is really congested, the
entry congested will be set. Otherwise, the hypervisor will
instead set release request as one. In this case, the guest VM
is notified and a corresponding call back function is triggered
to unplug and flush the request queue. When the host’s I/O
subsystem is free from congestion, it will check if any VM
still has congested as one and reset the status if needed.
When a VM’s congested is unset, it will wake up processes
in the waiting queue. To avoid starvation and bursty traffic,
VMs are woken up in a FIFO order and interleaved with a
random time interval between 0 to 99 ms.

3.3 Inter-domain I/O Co-scheduling
Using dedicated I/O cores to process I/O requests have been
proposed to reduce the virtualization overheads [4, 22, 23].
However, this also introduces additional challenges when a
VM’s VCPUs may be distributed over several sockets on
a NUMA (non-uniform memory access) machine [8, 32]. In
NUMA, accessing remote resources usually has a higher cost.
Related works on NUMA-aware scheduler in virtualized en-
vironments mostly focus on placing CPU and memory on the
same socket, e.g., VMware vSphere. A common practice for
tuning performance is to fit VMs within physical cores’ ca-
pacity [41]. The dedicated I/O core framework in [22] also
assumes all VCPUs are on the same socket. As the comput-
ing technology is scaling toward exscale, such assumption
greatly limits the scalability of VM size. To maximize re-
source utilization, large VMs may reside on different sockets
and use multiple I/O cores. As a result, the load on I/O
cores may not be balanced because VMs are not aware of it.

IOrchestra uses two design principles for the inter-domain
I/O co-scheduling and dedicated I/O cores: 1) Interference-
aware that aims to minimize performance degradation caused
by resource contention. 2) Weighted resource sharing that
preserves the priority across all the VMs.

First, not all VCPUs of one VM can always stay on the same
socket. For some large VMs and also to maximize the re-
source utilization, some VMs may be assigned to different
sockets. When such case happens, a NUMA-aware process
scheduler inside the guest VM can be used to improve the
performance and reduce potential interference with other
VMs. This goal can be achieved with the help of IOrches-
tra. To reduce the remote I/O core access overhead and
balance loadings, the cross-socket VM has a request buffer
per resided socket and the corresponding I/O processes will
work on its local buffer.

Assume a VM is spread over the sockets SKTi, i = 1 · · ·n,
and the average latency on the I/O core of each socket is
Li. To avoid overloading on an I/O core, the weight of I/O
processes inside a cross-socket VM will be distributed to
different sockets in the inverse proportion to Li. That is,
the cross-socket VM’s I/O weight on SKTi will be∑n

i=1 Li

Li∑n
i=1

∑n
i=1 Li

Li

.

The monitoring module collects latencies on all I/O cores.
Then, the managing module updates the weights to the sys-
tem store. To avoid the overhead from frequent updates,
the management module updates the weights every second
or when the weight ratio among cores is changed by over
50%. Once updated, the registered callback function inside
a guest VM is invoked to distribute I/O processes to differ-
ent VCPU’s according to the updated information.

Because the I/O cores keep polling guest’s request buffers,
the time sharing on the I/O cores directly affects guest do-
main’s I/O performance. The scheduling in [22] assumes
static equal share of all VMs on the same socket. Such as-
sumption leads to the inaccurate resource sharing in virtual-
ized systems. Each I/O core should also have different prior-
ities because they usually are not serving the same group of

Algorithm 3: Polling request buffers by one I/O Core

Data:
m active VMs on this I/O core;
i ∈ 1, . . . ,m;
Bi is the request buffer of VMi;
Ci is the credit of Bi;

Qi = BWmax · SV Mi
SKT , the quantum of VMi;

BWmax is the maximum bandwidth of the device;

SV Mi
SKT is updated periodically by IOrchestra;

while TRUE do
if m ≥ 1 then

for i← 1 to m do
Ci = Qi + Ci;
while Ci > 0 and Bi /∈ ∅ do

ReqSize = The size of the first request in Bi;
if ReqSize ≤ Ci then

Process the first request in Bi;
Ci = Ci− ReqSize;

else
//credit is not enough now
break;

end
end
if Bi ∈ ∅ then

Ci = 0;
end

end
end

end

VMs. Therefore, we consider the weights of each co-located
VM when scheduling the polling interval.

Assume VMi has I/O share S
(V M)
i , where

∑m
i=1 S

(V M)
i = 1

and m is the number of VMs in the system. Let VMi

have V CPU
(V Mi)
k , k = 1 · · ·x. Because of dynamic pro-

cess scheduling, VCPUs have various I/O priorities and in-
tensities at any given time. Let the weight of a process
l be Pl, l = 1 · · · y(V Mi), where y(V Mi) is the total num-
ber of processes in VMi. Therefore, the process weight on

V CPU
(V Mi)
k is

W (V CPU
(V Mi)
k) =

∑
Pl, ∀Pl ∈ V CPU (V Mi)

k ,

and the process weight of VMi on a socket SKT is

WSKT (V CPU
(V Mi)
k) =

∑
W (V CPU

(V Mi)
k),

∀V CPU (V Mi)
k ∈ the socket SKT.

Therefore, the I/O share of VMi on a socket SKT is

SV Mi
SKT =

WSKT (V CPU
(V Mi)
k)∑y(V Mi)

l=1 Pl

S
(V M)
i .

Calculating the fine-grained I/O sharing requires the sup-

port from IOrchestra. More specifically, W (V CPU
(V Mi)
k) is

periodically updated to the system store. Then, the man-
aging module calculates the I/O shares SV Mi

SKT for the VMs.
The sum of all I/O shares on a socket is used as its I/O core’s
weight when accessing a storage device shared with other
I/O cores. A storage device uses cgroups with these I/O
cores’ weights for controlling shares. Algorithm 3, which is
adapted from the deficit round-robin method, utilizes SV Mi

SKT

as the quantum in controlling the time-sharing of all VMs
on the same I/O core.

4. IMPLEMENTATION
We implement a prototype of IOrchestra with Xen in about
3,000 lines of code. More specifically, the XenBus and Xen-
Store modules are modified to provide new functionalities
for IOrchestra. XenStore is a shared key-value store (KVS)
for system configuration and device information. XenStore
maintains all domain’s settings in a hierarchical key-value
structure. A directory or key is accessible to a domain if it
has the permission. Interactions between a domain and Xen-
Store are accomplished through XenBus, an abstract chan-
nel for inter-domain communication. During the system ini-
tialization, domains are required to register configurations
and callback functions to XenStore. If certain values are up-
dated, XenStore will notify corresponding domains. Then,
notified domains will probe XenStore to retrieve updated
information or call registered functions to handle events.

Fig. 3 illustrates the interaction between the system store
and the management module. The left-hand side of Fig. 3
shows a sample XenStore hierarchical content. The process
starts with the event of value changes on monitored items.
When triggered, the management module will determine a
new configuration and update it to the store. For making ap-
propriate configurations, the management module may also
consult the information collected by the monitoring mod-
ule. After a new configuration is decided, the management
module updates the corresponding fields in XenStore. Then,
all affected domains will be notified of the changes, and the
callback functions will be invoked to carry out specific op-
erations.

…
…
Status
…
Settings
…
Settings

/local/domain/<domid>
…
virt-dev/

XenStore

watch

Management module {
1. Generate new setups
2. Update configurations }

Event: value changes

update

update

Figure 3: The management module is called when there is
a change on watched items. Then, it will make necessary
changes on the configuration store

5. EXPERIMENTS
All experiments are conducted on a cluster of machines.
Each machine has two six-core 2 GHz Intel Xeon E5-2620
processors, 32 GB memory, and a 960 GB RAID0 drive
(eight 120 GB Intel520 SSD drives). The OS in both host
and guest machines are Linux 3.5 with Xen 4.0 paravirtu-
alization. The baseline systems in all tests are running the
original Linux 3.5 kernel with official Xen 4.0. The IOrches-
tra prototype includes the proposed framework with support
for three use cases in Section 3. We also emulate two re-
lated projects for comparison: static dedicated cores (SDC)

[22,29] and disk idleness based flush (DIF) [17]. The number
of VMs and their sizes are varied in each testing scenario.

We evluate IOrchestra with a number of cloud applications:

• Olio is a Web 2.0 social events calendar;

• YCSB (Yahoo! Cloud Serving Benchmark) provides
a performance measurement framework for cloud data
serving [13]. The experiments use two of its core work-
loads on Apache Cassandra: YCSB1 generates an up-
date heavy workload with the read:write ratio of 50:50;
and YCSB2 is a read mostly workload with the read:write
ratio of 95:5;

• Basic Local Alignment Search Tool (BLAST) [3] is one
of the most widely used algorithm for identifying lo-
cal similarity between different protein sequences. To
run BLAST on multiple machines, we use the mpi-
BLAST implementation [19]. As the inputs, the nu-
cleotide and protein databases used in this work are
NCBI’s (National Center for Biotechnology Informa-
tion) NT and NR databases that contain the full-set
of non-redundant DNA and protein sequences;

• Cloud9 uses distributed resources to provide a high-
quality on-demand software testing service;

• File Server (FS) emulates typical workloads on a file
system, e.g., create, read, write, delete on a direc-
tory tree; Web Server (WS) issues mostly read oper-
ations on web pages, and writes log to a file; Video
Server (VS) emulates a video server where a number
of threads are reading videos and a thread is adding
new videos into the repository; And multi-stream read
sequentially reads multiple files. The FS, WS, VS, and
multi-stream read are from the FileBench suite [18].

5.1 IOrchestra in Action
As we stated earlier, a cloud application may use multiple
VMs as different service components and have various cloud
applications running concurrently. There are two real-world
cloud applications with various workloads in this test:

1) Olio: It uses three VMs. We install an Apache HTTP
server and the PHP version of Olio in one VM. We use an-
other VM as the database (MySQL server) and populate it
with a data set of 500 users (about 40 GB). The last VM is
a file server for the web frontend. Each VM has two VCPUs
and 4 GB memory. We use CloudStone [38] as user behav-
iors emulator in Faban, and run Faban on another physical
server as the workload generator.

2) The multi-node Appache Cassandra key-value store: One
data store uses two VMs as its data nodes. Each VM also
has two VCPUs and 4 GB memory. There are two Cassan-
dra data stores in this test, which are running YCSB1 and
YCSB2 workloads respectively.

We run all applications concurrently for ten minutes in one
test and repeat the test with different numbers of clients
or requests. Fig. 4 shows the 99.9th percentile and mean
latency of all testing applications when running with the
baseline, SDC, DIF, and IOrchestra. IOrchestra effectively
reduces both the mean and 99.9th percentile latency, es-
pecially on the tail latency. The overall average improve-

20

40
60

80
100

120
140

160

50 100 150 200 250 300

La
te

n
cy

 (
m

s)

Number of clients

Baseline SDC DIF IOrchestra

(a) Olio - mean latency

250

350

450

550

650

750

850

500 1000 1500 2000 2500 3000

La
te

n
cy

 (
u

s)

Requests per second

Baseline SDC DIF IOrchestra

(b) YCSB1 - mean latency

125

175

225

275

325

500 1000 1500 2000 2500 3000

La
te

n
cy

 (
u

s)

Request per second

Baseline SDC DIF IOrchestra

(c) YCSB2 - mean latency

0

50

100

150

200

250

300

50 100 150 200 250 300

La
te

n
cy

 (
m

s)

Number of clients

Baseline SDC DIF IOrchestra

(d) Olio - 99.9th percentile latency

200

400

600

800

1000

1200

1400

500 1000 1500 2000 2500 3000

La
te

n
cy

 (
u

s)

Requests per second

Baseline SDC DIF IOrchestra

(e) YCSB1 - 99.9th percentile latency

200

300

400

500

600

500 1000 1500 2000 2500 3000

La
te

n
cy

 (
u

s)

Requests per second

Baseline SDC DIF IOrchestra

(f) YCSB2 - 99.9th percentile latency

Figure 4: Latency at different workload intensities and applications. The whisker on the mean latency is the standard deviation

ment on the mean and 99.9th percentile latency are 9 and
12% respectively. Because of intensive write in YCSB1,
passing disk idleness information allows DIF to outperform
SDC and baseline. IOrchestra provides even more benefits
from advanced flushing and congestion control. The aver-
age improvement on the mean and 99.9th percentile latency
of YCSB1 are 13 and 16% respectively. Fig 5 shows the
cumulative percentages of request latency of YCSB1 and
YCSB2 when the workload intensity is 3000 requests per
second. The latency distribution clearly shows the advan-
tage of IOrchestra over the baseline case.

(a) YCSB1 (b) YCSB2

Figure 5: Latency distribution of YCSB1 and YCSB2 at
3000 requests per second

To demonstrate IOrchestra’s effect on the distributed multi-
tier cloud applications, we analyze the changes of Olio’s la-
tency at each tier. Fig. 6 shows the cumulative percentages
of request/query latency at Olio’s web server, database, and
file server VMs. In each sub-figure, the dotted blue line
represents a baseline system and the solid red line repre-
sents IOrchestra. Fig. 6(a) shows the overall performance
of the Olio application, which has an average improvement
of 11.2%. Fig. 6(b) and (c) are the latency distributions
on the database and file server VMs, which have average
improvements of 21.6% and 19.8% respectively. The over-
all improvement is less than those on the database and file

server VMs, because other factors, e.g., CPU times, also
affect the final performance.

To summarize, IOrchestra effectively improves the I/O vir-
tualization and its latency, especially in shortening the tail
of latency distribution. In the following subsections, we will
explore IOrchestra in detail at different scenarios and func-
tions.

5.2 Scaled-Out Cloud Applications
This test is to verify IOrchestra’s effectiveness on applica-
tions performance in multiple VMs and hosts. We create
three VMs on a physical machine. In a dynamic cloud envi-
ronment, different types of workload may be hosted on the
same physical machines. Thus, these three VMs are run-
ning different cloud applications, Cloud9, mpiBLAST, and
YCSB1. We keep these applications running for one hour
each with the baseline and IOrchestra. Because these appli-
cations can use multiple interconnected machines to speed
up their processes, these tests are also scaled to eight ma-
chines.

Fig. 7 shows the normalized mean I/O latency of mpiBLAST
and YCSB1 with different numbers of VMs. The X-axis
represents the number of VMs used by an application and
the Y-axis represents the latency normalized to the base-
line. Fig. 7(a) is comparing SDC, DIF, IOrchestra and
Baseline using mpiBlast, while Fig. 7(b) using YCSB1. As
Cloud9 is a CPU-intensive workload, we do not observe sig-
nificant changes in its performance, thus exclude it from
Fig. 7. With IOrchestra the average latency of mpiBLAST
and YCSB1 in all cases are improved by 10.1% and 12.9%
respectively. YCSB1’s latency is getting longer as the num-
ber of VMs increases, because additional inter-node traf-
fic introduces more performance overhead. On the other
hand, mpiBLAST’s improvement on latency is stable across
all number of machines. In order to understand the main

(a) Web server (b) Database (c) File server

Figure 6: Latency distribution at different layers of a distributed cloud application

0.80

0.85

0.90

0.95

1.00

1.05

1 2 3 4 5 6 7 8

N
o

rm
al

iz
ed

 la
te

n
cy

Number of machines

IOrchestra SDC DIF

(a) mpiBLAST

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1 2 3 4 5 6 7 8

N
o

rm
al

iz
ed

 la
te

n
cy

Number of machines

IOrchestra SDC DIF

(b) YCSB1

Figure 7: Normalized mean I/O latency of (a) mpiBLAST
and (b) YCSB1 at different cluster sizes (numbers of working
VMs)

reasons for this latency improvement, we repeat the same
test for three times. In each test, only one of the functions
in Section 3 is enabled. We find out that mpiBLAST’s im-
provement is mainly from the new function of congestion
control because the BLAST algorithm sequentially checks
the patterns. YCSB1’s improvement is mostly contributed
by the functions of congestion control and flushing because
of YCSB1’s write intensive behavior.

5.3 Flushing Dirty Pages
Write operations in file systems tend to be buffered first
and flushed later. Therefore, we use FS’s write through-
put to evaluate the dirty page flushing schemes. The goal
of this subsection is to evaluate IOrchestra’s performance
on flushing dirty pages. Therefore, only the flushing con-
trol is enabled in IOrchestra in this test. The default dirty
page ratios defined as the number of dirty pages to the total
number of memory pages may range from 10 to 40%, and
the number of VMs on the same host can also be differ-
ent. Fig. 8 demonstrates the write throughput improvement

with regards to different dirty page ratios and the number
of concurrent VMs. For exercising the flushing scheme, the
working set size is larger than twice of a VM’s memory size.
The X-axis shows the number of VMs, from 2 to 20 VMs.
Each VM runs FS, and has one VCPU and 1 GB memory.
The Y-axis shows the average improvement from ten runs.

As we have described in Section 3, the baseline systems lose
their ability to balance loadings and avoid process starvation
in virtualized systems. When all VMs have large dirty page
ratio and large amount of requests, VMs may experience
a long response time because many VMs are writing huge
amount of dirty pages concurrently. IOrchestra, on the other
hand, helps VMs to flush when spare bandwidth is available.
The largest improvement of 21% is achieved at 20 concurrent
VMs and the 40% dirty page ratio. When there are 20 VMs,
the average improvement across four ratios is 12.7%.

0%

5%

10%

15%

20%

25%

2 4 6 8 10 12 14 16 18 20

Im
p

ro
ve

m
e

n
t

Number of VMs

10

20

30

40

Dirty page ratio

Figure 8: Write throughput improvement of FS workload at
various VM numbers

We also test the new flushing scheme with various VM sizes,
numbers and arrival rates. The VM arrival rate follows a
Poisson process with an average rate of λ VMs per minute.
When a VM arrives, its number of VCPUs and memory sizes
will be randomly selected from 2, 4, 6, 8, and 10 VCPUs
(and GB memory). All VMs are served in FIFO order. The
application to run in a VM is randomly selected from FS,
YCSB1, and Cloud9. YCSB1 is included because it inten-
sively updates data and buffers data in memory, and Cloud9
is used to represent CPU-intensive workloads. The number
of application threads is the same as its VCPUs. Each appli-
cation is configured with a fixed problem size, e.g., a YCSB
VM is removed after finishing 50,000 operations and a FS
VM is removed after completing 2 GB data transmission.
We test λ = 4, 8, · · · , 20 VMs per minute, and the total
testing time for each λ is one hour.

Table 2 shows the improvement on aggregate write through-
put with various arrival rates. When the VM arrival rate

is small, flushing operations may not be blocked because
the bandwidth is not saturated yet. The improvement be-
comes bigger as the arrival rate rises because our method
actively uses underutilized bandwidth to flush dirty pages.
The dynamic workload types and intensities create more op-
portunities, which leads to a higher performance, that is,
the average improvement across all cases in Table 2 is about
22.1%.

Table 2: Write throughput improvement with various arrival
rates

λ 4 8 12 16 20
Improvement (%) 6.6 19.1 24.5 29.8 30.6

5.4 Congestion Control
We use latency to evaluate the new congestion control scheme.
In this test, each VM has 1 VCPU and 1 GB memory. Fig. 9
shows the normalized latency when running FS, WS, and VS
with various numbers of VMs. The normalized latencies are
getting closer to one as the number of VM increases. In-
terestingly, with the help from IOrchestra, the normalized
latency can be as small as 0.9 when running FS. In this
case, FS issues more small mix I/O requests than WS and
VS, where guest VMs would falsely trigger more congestion
avoidance while the I/O subsystem was not really congested.

0.90

0.94

0.98

1.02

2 4 6 8 10 12 14 16 18 20

N
o

rm
al

iz
e

d

la
te

n
cy

Number of VMs

FS

WS

VS

Figure 9: Latency of various workloads normalized to corre-
sponding baselines

5.5 Inter-domain I/O Co-scheduling
The goal of this experiment is to verify the ability of coor-
dinating in-guest I/O processes. We integrate IOrchestra
with cgroup in guest to run and control testing applica-
tions. We create a big VM which has 10 VCPUs and 10
GB memory. Because each VCPU is pinned to one physical
core, all physical cores are in use. We concurrently run one
CPU-intensive application (Cloud9) and one I/O-intensive
benchmark (multi-stream read) in this big VM. In order
to test different I/O intensities, the number of threads and
working set sizes are varied, specifically from high (80%)
to low (20%) I/O intensities. Fig. 10(a) shows the I/O
throughput improvement at different I/O intensities. The
X-axis shows the ratio of data-intensive threads. The num-
bers are the average values and standard deviations of ten
runs. The throughput improvement ranges from about 2%
to 14%. The improvement is bigger at moderate I/O inten-
sity (40% and 60% I/O threads) because the I/O cores may
be extremely unbalanced in the baseline. These two cases
also have high variance. On the other hand, the improve-
ment for low I/O intensity (20%) is small due to the light
workload. For high I/O intensity (80%), the improvement is
small too because in this case I/O cores in both the baseline
and IOrchestra have the same heavy workload.

Similar to the test setting in Table 2, we also test the inter-
domain I/O co-scheduling with various VM sizes, numbers,
and arrival rates λ = 4, 8, · · · , 20 VMs per minute. Again,
the total testing time for each λ is one hour. Fig. 10(b) shows
the improvement on the number of VMs completed. When
the arrival rate is small, the system is not fully loaded. A
higher arrival rate makes the system fully loaded and highly
utilized, which is the case that mostly needs co-scheduling.
Therefore, the improvement is increased as the λ increases.
Our method outperforms the baseline by up to 6.6% when
λ is equal to 20. This is because our framework helps to
balance the I/O core loading. And since not all VMs can be
hosted on the same socket immediately, our cross-domain
framework can help to improve the performance of those
VMs that reside on different sockets. Moreover, our method
also outperforms the original dedicated I/O core method.

Because some cores are dedicated for I/O, Fig. 10(c) shows
the overall CPU utilization at different workload intensities.
When λ is low, the baseline has a lower CPU utilization be-
cause it does not keep spinning one core for I/O. As the VM
arrival rate is increasing, the CPU utilization of the base-
line and IOrchestra become higher than the dedicated core
scheme because of its restriction on cross-socket assignment.

Using dedicated core improves the throughput for the base-
line. Fig. 11 shows the throughput improvement at various
λ. One can see that the original dedicated core method does
not scale at the high VM arrival rate. On the other hand,
IOrchestra helps to balance the workload on I/O cores. The
enhanced ratio can be double when λ reaches 20.

5.6 Bursty Writes
In this subsection, we show that the flushing and congestion
control techniques in IOrchestra deliver low latency even
with bursty writes. We use skewed request inter arrival
times with the write-intensive YCSB1 to create the bursty
workloads. That is, the inter-arrival times do not follow the
same pattern all the time. Specifically, there are short peri-
ods of intensive workloads, although the average rate might
be reasonable. We use the methodology described in [5,25].
There are multiple clients generating requests at a fixed rate
with synchronized burst periods. During a burst period, the
maximum request rate is limited at 10 times of the overall
average rate. To fairly compare IOrchestra with other meth-
ods, we control the number of requests in a burst to ensure
they are the same during different tests.

Fig. 12 shows the 99.9th percentile of latency for the base-
line and IOrchestra at burst periods of 50 and 100 ms. The
latency of baseline exceeds 1 ms quickly at 800 and 500 re-
quests per second when the burst length are 50 and 100 ms
respectively. DIF performs better than SDC because the
transparent disk information helps to schedule bursty re-
quests. On the other hand, IOrchestra outperforms the oth-
ers because of the advanced congestion control and compre-
hensive co-scheduling. IOrchestra can deliver more requests
within a millisecond than the baseline. The average latency
improvement across all cases is 31.8%. Note that without
the bursty writes, the baseline can manage up to 2,500 re-
quests per second with a latency of less than a millisecond
shown in Fig. 4(b).

0%

5%

10%

15%

20 40 60 80

Im
p

ro
ve

m
e

n
t

% of I/O threads

(a) The I/O throughput im-
provement at various intensities

0%

2%

4%

6%

8%

4 8 12 16 20

Im
p
ro
ve
m
e
n
t

λ

SDC
IOrchestra

(b) Improvement on the number
of VMs completed at dynamic
VM sizes and arrival rates λ

0%

50%

100%

4 8 12 16 20

C
P

U
 u

ti
liz

at
io

n

λ

baseline SDC IOrchestra

(c) Average CPU utilization at
different arrival rates

Figure 10: Experiment results of inter-domain I/O co-scheduling

0%

2%

4%

6%

8%

10%

4 8 12 16 20

Im
p

ro
ve

m
e

n
t

o
n

I/

O
 t

h
ro

u
gh

p
u

t

λ

SDC IOrchestra

Figure 11: Normalized I/O throughput at different arrival
rates

6. RELATED WORK
Virtualization architecture design: Liu et al. propose
the VMM-bypass I/O to improve I/O performance for VMs,
which allows time-critical I/O operations to be processed
without a hypervisor or a driver domain in the middle [31].
On the other hand, Santos et al. suggest to keep the driver
domain because the space isolation provided by driver do-
main effectively prevents unexpected system crashes caused
by drivers or malicious guest VMs [37] . ELI [21] and vIC [1]
demonstrate the expensive overheads for interrupt handling.
While these works focus on modifying specific virtualiza-
tion architectures and reducing the overheads of virtual I/O,
IOrchestra utilizes a communication channel for system man-
agement and keeps original virtualization design intact. In
this manner, IOrchestra is open and applicable to various
OS and virtualization designs.

XHive globally manages caches of VMs in order to accom-
modate a shared working set in host machine memory [26].
While XHive supports an holistic control over memory, IOrches-
tra provides a comprehensive framework by building bridges
for eliminating the semantic gaps across domains. SplitX
utilizes a set of dedicated cores for the guest and the hy-
pervisor to avoid the expensive VM exit operation [29]. As
SplitX uses extra cores and hardware to improve I/O per-
formance, IOrchestra can be used to complement SplitX by
providing administration channels across cores and thus op-
timizing systems globally. Elango et al. propose a new de-
sign to pass disk idleness information to VMs such that I/O
schedulers can find a good time for flushing dirty pages [17].
IOrchestra aims at a bigger picture beyond the disk idle in-
formation, to bridge all semantic gaps.

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

La
te

n
cy

 (
u

s)
Requests per second (x100)

Baseline

IOrchestra

SDC

DIF

(a) 50 ms burst length

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

La
te

n
cy

 (
u

s)

Requests per second (x100)

Baseline

IOrchestra

SDC

DIF

(b) 100 ms burst length

Figure 12: YCSB1 latency at 50 and 100 ms burst length
respectively

MIKELANGELO [33], one of the European Commission’s
Horizon 2020 projects, was initiated to improve virtual I/O
by integrating the thin OS, the remote direct memory access,
and several enhancements in the KVM. While MIKELAN-
GELO reduces the I/O overheads with a special designed OS
and I/O stack, IOrchestra utilizes a communication channel
for system management and keeps the original OS design
intact. In this manner, IOrchestra is applicable to different
OSes and virtualization systems.

Inter-domain communication: XenSocket [44] provides
a socket-based interface for inter-domain communication and
utilizes the shared circular buffer to transmit control packets
and data between domains. XenLoop [39] adds an additional
layer under the network layer to monitor outgoing packets.
If the destination of packets is a co-located VM, XenLoop
will redirect packets through the shared memory channel.
Xway [27] provides similar features as XenLoop by bypassing

TCP/IP stacks. Fido [11] is an extra software component in
guest domains for inter-domain communication. Fido mod-
ifies Xen event channel, Xen store, and memory mapping
module to accomplish fast inter-virtual-machine communi-
cation. Although IOrchestra focuses differently on bridg-
ing the semantic gaps for optimizing system performance, it
benefits from these inter-domain communication techniques
in the framework design and event channel usages.

Gray-box techniques and VM introspection (VMI):
Burnett et al. [10] use gray-box techniques to identify cache
replacement policies in OS, and demonstrate the perfor-
mance improvement of a web server which is aware of the
system cache status. Geiger [24] extends similar gray-box
techniques to monitor the buffer cache in a virtualized en-
vironment. VMI is an active research topic in digital foren-
sics [20, 34], intrusion detection [36], and malicious VM de-
tection [16]. In comparison, IOrchestra is an efficient and
direct method in optimizing the virtual I/O performance.

7. CONCLUSION
We design IOrchestra to bridge the semantic gaps of virtual
I/O stacks across different domains. IOrchestra provides a
foundation for building an advanced virtualization with fine-
grained control. IOrchestra can be integrated with various
functions to effectively improve virtual I/O latency. A pro-
totype in Linux and Xen is implemented to automatically
tune the system configurations of all guest VMs. The eval-
uation results show that IOrchestra is able to coordinate all
domains with low overhead and improve the latency by up to
31% with various real-world distributed cloud applications
running on multiple virtual and physical machines. As fu-
ture work, IOrchestra will be extended to additional system
components that may suffer performance degradation from
the semantic gap, e.g., network buffer sizes, window sizes,
packet queues, etc.

Acknowledgment
We thank our shepherds, Craig Lee and David Abramson,
and anonymous reviewers for their valuable suggestions. This
work is supported in part by National Science Foundation
grants CNS-1350766, CNS-1320226, CNS-1253575, and IOS-
1124813. Ron Chiang did part of this research at the GWU
and AT&T Labs.

8. REFERENCES
[1] I. Ahmad, A. Gulati, and A. Mashtizadeh. vIC:

Interrupt Coalescing for Virtual Machine Storage
Device IO. In USENIX Annual Technical Conference,
2011.

[2] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,
A. Vahdat, and M. Yasuda. Less is More: Trading a
Little Bandwidth for Ultra-low Latency in the Data
Center. In USENIX Symposium on Networked Systems
Design and Implementation (NSDI 12), 2012.

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and
D. J. Lipman. Basic Local Alignment Search Tool.
Journal of molecular biology, 215(3):403–410, Oct.
1990.

[4] N. Amit, M. Ben-Yehuda, D. Tsafrir, and A. Schuster.
vIOMMU: Efficient IOMMU Emulation. In USENIX
Annual Technical Conference, 2011.

[5] G. Banga and P. Druschel. Measuring the Capacity of
a Web Server. In Proceedings of the USENIX
Symposium on Internet Technologies and Systems,
USITS’97. USENIX Association, 1997.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the Art of Virtualization. In
Proceedings of the nineteenth ACM Symposium on
Operating Systems Principles, SOSP’03, pages
164–177. ACM, 2003.

[7] P. Berenbrink, A. Brinkmann, T. Friedetzky,
D. Meister, and L. Nagel. Distributing Storage in
Cloud Environments. In Parallel and Distributed
Processing Symposium Workshops PhD Forum
(IPDPSW), IEEE 27th International, pages 963–973,
2013.

[8] S. Blagodurov, S. Zhuravlev, A. Fedorova, and
A. Kamali. A Case for NUMA-Aware Contention
Management on Multicore Systems. In Proceedings of
the 19th International Conference on Parallel
Architectures and Compilation Techniques, PACT ’10,
pages 557–558. ACM, 2010.

[9] D. Bovet and M. Cesati. Understanding The Linux
Kernel. Oreilly & Associates Inc, 2005.

[10] N. C. Burnett, J. Bent, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. Exploiting Gray-Box
Knowledge of Buffer-Cache Management. In USENIX
Annual Technical Conference, pages 29–44, 2002.

[11] A. Burtsev, K. Srinivasan, P. Radhakrishnan, L. N.
Bairavasundaram, K. Voruganti, and G. R. Goodson.
Fido: Fast Inter-Virtual-Machine Communication for
Enterprise Appliances. In USENIX Annual Technical
Conference, 2009.

[12] R. Chiang and H. Huang. TRACON:
Interference-Aware Scheduling for Data-Intensive
Applications in Virtualized Environments. In
Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC’11, pages 47:1–47:12, 2011.

[13] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10,
pages 143–154, 2010.

[14] J. Dean and L. A. Barroso. The Tail at Scale.
Commun. ACM, 56(2):74–80, Feb. 2013.

[15] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s Highly Available Key-value Store.
In Proceedings of Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles, SOSP
’07, pages 205–220, 2007.

[16] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether:
Malware Analysis via Hardware Virtualization
Eextensions. In Proceedings of the 15th ACM
Conference on Computer and Communications
Security, CCS ’08, pages 51–62. ACM, 2008.

[17] P. Elango, S. Krishnakumaran, and R. H.
Arpaci-dusseau. Design Choices for Utilizing the Disk

Idleness in a Virtual Machine Environment. In In
Workshop on the Interaction between Operating
Systems and Computer Architecture, WIOSCA, 2006.

[18] FileBench.
http://filebench.sourceforge.net/wiki/index.php/main page.

[19] M. K. Gardner, W.-c. Feng, J. Archuleta, H. Lin, and
X. Mal. Parallel Genomic Sequence-searching on an
Ad-hoc Grid: Experiences, Lessons Learned, and
Implications. In Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, SC ’06. ACM, 2006.

[20] T. Garfinkel and M. Rosenblum. When Virtual is
Harder than Real: Security Challenges in Virtual
Machine based Computing Environments. In
Proceedings of the 10th Conference on Hot Topics in
Operating Systems, HOTOS’05, 2005.

[21] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda,
A. Landau, A. Schuster, and D. Tsafrir. ELI:
Bare-Metal Performance for I/O Virtualization.
SIGARCH Comput. Archit. News, 40(1):411–422,
Mar. 2012.

[22] N. Har’El, A. Gordon, A. Landau, M. Ben-Yehuda,
A. Traeger, and R. Ladelsky. Efficient and Scalable
Paravirtual I/O System. In USENIX Annual Technical
Conference, pages 231–242, 2013.

[23] Y. Hu, X. Long, J. Zhang, J. He, and L. Xia. I/O
Scheduling Model of Virtual Machine based on
Multi-Core Dynamic Partitioning. In Proceedings of
the 19th ACM International Symposium on High
Performance Distributed Computing, HPDC’10, pages
142–154. ACM, 2010.

[24] S. T. Jones, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Geiger: Monitoring the Buffer Cache
in a Virtual Machine Environment. In Proceedings of
the 12th International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS XII, 2006.

[25] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and
A. Vahdat. Chronos: Predictable Low Latency for
Data Center Applications. In Proceedings of the Third
ACM Symposium on Cloud Computing, SoCC ’12,
pages 9:1–9:14. ACM, 2012.

[26] H. Kim, H. Jo, and J. Lee. XHive: Efficient
Cooperative Caching for Virtual Machines.
Computers, IEEE Transactions on, 60(1):106 –119,
jan. 2011.

[27] K. Kim, C. Kim, S.-I. Jung, H.-S. Shin, and J.-S. Kim.
Inter-Domain Socket Communications Supporting
High Performance and Full Binary Compatibility on
Xen. In Proceedings of the Fourth ACM
SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, VEE ’08. ACM,
2008.

[28] R. Kohavi and R. Longbotham. Online Experiments:
Lessons Learned. Computer, 40(9):103–105, 2007.

[29] A. Landau, M. Ben-Yehuda, and A. Gordon. SplitX:
Split Guest/Hypervisor Execution on Multi-Core. In
Proceedings of the 3rd conference on I/O
virtualization, WIOV. USENIX, 2011.

[30] D. Le, H. Huang, and H. Wang. Understanding
Performance Implications of Nested File Systems in a

Virtualized Environment. In Proceedings of the 10th
USENIX Conference on File and Storage
Technologies, FAST’12, 2012.

[31] J. Liu, W. Huang, B. Abali, and D. K. Panda. High
performance VMM-bypass I/O in virtual machines. In
USENIX Annual Technical Conference, 2006.

[32] C. McCurdy and J. Vetter. Memphis: Finding and
Fixing NUMA-Related Performance Problems on
Multi-Core Platforms. In Performance Analysis of
Systems Software (ISPASS), 2010 IEEE International
Symposium on, pages 87–96. IEEE, 2010.

[33] MIcro KErneL virtualizAtioN for hiGh pErfOrmance
cLOud and hpc systems. http:
//cordis.europa.eu/project/rcn/194319_en.html,
2015.

[34] K. Nance, M. Bishop, and B. Hay. Virtual Machine
Introspection: Observation or Interference? IEEE
Security and Privacy, 6(5):32–37, Sept. 2008.

[35] K. Nichols and V. Jacobson. Controlling Queue Delay.
Commun. ACM, 55(7):42–50, July 2012.

[36] B. Payne, M. Carbone, M. Sharif, and W. Lee. Lares:
An Architecture for Secure Active Monitoring Using
Virtualization. In Security and Privacy, 2008. SP
2008. IEEE Symposium on, 2008.

[37] J. R. Santos, Y. Turner, G. Janakiraman, and
I. Pratt. Bridging the Gap between Software and
Hardware Techniques for I/O Virtualization. In
USENIX Annual Technical Conference, 2008.

[38] W. Sobel, S. Subramanyam, A. Sucharitakul,
J. Nguyen, H. Wong, A. Klepchukov, S. Patil, A. Fox,
and D. Patterson. Cloudstone: Multi-Platform,
Multi-Language Benchmark and Measurement Tools
for Web 2.0. In In Proceedings of Cloud Computing
and its Applications, CCA, 2008.

[39] J. Wang, K.-L. Wright, and K. Gopalan. XenLoop: A
Transparent High Performance Inter-VM Network
Loopback. In Proceedings of the 17th International
Symposium on High Performance Distributed
Computing, HPDC ’08. ACM, 2008.

[40] C. Wilson, H. Ballani, T. Karagiannis, and
A. Rowtron. Better Never Than Late: Meeting
Deadlines in Datacenter Networks. In Proceedings of
the ACM SIGCOMM 2011 Conference, SIGCOMM
’11, pages 50–61. ACM, 2011.

[41] Xen. Tuning. http://wiki.xen.org/wiki/Tuning.

[42] Y. Xu, M. Bailey, B. Noble, and F. Jahanian. Small is
Better: Avoiding Latency Traps in Virtualized Data
Centers. In Proceedings of the 4th Annual Symposium
on Cloud Computing, SOCC ’13, pages 7:1–7:16.
ACM, 2013.

[43] Y. Yu, Y. Wang, H. Guo, and X. He. Optimisation
Schemes to Improve Hybrid Co-Scheduling for
Concurrent Virtual Machines. Int. J. Parallel Emerg.
Distrib. Syst., 28(1):46–66, 2013.

[44] X. Zhang, S. McIntosh, P. Rohatgi, and J. L. Griffin.
XenSocket: A High-Throughput Interdomain
Transport for Virtual Machines. In Proceedings of the
ACM/IFIP/USENIX 2007 International Conference
on Middleware, Middleware ’07, 2007.

