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Abstract—NetVM brings virtualization to the Network by en-
abling high bandwidth network functions to operate at near line
speed, while taking advantage of the flexibility and customization
of low cost commodity servers. NetVM allows customizable data
plane processing capabilities such as firewalls, proxies, and routers
to be embedded within virtual machines, complementing the con-
trol plane capabilities of Software Defined Networking. NetVM
makes it easy to dynamically scale, deploy, and reprogram net-
work functions. This provides far greater flexibility than existing
purpose-built, sometimes proprietary hardware, while still allow-
ing complex policies and full packet inspection to determine subse-
quent processing. It does so with dramatically higher throughput
than existing software router platforms. NetVM is built on top of
the KVM platform and Intel DPDK library. We detail many of
the challenges we have solved such as adding support for high-
speed inter-VM communication through shared huge pages and
enhancing the CPU scheduler to prevent overheads caused by
inter-core communication and context switching. NetVM allows
true zero-copy delivery of data to VMs both for packet processing
and messaging among VMs within a trust boundary. Our evalua-
tion shows how NetVM can compose complex network function-
ality from multiple pipelined VMs and still obtain throughputs
up to 10 Gbps, an improvement of more than 250% compared to
existing techniques that use SR-IOV for virtualized networking.

Index Terms—Network function virtualization, software de-
fined network, cloud computing.

I. INTRODUCTION

V IRTUALIZATION has revolutionized how data center
servers are managed by allowing greater flexibility, easier

deployment, and improved resource multiplexing. A similar
change is beginning to happen within communication networks
with the development of network function virtualization (NFV),
in conjunction with the use of software defined networking
(SDN). While the migration of network functions to a more
software based infrastructure is likely to begin with edge plat-
forms that are more “control plane” focused, the flexibility
and cost-effectiveness obtained by using common off-the-shelf
hardware and systems will make migration of other network
functions attractive. One main deterrent is the achievable per-
formance and scalability of such virtualized platforms com-
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pared to purpose-built (often proprietary) networking hardware
or middleboxes based on custom ASICs.

Middleboxes are typically hardware-software packages that
come together on a special-purpose appliance, often at high
cost. In contrast, a high throughput platform based on virtual
machines (VMs) would allow network functions to be deployed
dynamically at nodes in the network with low cost. Further,
the shift to VMs would let businesses run network services on
existing cloud platforms, bringing multiplexing and economy
of scale benefits to network functionality. Once data can be
moved to, from and between VMs at line rate for all packet
sizes, we approach the long-term vision where the line between
data centers and network resident “boxes” begins to blur:
both software and network infrastructure could be developed,
managed, and deployed in the same fashion.

Progress has been made with SDN to provide greater con-
figurability in the network [1]–[4]. SDN improves flexibility by
allowing software to manage the network control plane, while
the performance-critical data plane is still implemented with
proprietary network hardware. SDN allows for new flexibility
in how data is forwarded, but the focus on the control plane
prevents dynamic management of many types of network func-
tionality that rely on the data plane, for example the information
carried in the packet payload.

This limits the types of network functionality that can be
“virtualized” into software, leaving networks to continue to
be reliant on relatively expensive network appliances that are
based on purpose-built hardware. Network Function Virtual-
ization (NFV) seeks to improve this situation by providing a
software-based data plane running in virtual machines [5].

Recent advances in network interface cards (NICs) allow
high throughput, low-latency packet processing using technolo-
gies like Intel’s Data Plane Development Kit (DPDK) [6]. This
software framework allows end-host applications to receive
data directly from the NIC, eliminating overheads inherent in
traditional interrupt driven OS-level packet processing. Unfor-
tunately, the DPDK framework has a somewhat restricted set
of options for support of virtualization, and on its own cannot
support the type of flexible, high performance functionality that
network and data center administrators desire.

To improve this situation, we have developed NetVM, a
platform for running complex network functionality at line-
speed (10 Gbps or more) using commodity hardware. NetVM
takes advantage of DPDK’s high throughput packet processing
capabilities, and adds to it abstractions that enable in-network
services to be flexibly created, chained, and load balanced.
Since these “virtual bumps” can inspect the full packet data,
a much wider range of packet processing functionality can
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be supported than in frameworks utilizing existing SDN-
based controllers manipulating hardware switches. As a result,
NetVM makes the following innovations:

1) A virtualization-based platform for flexible network ser-
vice deployment that can meet the performance of cus-
tomized hardware, especially those involving complex
packet processing.

2) A shared-memory framework that truly exploits the
DPDK library to provide zero-copy delivery to VMs and
between VMs.

3) A hypervisor-based switch that can dynamically adjust a
flow’s destination in a state-dependent (e.g., for intelli-
gent load balancing) and/or data-dependent manner (e.g.,
through deep packet inspection).

4) An architecture that supports high speed inter-VM com-
munication, enabling complex network services to be
spread across multiple VMs.

5) Security domains that restrict packet data access to only
trusted VMs.

We have implemented NetVM using the KVM and DPDK
platforms—all the aforementioned innovations are built on the
top of DPDK. Our results show how NetVM can compose
complex network functionality from multiple pipelined VMs
and still obtain line rate throughputs of 10 Gbps, an improve-
ment of more than 250% compared to existing SR-IOV based
techniques. With a newer hardware architecture (e.g., Xeon E5-
2697 v3) and additional CPU cores and NICs, we are able to
achieve a peak throughput of 34.5 Gbps.

II. BACKGROUND AND MOTIVATION

This section provides background on the challenges of pro-
viding flexible network services on virtualized commodity
servers.

A. Highspeed COTS Networking

Software routers, SDN, and hypervisor based switching tech-
nologies have sought to reduce the cost of deployment and
increase flexibility compared to traditional network hardware.
However, these approaches have been stymied by the per-
formance achievable with commodity servers [7]–[9]. These
limitations on throughput and latency have prevented software
routers from supplanting custom designed hardware [10]–[12].

There are two main challenges that prevent commercial off-
the-shelf (COTS) servers from being able to process network
flows at line speed. First, network packets arrive at unpre-
dictable times, so interrupts are generally used to notify an
operating system that data is ready for processing. However, in-
terrupt handling can be expensive because modern superscalar
processors use long pipelines, out-of-order and speculative
execution, and multi-level memory systems, all of which tend
to increase the penalty paid by an interrupt in terms of cycles
[13], [14]. When the packet reception rate increases further,
the achieved (receive) throughput can drop dramatically in such
systems [15]. Second, existing operating systems typically read
incoming packets into kernel space and then copy the data to
user space for the application interested in it. These extra copies

Fig. 1. DPDK’s run-time environment over Linux.

Fig. 2. DPDK uses per-port switching with SR-IOV, whereas NetVM pro-
vides a global switch in the hypervisor and shared-memory packet transfer
(dashed lines). (a) SR-IOV. (b) NetVM.

can incur an even greater overhead in virtualized settings, where
it may be necessary to copy an additional time between the
hypervisor and the guest operating system. These two sources
of overhead limit the the ability to run network services on
commodity servers, particularly ones employing virtualization
[16], [17].

The Intel DPDK platform tries to reduce these overheads by
allowing user space applications to directly poll the NIC for
data. This model uses Linux’s huge pages to pre-allocate large
regions of memory, and then allows applications to DMA data
directly into these pages. Fig. 1 shows the DPDK architecture
that runs in the application layer. The poll mode driver allows
applications to access the NIC card directly without involv-
ing kernel processing, while the buffer and ring management
systems resemble the memory management systems typically
employed within the kernel for holding sk_buffs.

While DPDK enables high throughput user space applica-
tions, it does not yet offer a complete framework for con-
structing and interconnecting complex network services. Fur-
ther, DPDK’s passthrough mode that provides direct DMA
to and from a VM can have significantly lower performance
than native IO.1 For example, DPDK supports Single Root
I/O Virtualization (SR-IOV2) to allow multiple VMs to access
the NIC, but packet “switching” (i.e., demultiplexing or load
balancing) can only be performed based on the L2 address. As
depicted in Fig. 2(a), when using SR-IOV, packets are switched
on a per-port basis in the NIC, which means a second data
copy is required if packets are forwarded between VMs on
a shared port. Even worse, packets must go out of the host
and come back via an external switch to be transmitted to a

1Native IO uses built-in hardware features without the IO virtualization
capability. Until Sandy-bridge, the performance was close to half of native IO.

2SR-IOV makes it possible to logically partition a NIC and expose to each
VM a separate PCI-based NIC called a “Virtual Function” [18].
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VM that is connected to another port’s virtual function. Similar
overheads appear for other VM switching platforms, e.g., Open
vSwitch [19] and VMware’s vNetwork distributed switch [20].
We seek to overcome this limitation in NetVM by providing a
flexible switching capability without copying packets as shown
in Fig. 2(b). This improves performance of communication
between VMs, which plays an important role when chained
services are deployed.

Intel recently released an integration of DPDK and Open
vSwitch [21] to reduce the limitations of SR-IOV switching.
However, the DPDK vSwitch still requires copying packets
between the hypervisor and the VM’s memory, and does not
support directly-chained VM communication. NetVM’s en-
hancements go beyond DPDK vSwitch by providing a frame-
work for flexible state- or data-dependent switching, efficient
VM communication, and security domains to isolate VM
groups.

B. Flexible Network Services

While platforms like DPDK allow for much faster process-
ing, they still have limits on the kind of flexibility they can
provide, particularly for virtual environments. The NIC based
switching supported by DPDK + SR-IOV is not only expensive,
but is limited because the NIC only has visibility into Layer 2
headers. With current techniques, each packet with a distinct
destination MAC can be delivered to a different destination
VM. However, in a network resident box (such as a middlebox
acting as a firewall, a proxy, or even if the COTS platform is
acting as a router), the destination MAC of incoming packets is
the same. While advances in NIC design could reduce these
limitations, a hardware based solution will never match the
flexibility of a software-based approach.

By having the hypervisor perform the initial packet switch-
ing, NetVM can support more complex and dynamic function-
ality. For example, each application that supports a distinct
function may reside in a separate VM, and it may be necessary
to exploit flow classification to properly route packets through
VMs based on mechanisms such as shallow (header-based) or
deep (data-based) packet analysis. At the same time, NetVM’s
switch may use state-dependent information such as VM load
levels, time of day, or dynamically configured policies to con-
trol the switching algorithm. Delivery of packets based on such
rules is simply not feasible with current platforms.

C. Virtual Machine Based Networking

Network providers construct overall network functionality by
combining middleboxes and network hardware that typically
have been built by a diverse set of vendors. While NetVM
can enable fast packet processing in software, it is the use
of virtualization that will permit this diverse set of services
to “play nice” with each other—virtualization makes it trivial
to encapsulate a piece of software and its OS dependencies,
dramatically simplifying deployment compared to running mul-
tiple processes on one bare-metal server. Running these ser-
vices within VMs also could permit user-controlled network
functions to be deployed into new environments such as cloud

Fig. 3. NetVM platforms are distributed in the network (and/or data centers).

computing platforms where VMs are the norm and isolation
between different network services would be crucial.

The consolidation and resource management benefits of vir-
tualization are also well known. Unlike hardware middleboxes,
VMs can be instantiated on demand when and where they are
needed. This allows NetVM to multiplex one server for sev-
eral related network functions, or to dynamically spawn VMs
where new services are needed. Compared to network software
running on bare metal, using a VM for each service simplifies
resource allocation and improves performance isolation. These
characteristics are crucial for network services that often have
strict performance requirements.

D. Management of Network Functions

The ease with which network function virtual machines can
be deployed and migrated demands that a management entity
ensure that functions are being placed when and where they
are needed. This can be achieved with the combination of an
OpenFlow SDN controller and an NFV orchestrator. The SDN
controller can steer the packet flows, and the NFV orchestrator
can decide where to put the network functions (NFs) in the net-
work. Steering packet flows and managing network functions
must be tightly coordinated since flows may traverse multiple
network functions, and it may be desirable to dynamically
start new services and reroute flows to them. Therefore, these
controllers may need to maintain state about existing flows and
functions to coordinate them.

Fig. 3 illustrates how we envision our NetVM platform being
deployed (each black box represents a NetVM platform with
multiple NFs) and managed through an NFV orchestrator (e.g.,
the Nf-Vi interface defined in ETSI [5]) and an SDN controller
(via the OpenFlow protocol). NetVM provides both interfaces
through secure channels. The COTS servers configured with
the NetVM platform can be deployed along the path of flows
needing additional functionality. Network providers may want
to put the NFs close to the edge network so that functionality
that requires heavy processing can be amortized/preprocessed
at the edge networks. For example, installing a network func-
tion that detects DDoS attacks at the edge networks is far more
efficient than redirecting all suspicious traffic to a centralized
“packet scrubber” that performs deep packet inspection. When
combined with SDN and NFV management systems, NetVM
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Fig. 4. Architectural differences for packet delivery in virtualized platform.
(a) Generic. (b) SR-IOV. (c) NetVM.

provides an ideal platform for building this kind of capability
in a flexible, efficient way.

III. SYSTEM DESIGN

Fig. 4 compares two existing, commonly implemented net-
work virtualization techniques against NetVM. In the first case,
representing traditional virtualization platforms, packets arrive
at the NIC and are copied into the hypervisor. A virtual switch
then performs L2 (or a more complex function, based on the full
5-tuple packet header) switching to determine which VM is the
recipient of the packet and notifies the appropriate virtual NIC.
The memory page containing the packet is then either copied
or granted to the Guest OS, and finally the data is copied to the
user space application. Not surprisingly, this process involves
significant overhead, preventing line-speed throughput.

In the second case (Fig. 4(b)), SR-IOV is used to perform L2
switching on the NIC itself, and data can be copied directly into
User Space of the appropriate VM. While this minimizes data
movement, it does come at the cost of limited flexibility in how
packets are routed to the VM, since the NIC must be configured
with a static mapping and packet header information other than
the MAC address cannot be used for routing.

The architecture of NetVM is shown in Fig. 4(c). It does not
rely on SR-IOV, instead allowing a user space application in
the hypervisor to analyze packets and decide how to forward
them. However, rather than copy data to the Guest, we use
a shared memory mechanism to directly allow the Guest user
space application to read the packet data it needs. This provides
both flexible switching and high performance.

A. Zero-Copy Packet Delivery

Network providers are increasingly deploying complex ser-
vices composed of routers, proxies, video transcoders, etc.,
which NetVM could consolidate onto a single host. To sup-
port fast communication between these components, NetVM
employs two communication channels to quickly move data as
shown in Fig. 5. The first is a small, shared memory region
(shared between the hypervisor and each individual VM) that is
used to transmit packet descriptors. The second is a huge page
region shared with a group of trusted VMs that allows chained
applications to directly read or write packet data. Memory
sharing through a “grant” mechanism is commonly used to
transfer control of pages between the hypervisor and guest; by
expanding this to a region of memory accessible by all trusted

Fig. 5. NetVM only requires a simple descriptor to be copied via shared
memory (solid arrows), which then gives VMs direct access to packet stored
in huge pages (dashed arrow).

guest VMs, NetVM can enable efficient processing of flows
traversing multiple VMs.

NetVM Core, running as a DPDK enabled user application,
polls the NIC to read packets directly into the huge page area
using DMA. It decides where to send each packet based on
information such as the packet headers, possibly content, and/or
VM load statistics. NetVM inserts a descriptor of the packet in
the ring buffer that is setup between the individual destination
VM and hypervisor. Each individual VM is identified by a
“role number”—a representation of each network function, that
is assigned by the VM manager. The descriptor includes a
mbuf location (equivalent to a sk_buff in the Linux kernel)
and huge page offset for packet reception. When transmitting
or forwarding packets, the descriptor also specifies the action
(transmit through the NIC, discard, or forward to another VM)
and role number (i.e., the destination VM role number when
forwarding). While this descriptor data must be copied between
the hypervisor and guest, it allows the guest application to then
directly access the packet data stored in the shared huge pages.

After the guest application (typically implementing some
form of network functionality like a router or firewall) analyzes
the packet, it can ask NetVM to forward the packet to a different
VM or transmit it over the network. Forwarding simply repeats
the above process—NetVM copies the descriptor into the ring
buffer of a different VM so that it can be processed again; the
packet data remains in place in the huge page area and never
needs to be copied (although it can be independently modified
by the guest applications if desired).

B. Lockless Design

Shared memory is typically managed with locks, but locks
inevitably degrade performance by serializing data accesses and
increasing communication overheads. This is particularly prob-
lematic for high-speed networking: to maintain full 10 Gbps
throughput independent of packet size, a packet must be pro-
cessed within 67.2 ns [6], yet context switching for a contested
lock takes on the order of micro-seconds [22], [23], and even
an uncontested lock operation may take tens of nanoseconds
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Fig. 6. Lockless and NUMA-Aware Queue/Thread Management (R =
Receive Queue, T = Transmit Queue, and F = Forward Queue). (a) Single
VM; (b) Multiple VMs (Inter-VM).

[24]. Thus a single context switch could cause the system to fall
behind, and thus may result in tens of packets being dropped.

We avoid these issues by having parallelized queues with
dedicated cores that service them. When working with NICs
that have multiple queues and Receive Side Scaling (RSS)
capability,3 the NIC receives packets from the link and places
them into one of several flow queues based on a config-
urable (usually an n-tuple) hash [26]. NetVM allows only two
threads to manipulate this shared circular queue—the (pro-
ducer) DPDK thread run by a core in the hypervisor and the
(consumer) thread in the guest VM that performs processing
on the packet. There is only a single producer and a single
consumer, so synchronization is not required since neither will
read or write simultaneously to the same region.

Our approach eliminates the overhead of locking by dedicat-
ing cores to each queue. This still permits scalability, because
we can simply create additional queues (each managed by a pair
of threads/cores). This works with the NIC’s support for RSS,
since incoming flows can automatically be load balanced across
the available queues. Note that synchronization is not required
to manage the huge page area either, since only one application
will ever have control of the descriptor containing a packet’s
address.

Fig. 6(a) depicts how two threads in a VM deliver packets
without interrupting each other. Each core (marked as a circle)
in the hypervisor receives packets from the NIC and adds
descriptors to the tail of its own queue. The guest OS also
has two dedicated cores, each of which reads from the head
of its queue, performs processing, and then adds the packet to
a transmit queue. The hypervisor reads descriptors from the tail
of these queues and causes the NIC to transmit the associated
packets. This thread/queue separation guarantees that only a
single entity accesses the data at a time.

C. NUMA-Aware Design

Multi-processor systems exhibit NUMA characteristics,
where memory access time depends on the memory location
relative to a processor. Having cores on different sockets access
memory that maps to the same cache line should be avoided,
since this will cause expensive cache invalidation messages

3Modern NICs support RSS, a network driver technology to allow packet
receive processing to be load balanced across multiple processors or cores [25].

to ping pong back and forth between the two cores. As a
result, ignoring the NUMA aspects of modern servers can cause
significant performance degradation for latency sensitive tasks
like network processing [27], [28].

Quantitatively, a last-level-cache (L3) hit on a 3 GHz Intel
Xeon 5500 processor takes up to 40 cycles, but the miss penalty
is up to 201 cycles [29]. Thus if two separate sockets in NetVM
end up processing data stored in nearby memory locations, the
performance degradation can potentially be up to five times,
since cache lines will end up constantly being invalidated.

Fortunately, NetVM can avoid this issue by carefully allocat-
ing and using huge pages in a NUMA-aware fashion. When a
region of huge pages is requested, the memory region is divided
uniformly across all sockets, thus each socket allocates a total of
(total huge page size/number of sockets) bytes of memory from
DIMMs that are local to the socket. In the hypervisor, NetVM
then creates the same number of receive/transmit threads as
there are sockets, and each is used only to process data in the
huge pages local to that socket. The threads inside the guest
VMs are created and pinned to the appropriate socket in a
similar way. This ensures that as a packet is processed by either
the host or the guest, it always stays in a local memory bank,
and cache lines will never need to be passed between sockets.

Fig. 6 illustrates how two sockets (gray and white) are man-
aged. That is, a packet handled by gray threads is never moved
to white threads, thus ensuring fast memory accesses and
preventing cache coherency overheads. This also shows how
NetVM pipelines packet processing across multiple cores—the
initial work of handling the DMAed data from the NIC is
performed by cores in the hypervisor, then cores in the guest
perform packet processing. In a multi-VM deployment where
complex network functionality is being built by chaining to-
gether VMs, the pipeline extends to an additional pair of cores
in the hypervisor that can forward packets to cores in the next
VM. Our evaluation shows that this pipeline can be extended as
long as there are additional cores to perform processing (up to
three separate VMs in our testbed).

D. Huge Page Virtual Address Mapping

While each individual huge page represents a large contigu-
ous memory area, the full huge page region is spread across
the physical memory both because of the per-socket allocations
described in Section III-C, and because it may be necessary to
perform multiple huge page allocations to reach the desired
total size if it is bigger than the default unit of huge page
size—the default unit size can be found under/proc/meminfo.
This poses a problem since the address space layout in the
hypervisor is not known by the guest, yet guests must be able
to find packets in the shared huge page region based on the
address in the descriptor. Thus the address where a packet is
placed by the NIC is only meaningful to the hypervisor; the
address must be translated so that the guest will be able to
access it in the shared memory region. Further, looking up these
addresses must be as fast as possible to perform line-speed
packet processing.

NetVM overcomes the first challenge by mapping the huge
pages into the guest in a contiguous region, as shown in Fig. 7.
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Fig. 7. The huge pages spread across the host’s memory must be contiguously
aligned within VMs. NetVM must be able to quickly translate the address of a
packet from the host’s virtual address space to an offset within the VM’s address
space.

NetVM exposes these huge pages to guest VMs using an
emulated PCI device. The guest VM runs a driver that polls
the device and maps its memory into user space, as described
in Section IV-C. In effect, this shares the entire huge page
region among all trusted guest VMs and the hypervisor. Any
other untrusted VMs use a regular network interface through
the hypervisor, which means they are not able to see the packets
received from NetVM.

Even with the huge pages appearing as a contiguous region
in the guest’s memory space, it is non-trivial to compute where
a packet is stored. When NetVM DMAs a packet into the
huge page area, it receives a descriptor with an address in the
hypervisor’s virtual address space, which is meaningless to
the guest application that must process the packet. While it
would be possible to scan through the list of allocated huge
pages to determine where the packet is stored, that kind of
processing is simply too expensive for high-speed packet rates
because every packet needs to go through this process. To
resolve this problem, NetVM uses only bit operations and
precomputed lookup tables; our experiments show that this
improves throughput by up to 10% (with 8 huge pages) and
15% (with 16 huge pages) in the worst case compared to a naive
lookup.

When a packet is received, we need to know which huge page
it belongs to. Firstly, we build up an index map that converts a
packet address to a huge page index. The index is taken from
the upper 8 bits of its address (31st bit to 38th bit). The first
30 bits are the offset in the corresponding huge page, and the
rest of the bits (left of the 38th bit) can be ignored. We denote
this function as IDMAP (h) = (h ≫ 30)&0xFF , where h is
a memory address. This value is then used as an index into an
array HMAP [i] to determine the huge page number.

To get the address base (i.e., a starting address of each huge
page in the ordered and aligned region) of the huge page where
the packet belongs to, we need to establish an accumulated
address base. If all the huge pages have the same size, we
do not need this address base—instead, just multiplying is
enough, but since there can be different huge page sizes, we
need to keep track of an accumulated address base. A func-
tion HIGH(i) keeps a starting address of each huge page
index i. Lastly, the residual address is taken from last 30 bits
of a packet address using LOW (a) = a&0x3FFFFFFF .
OFFSET (p) = HIGH(HMAP [IDMAP (p)]) | LOW (p)
returns an offset of contiguous huge pages in the emulated PCI.

E. Trusted and Untrusted VMs

Security is a key concern in virtualized cloud platforms.
Since NetVM aims to provide zero-copy packet transmission
while also having the flexibility to steer flows between coop-
erating VMs, it shares huge pages assigned in the hypervisor
with multiple guest VMs. A malicious VM may be able to
guess where the packets are in this shared region to eavesdrop
or manipulate traffic for other VMs. Therefore, there must be
a clear separation between trusted VMs and non-trusted VMs.
NetVM provides a group separation to achieve the necessary
security guarantees. When a VM is created, it is assigned to a
trust group, which determines what range of memory (and thus
which packets) it will have access to.

While our current implementation supports only trusted or
untrusted VMs, it is possible to subdivide this further. Prior to
DMAing packet data into a huge page, DPDK’s classification
engine can perform a shallow analysis of the packet and decide
which huge page memory pool to copy it to. This would, for
example, allow traffic flows destined for one cloud customer
to be handled by one trust group, while flows for a different
customer are handled by a second NetVM trust group on
the same host. In this way, NetVM enables not only greater
flexibility in network function virtualization, but also greater
security when multiplexing resources on a shared host.

Fig. 5 shows a separation between trusted VM groups and a
non-trusted VM. Each trusted VM group gets its own memory
region, and each VM gets a ring buffer for communication with
NetVM. In constrast, non-trusted VMs only can use generic
network paths such as those in Fig. 4(a) or (b).

F. NetVM Control Plane

NetVM is designed so that the management system in the
host OS is able to easily start and stop virtual machines and
deploy functionality into them. The deployment decisions can
be made locally on the host, or may be guided by a controller
with global view. Global deployment decisions should be made
in the SDN or NF application layer to signal the NFV or-
chestrator to deploy the right function in the network. As the
data plane becomes more complex, we believe a tension will
arise between making these decisions locally on the host versus
in the control plane. While network-wide view is important
in many cases, to fully exploit the agility benefits of virtual
machine-based network functions, a local controller is needed
to quickly incorporate state only available at the host (e.g.,
packet histories, VM-load levels, etc). In NetVM we begin to
explore these trade-offs by providing a NetVM Manager that
can instantiate VMs or redirect traffic based on local state such
as VM queue lengths, or by communicating with a controller.

IV. IMPLEMENTATION DETAILS

NetVM’s implementation includes the NetVM Core Engine
(the DPDK application running in the hypervisor), a NetVM
manager, drivers for an emulated PCI device, modifications to
KVM’s CPU allocation policies, and NetLib (our library for
building in-network functionality in VM’s userspace) as shown
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Fig. 8. NetVM’s architecture spans the guest and host systems; an emulated
PCI device is used to share memory.

in Fig. 8. Our implementation is built on QEMU 1.5.0 (KVM
included), and DPDK 1.4.1.

KVM and QEMU allow a regular Linux host to run one
or more VMs. Our functionality is split between code in the
guest VM, and code running in user space of the host operating
system. We use the terms host operating system and hypervisor
interchangeably in this discussion.

A. NetVM Manager

The NetVM manager runs in the hypervisor and provides a
communication channel so that QEMU can pass information
to the NetVM core engine about the creation and destruc-
tion of VMs, as well as their trust level. When the NetVM
manager starts, it creates a server socket to communicate
with QEMU. Whenever QEMU starts a new VM, it connects
to the socket to ask the NetVM Core to initialize the data
structures and shared memory regions for the new VM. The
connection is implemented with a socket-type chardev with
“−chardev socket, path = ⟨path⟩, id = ⟨id⟩” in the VM config-
uration. This is a common approach to create a communication
channel between a VM and an application running in the KVM
host, rather than relying on hypervisor-based messaging [30].

NetVM manager is also responsible for storing the con-
figuration information that determines VM trust groups (i.e.,
which VMs should be able to connect to NetVM Core) and
the switching rules. These rules are passed to the NetVM Core
Engine, which implements these policies. In addition, NetVM
manager handles communications with the SDN controller and
the NFV orchestrator as shown in Fig. 3.

B. NetVM Core Engine

The NetVM Core Engine is a DPDK userspace application
running in the hypervisor. NetVM Core is initialized with user
settings such as the processor core mapping, NIC port settings,
and the configuration of the queues. These settings determine
how many queues are created for receiving and transmitting
packets, and which cores are allocated to each VM for these
tasks. NetVM Core then allocates the Huge Page region and
initializes the NIC so it will DMA packets into that area when
polled.

The NetVM core engine has two roles: the first role is to
receive packets and deliver/switch them to VMs (using zero-

copy) following the specified policies, and the other role is to
communicate with the NetVM manager to synchronize infor-
mation about new VMs. The main control loop first polls the
NIC and DMAs packets to huge pages in a burst (batch), then
for each packet, NetVM decides which VM to notify. Instead
of copying a packet, NetVM creates a tiny packet descriptor
that contains the huge page address, and puts that into the
private shared ring buffer (shared between the VM and NetVM
Core). The actual packet data is accessible to the VM via shared
memory, accessible over the emulated PCI device described
below.

C. Emulated PCI

QEMU and KVM do not directly allow memory to be shared
between the hypervisor and VMs. To overcome this limitation,
we use an emulated PCI device that allows a VM to map the
device’s memory—since the device is written in software, this
memory can be redirected to any memory location owned by
the hypervisor. NetVM needs two seperate memory regions:
a private shared memory (the address of which is stored in
the device’s BAR#0 register) and huge page shared memory
(BAR#1). The private shared memory is used as ring buffers to
deliver the status of user applications (VM → hypervisor) and
packet descriptors (bidirectional). Each VM has this individual
private shared memory. The huge page area, while not con-
tiguous in the hypervisor, must be mapped as one contiguous
chunk using the memory_region_add_subregion function. We
illustrated how the huge pages map to virtual addresses, earlier
in Section III-D. In our current implementation, all VMs access
the same shared huge page region, although this could be
relaxed as discussed in Section III-E.

Inside a guest VM that wishes to use NetVM’s highspeed
IO, we run a front-end driver that accesses this emulated PCI
device using Linux’s Userspace I/O framework (UIO). UIO
was introduced in Linux 2.6.23 and allows device drivers to be
written almost entirely in userspace. This driver maps the two
memory regions from the PCI device into the guest’s memory,
allowing a NetVM user application, such as a router or firewall,
to directly work with the incoming packet data.

D. NetLib and User Applications

Application developers do not need to know anything about
DPDK or NetVM’s PCI device based communication channels.
Instead, our NetLib framework provides an interface between
PCI and user applications. User applications only need to
provide a structure containing configuration settings such as the
number of cores, and a callback function. The callback function
works similar to NetFilter in the linux kernel [31], a popular
framework for packet filtering and manipulation. The callback
function is called when a packet is received. User applications
can read and write into packets, and decide what to do next. Ac-
tions include discard, send out to NIC, and forward to another
VM. As explained in Section IV-A, user applications know
the role numbers of other VMs. Therefore, when forwarding
packets to another VM, user applications can specify the role
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Fig. 9. NetLib provides a bridge between PCI device and user applications.

number, not network addresses. This abstraction provides an
easy way to implement communication channels between VMs.

Fig. 9 illustrates a packet flow. When a packet is received
from the hypervisor, a thread in NetLib fetches it and calls
back a user application with the packet data. Then the user
application processes the packet (read or/and write), and returns
with an action. NetLib puts the action in the packet descriptor
and sends it out to a transmit queue. NetLib supports multi-
threading by providing each user thread with its own pair of
input and output queues. There are no data exchanges between
threads since NetLib provides a lockless model as NetVM does.

E. NF Deployment

The NetVM manager handles the communication with the
NFV orchestrator. Currently the ETSI NFV framework does
not provide any specifics about the protocols of the defined in-
terfaces [5]. Our NetVM API uses a simple message exchange
over a secure channel, similar to the OpenFlow protocol used
in SDN. The NetVM platform supports three ways to deploy
functions: 1) VM provisioning; 2) application provisioning;
3) migration from a resource pool. In the first case, a new
virtual machine is booted from a specified image that contains
the desired network function code. When the VM starts, it
automatically instantiates the user code, and NetLib establishes
the connection with the hypervisor-based VM manager. With
application provisioning, we assume a pool of idle virtual
machines is already provided, so the NetVM manager only
needs to initialize the desired user-level process within the VM
and establish the necessary communication channels. Finally,
it is also possible to keep a pool of NetVM instances running
on another host, each with a user application already running.
In this case, the VM must be migrated using KVM’s existing
migration tools. Once the migration completes, the VM con-
nects to the hypervisor’s communication channel and can begin
processing packets.

V. EVALUATION

NetVM enables high speed packet delivery in-and-out of
VMs and between VMs, and provides flexibility to steer traffic
between function components that reside in distinct VMs on the
NetVM platform. In this section, we evaluate NetVM with the
following goals:

• Demonstrate NetVM’s ability to provide high speed packet
delivery with typical applications such as: Layer 3 for-

Fig. 10. Huge page size can degrade throughput up to 26% (64-byte packets).
NetVM needs 6 GB to get line rate speed.

warding, a userspace software router, and a firewall
(Section V-B),

• Show that the added latency with NetVM functioning as a
middlebox is minimal (Section V-C),

• Analyze the CPU time based on the task segment
(Section V-D),

• Demonstrate NetVM’s ability to steer traffic flexibly be-
tween VMs (Section V-E),

• Measure the time to dynamically deploy NF VMs
(Section V-F).

In our experimental setup, we use two Xeon CPU X5650
@ 2.67 GHz (2 × 6 cores) servers—one for the system under
test and the other acting as a traffic generator—each of which
has an Intel 82599EB 10 G Dual Port NIC (with one port used
for our performance experiments) and 48 GB memory. We use
8 GB for huge pages because Fig. 10 shows that at least 6 GB
is needed to achieve the full line-rate (we have seen in Intel’s
performance reports setting 8 GB as a default huge page size).
The host OS is Red Hat 6.2 (kernel 2.6.32), and the guest OS
is Ubuntu 12.10 (kernel 3.5). DPDK-1.4.1 and QEMU-1.5.0
are used. We use PktGen from WindRiver to generate traffic
[32]. The base core assignment otherwise mentioned differently
follows 2 cores to receive, 4 cores to transmit/forward, and
2 cores per VM.

We also compare NetVM with SR-IOV, the high performance
IO pass-through system popularly used. SR-IOV allows the
NIC to be logically partitioned into “virtual functions”, each
of which can be mapped to a different VM. We measure and
compare the performance and flexibility provided by these
architectures.

A. Applications

L3 Forwarder [33]: We use a simple layer-3 router. The
forwarding function uses a hash map for the flow classification
stage. Hashing is used in combination with a flow table to map
each input packet to its flow at runtime. The hash lookup key
is represented by a 5-tuple. The ID of the output interface for
the input packet is read from the identified flow table entry. The
set of flows used by the application is statically configured and
loaded into the hash at initialization time (this simple layer-3
router is similar to the sample L3 forwarder provided in the
DPDK library).
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Fig. 11. Forwarding rate as a function of input rate for NetVM, Click using
NetVM, SR-IOV (DPDK in VM), and Native Linux Click-NetVM router
(64-byte packets).

Click Userspace Router [11]: We also use Click, a more
advanced userspace router toolkit to measure the performance
that may be achieved by ’plugging in’ an existing router im-
plementation as-is into a VM, treating it as a ’container’. Click
supports the composition of elements that each performs simple
computations, but together can provide more advanced func-
tionality such as IP routing. We have slightly modified Click
by adding new receive and transmit elments that use Netlib for
faster network IO. In total our changes comprise approximately
1000 lines of code. We test both a standard version of Click
using Linux IO and our Netlib zero-copy version.

Firewall [34]: Firewalls control the flow of network traffic
based on security policies. We use Netlib to build the foun-
dational feature for firewalls—the packet filter. Firewalls with
packet filters operate at layer 3, the network layer. This provides
network access control based on several pieces of information
in a packet, including the usual 5-tuple: the packet’s source and
destination IP address, network or transport protocol id, source
and destination port; in addition its decision rules would also
factor in the interface being traversed by the packet, and its
direction (inbound or outbound).

B. High Speed Packet Delivery

Packet Forwarding Performance: NetVM’s goal is to pro-
vide line rate throughput, despite running on a virtualized
platform. To show that NetVM can indeed achieve this, we
show the L3 packet forwarding rate vs. the input traffic rate. The
theoretical value for the nominal 64-byte IP packet for a 10 G
Ethernet interface—with preamble size of 8 bytes, a minimum
inter-frame gap 12 bytes—is 14,880,952 packets.

Fig. 11 shows the input rate and the forwarded rate in
packets/sec for four cases: NetVM’s simple L3 forwarder, the
Click router using NetVM (Click-NetVM), a VM enabled with
SR-IOV, and Click router using native Linux (Click-Native-
Linux). NetVM achieves the full line-rate, whereas Click-
NetVM has a maximum rate of around 6 Gbps. This is because
Click has added overheads for scheduling elements (confirmed
by the latency analysis we present subsequently in Table I).
Notice that increasing the input rate results in either a slight
drop-off in the forwarding rate (as a result of wasted processing
of packets that are ultimately dropped), or plateaus at that

TABLE I
CPU TIME COST BREAKDOWN FOR NETLIB’S SIMPLE

L3 ROUTER AND CLICK L3 ROUTER

Fig. 12. NetVM provides a line-rate speed regardless of packet sizes. Due
to large application overhead, Click-NetVM achieves 6.8 Gbps with 64-byte
packet size.

maximum rate. We believe Click-NetVM’s performance could
be further improved by either adding multi-threading support
or using a faster processor, but SR-IOV can not achieve better
performance this way. Not surprisingly, Click-Native-Linux
performance is extremely poor (max 327 Mbps), illustrating the
dramatic improvement provided simply by zero-copy IO. [11].

With SR-IOV, the VM has two virtual functions associated
with it and runs DPDK with two ports using two cores. SR-IOV
achieves a maximum throughput of 5 Gbps. We have observed
that increasing the number of virtual functions or cores does not
improve the maximum throughput. We speculate this limitation
comes from the speed limitation on hardware switching.

Fig. 12 now shows the forwarding rate as the packet size
is varied. Since NetVM does not have further overheads as a
consequence of the increased packet size (data is delivered by
DMA), it easily achieves the full line-rate. Also, Click-NetVM
also can provide the full line-rate for 128-byte and larger packet
sizes.

Multi-Port Scalability: The server used in our other exper-
iments is based on the Intel Nehalem architecture, which is
only able to handle the line-rate speed with one port. Due to
limitations on the bus speed and IOMMU inefficiency, when
using multiple ports these servers do not continue to scale up in
performance—we observed a maximum throughput is 22 Gbps
with four ports. Here we examine NetVM’s scalability when
running on a high performance server (Intel Xeon CPU E5-
2697 v3 @ 2.60 GHz, 28 physical Cores, 164 GB, 4 Intel 82599
NICs). Only this experiment uses E5-2697 v3 architecture to
see the maximum throughput, and all other experiments use
the X5650 architecture. Fig. 13 illustrates the input rate versus
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Fig. 13. NetVM scales to 36 Gbps when using four ports.

Fig. 14. Inter-VM communication using NetVM can achieve a line-rate speed
when VMs are well scheduled in different CPU cores (here, up to 3 VMs).

forwarding rate in Gbps. When using a simple L2 forwarder ap-
plication running unvirtualized on DPDK (4 receiving cores and
4 transmitting cores), the system can achieve 36.4 Gbps. When
we use NetVM to send packets to four VMs running a similar
L2 forwarder (4 receiving cores, 4 transmitting cores, and 4 VM
cores), we can achieve 34.5 Gbps, only a small performance
reduction. Thus achieving almost the same performance as the
much simpler un-virtualized DPDK platform that does not offer
the flexibility of a virtualized environment. In contrast, SR-
IOV peaks at 22 Gbps with one VM with 4 virtual functions
and 4 receiving cores and 4 transmitting cores (additional
cores do not improve performance). Thus NetVM significantly
improves upon existing virtual machine-based approaches, and
nearly matches the performance of DPDK running natively; the
performance penalty is a small price to pay for the benefits in
flexibility and service composition enabled by NetVM.

Inter-VM Packet Delivery: NetVM’s goal is to build com-
plex network functionality by composing chains of VMs.
To evaluate how pipelining VM processing elements affects
throughput, we measure the achieved throughput when varying
the number of VMs through which a packet must flow. We
compare NetVM to a set of SR-IOV VMs, the state-of-the-art
for virtualized networking.

Fig. 14 shows that NetVM achieves a significantly higher
base throughput for one VM, and that it is able to maintain
nearly the line rate for chains of up to three VMs. After this
point, our 12-core system does not have enough cores to dedi-
cate to each VM, so there begins to be a processing bottleneck
(e.g., four VMs require a total of 14 cores: 2 cores—one from

each processor for NUMA-awareness—to receive packets in
the host, 4 cores to transmit/forward between VMs, and 2 cores
per VM for application-level processing). We believe that more
powerful systems should easily be able to support longer chains
using our architecture.

For a more realistic scenario, we consider a chain where
40% of incoming traffic is processed only by the first VM
(an L2 switch) before being transmitted out the wire, while
the remaining 60% is sent from the L2 switch VM through a
Firewall VM, and then an L3 switch VM (e.g., a load balancer).
However, SR-IOV did not show any improvement with this
scenario due to the limitations on the hardware switching fabric.
In this case, our test machine has sufficient CPU capacity to
achieve the line-rate for the three VM chain, and sees only a
small decrease if additional L3 switch VMs are added to the
end of the chain. In contrast, SR-IOV performance is affected
by the negative impact of IOTLB cache-misses, as well as
a high data copy cost to move between VMs. Input/output
memory management units (IOMMUs) use an IOTLB to speed
up address resolution, but still each IOTLB cache-miss renders
a substantial increase in DMA latency and performance degra-
dation of DMA-intensive packet processing [35], [36].

C. Latency

While maintaining line-rate throughput is critical for in-
network services, it is also important for the latency added by
the processing elements to be minimized. We quantify this by
measuring the average roundtrip latency for L3 forwarding in
each platform. The measurement is performed at the traffic gen-
erator by looping back 64-byte packets sent through the plat-
form. We include a timestamp on the packet transmitted. Fig. 15
shows the roundtrip latency for the three cases: NetVM, Click-
NetVM, and SR-IOV using identical L3 Forwarding function.
Latency for Click-NetVM and SR-IOV increases especially at
higher loads when there are additional packet processing delays
under overload. We speculate that at very low input rates, none
of the systems are able to make full benefit of batched DMAs
and pipelining between cores, explaining the initially slightly
worse performance for all approaches. After the offered load
exceeds 5 Gbps, SR-IOV and Click are unable to keep up,
causing a significant portion of packets to be dropped. In this
experiment, the queue lengths are relatively small, preventing
the latency from rising significantly. The drop rate of SR-IOV
rises to 60% at 10 Gbps, while NetVM drops zero packets.

D. CPU Time Breakdown

Table I breaks down the CPU cost of forwarding a packet
through NetVM. Costs were converted to nanoseconds from the
Xeon’s cycle counters [37]. Each measurement is the average
over a 10 second test. These measurements are larger than the
true values because using Xeon cycle counters has significant
overhead (the achieved throughput drops from 10 Gbps to
8.7 Gbps). Most of the tasks performed by a NetVM’s CPU
are included in the table.

“NIC → Hypervisor” measures the time it takes DPDK to
read a packet from the NIC’s receive DMA ring. Then NetVM
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Fig. 15. Average roundtrip latency for L3 forwarding.

Fig. 16. State-dependent (or data-dependent) load-balancing enables flexible
steering of traffic. The graph shows a uniformly distributed load-balancing.

decides which VM to send the packet to and puts a small packet
descriptor in the VM’s receive ring (“Hypervisor → VM”).
Both of these actions are performed by a single core. “VM →
APP” is the time NetVM needs to get a packet from a ring
buffer and delivers it to the user application; the application
then spends “APP (L3 Forwarding)” time; the forwarding ap-
plication (NetVM or Click) sends the packet back to the VM
(“APP → VM”) and NetVM puts it into the VM’s transmit ring
buffer (“VM → Hypervisor”). Finally, the hypervisor spends
“Hypervisor → NIC” time to send out a packet to the NIC’s
transmit DMA ring.

The Core# column demonstrates how packet descriptors are
pipelined through different cores for different tasks. As was
explained in Section III-C, packet processing is restricted to the
same socket to prevent NUMA overheads. In this case, only
“APP (L3 Forwarding)” reads/writes the packet content.

E. Flexibility

NetVM allows for flexible switching capabilities, which
can also help improve performance. Whereas Intel SR-IOV can
only switch packets based on the L2 address, NetVM can
steer traffic (per-packet or per-flow) to a specific VM depend-
ing on system load (e.g., using the occupancy of the packet
descriptor ring as an indication), shallow packet inspection
(header checking), or deep packet inspection (header + payload
checking) in the face of performance degradation. Fig. 16
illustrates the forwarding rate when load-balancing is based on
load of packets queued—the queue with the smallest number

Fig. 17. Time to NF deployment.

of packets has the highest priority. The stacked bars show how
much traffic each VM receives and the total. NetVM is able
to evenly balance load across VMs. Click-NetVM shows a
significant performance improvement with multiple VMs (up to
20%) since additional cores are able to load balance the more
expensive application-level processing. The SR-IOV system is
simply unable to make use of multiple VMs in this way since
the MAC addresses coming from the packet generator are all
same. Adding more cores to the single SR-IOV VM does also
not improve performance. We believe this will be a realistic
scenario in the network (not just in our testbed) as the MAC
addresses of incoming packets at a middlebox or a router will
likely be the same across all packets.

We also have observed the same performance graph for
NetVM’s shallow packet inspection that load-balances based on
the protocol type; deep-packet inspection overhead will depend
on the amount of computation required while analyzing the
packet. With many different network functions deployed, more
dynamic workloads with SDN capability are left for the future
works.

F. Dynamic NF Deployment

Here we evaluate the cost to deploy a new network function
on the NetVM platform. Provisioning a new virtual machine
has the highest cost, as shown in Fig. 17. To remove the cost of
booting the OS, NetVM also provides an application provision-
ing mechanism for idle VMs that are running in advance. This
approach lowers the deployment time to nearly 4 seconds. A
final option is to migrate a VM with a preinstalled application
from a pool of idle VMs on another host. Here the cost is
dependent on the time to migrate the VM’s memory, taking an
average of just over eight seconds to complete in our testbed.

G. Case Study: Dynamic DoS Mitigation

To illustrate a realistic use case for NetVM, we show how the
system can handle a Denial of Service (DoS) situation using
a dataset from the DARPA intrusion detection evaluation. We
replay attack the packet traces for 15 minutes,4 and show the
total incoming traffic and the DoS mitigated traffic in Fig. 18.

4DoS traces can be found at http://www.ll.mit.edu/mission/communications/
cyber/CSTcorpora/ideval/data/2000/LLS_DDOS_1.0.html.
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Fig. 18. Denial of service attack mitigation.

Here NetVM detects the DoS using a simple volume threshold,
and then the global NFV orchestrator provisions a new VM
to the NetVM platform. This VM filters the traffic to drop
malicious packets. The original attack lasts about 7 minutes, but
the mitigation using the NetVM framework takes 28 seconds
including detection, NF provisioning, and starting the applica-
tion. This experiment illustrates the potential of NetVM as a
platform that can quickly respond to traffic dynamics, adding
network functions precisely when and where they are needed.

VI. DISCUSSION

We have shown NetVM’s zero-copy packet delivery frame-
work can effectively bring high performance for network traffic
moving through a virtualized network platform. Here we dis-
cuss related issues, limitations, and future directions.

Scale to Next Generation Machines: In this work, we have
shown that we can achieve a line-rate packet delivery (10
Gbps) with an old Nehalem architecture, and linearly increase
the performance with a newer architecture (Xeon CPU E5-
2697 v3) using multiple ports. This clearly shows subsequent
generations of processors from Intel, the Sandy-bridge and Ivy-
bridge processors can allow both greater total throughput (by
connecting to multiple NIC ports in parallel), and deeper VM
chains. We have seen there is almost a linear performance im-
provement with the number of cores. Since NetVM eliminates
the overheads of other virtual IO techniques like SR-IOV, we
expect to see more flexible network management with better
scalability.

Building Edge Routers With NetVM: We recognize that the
capabilities of NetVM to act as a network element, such as
an edge router in an ISP context, depends on having a large
number of interfaces, albeit at lower speeds. While a COTS
platform may have a limited number of NICs, each at 10 Gbps,
a judicious combination of a low cost Layer 2 (Ethernet) switch
and NetVM will likely serve as an alternative to (what are
generally high cost) current edge router platforms. Since the
features and capabilities (in terms of policy and QoS) required
on an edge router platform are often more complex, the cost
of ASIC implementations tend to rise steeply. This is precisely
where the additional processing power of the recent processors
combined with the NetVM architecture can be an extremely
attractive alternative. The use of the low cost L2 switch provides

the necessary multiplexing/demultiplexing required to comple-
ment NetVM’s ability to absorb complex functions, potentially
with dynamic composition of those functions.

Open vSwitch and SDN Integration: SDN allows greater
flexibility for control plane management. However, the con-
straints of the hardware implementations of switches and
routers often prevent SDN rules from being based on any-
thing but simple packet header information. Open vSwitch has
enabled greater network automation and reconfigurability, but
its performance is limited because of the need to copy data.
Our goal in NetVM is to build a base platform that can offer
greater flexibility while providing high speed data movement
underneath. We aim to integrate Open vSwitch capabilities
into our NetVM Manager. In this way, the inputs that come
from a SDN Controller using OpenFlow could be used to
guide NetVM’s management and switching behavior. NetVM’s
flexibility in demultiplexing can accommodate more complex
rule sets, potentially allowing SDN control primitives to evolve.

Software-Based Network Management System: While SDN
and NFV have been separately developed, they have a com-
mon shared goal of exploiting software-based approaches for
making the network more flexible and dynamic. SDN provides
a flexibility for directing network flows, and NFV enables
dynamic management of software-based network functions.
The integration of the two is currently a research agenda to
understand the division of roles and responsibilities. To support
a software-based network using both SDN and NFV, NetVM
functionality could be extended to accommodate both Open-
Flow (as described above) as well as additional NFV interfaces.
These extensions would allow the SDN controller and the NFV
management/orchestrator to control the network with greater
flexibility.

Other Hypervisors: Our implementation uses KVM, but we
believe the NetVM architecture could be applied to other vir-
tualization platforms. For example, a similar setup could be
applied to Xen; the NetVM Core would run in Domain-0, and
Xen’s grant table functionality would be used to directly share
the memory regions used to store packet data. However, Xen’s
limited support for huge pages would have to be enhanced.

VII. RELATED WORK

The introduction of multi-core and multi-processor systems
has led to significant advances in the capabilities of software
based routers. The RouteBricks project sought to increase the
speed of software routers by exploiting parallelism at both the
CPU and server level [38]. Similarly, Kim et al.[12] demon-
strate how batching I/O and CPU operations can improve
routing performance on multi-core systems. Rather than using
regular CPU cores, PacketShader [27] utilizes the power of gen-
eral purpose graphic processing units (GPGPU) to accelerate
packet processing. ClickOS [39] optimizes Xens I/O subsystem
to provide high speed middleboxes. Hyper-switch [40] on the
other hand uses a low-overhead mechanism that takes into
account CPU cache locality, especially in NUMA systems. All
of these approaches demonstrate that the memory access time
bottlenecks that prevented software routers such as Click [11]
from performing line-rate processing are beginning to shift.
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However, none of these existing approaches support deploy-
ment of network services in virtual environments, a requirement
that we believe is crucial for lower cost COTS platforms to
replace purpose-built hardware and provide automated, flexible
network function management.

The desire to implement network functions in software, to
enable both flexibility and reduced cost because of running
on COTS hardware, has recently taken concrete shape with
a multitude of network operators and vendors beginning to
work together in various industry forums. In particular, the
work spearheaded by European Telecommunications Standards
Institute (ETSI) on network function virtualization (NFV) has
outlined the concept recently [41], [42]. While the benefits
of NFV in reducing equipment cost and power consumption,
improving flexibility, reduced time to deploy functionality and
enabling multiple applications on a single platform (rather
than having multiple purpose-specific network appliances in
the network) are clear, there is still the outstanding problem
of achieving high-performance. To achieve a fully capable
NFV, high-speed packet delivery and low latency is required.
NetVM provides the fundamental underlying platform to
achieve this.

Improving I/O speeds in virtualized environments has long
been a challenge. Santos et al. narrow the performance gap
by optimzing Xen’s driver domain model to reduce execution
costs for gigabit Ethernet NICs [43]. vBalance dynamically and
adaptively migrates the interrupts from a preempted vCPU to
a running one, and hence avoids interrupt processing delays
to improve the I/O performance for SMP-VMs [44]. vTurbo
accelerates I/O processing for VMs by offloading that task to
a designated core called a turbo core that runs with a much
smaller time slice than the cores shared by production VMs
[45]. VPE improves the performance of I/O device virtualiza-
tion by using dedicated CPU cores [46]. However, none of these
achieve full line-rate packet forwarding (and processing) for
network links operating at 10 Gbps or higher speeds. While we
base our platform on DPDK, other approaches such as netmap
[47] also provide highspeed NIC to userspace I/O.

Researchers have looked into middlebox virtualization on
commodity servers. Split/Merge [48] describes a new abstrac-
tion (Split/Merge), and a system (FreeFlow), that enables trans-
parent, balanced elasticity for stateful virtual middleboxes to
have the ability to migrate flows dynamically. xOMB [7] pro-
vides flexible, programmable, and incrementally scalable mid-
dleboxes based on commodity servers and operating systems to
achieve high scalability and dynamic flow management. CoMb
[9] addresses key resource management and implementation
challenges that arise in exploiting the benefits of consolidation
in middlebox deployments. These systems provide flexible
management of networks and are complementary to the the
high-speed packet forwarding and processing capability of
NetVM.

VIII. CONCLUSION

We have described a high-speed network packet processing
platform, NetVM, built from commodity servers that use virtu-
alization. By utilizing Intel’s DPDK library, NetVM provides a

flexible traffic steering capability under the hypervisor’s con-
trol, overcoming the performance limitations of the existing,
popular SR-IOV hardware switching techniques. NetVM pro-
vides the capability to chain network functions on the platform
to provide a flexible, high-performance network element incor-
porating multiple functions. At the same time, NetVM allows
VMs to be grouped into multiple trust domains, allowing one
server to be safely multiplexed for network functionality from
competing users.

We have demonstrated how we solve NetVM’s design and
implementation challenges. Our evaluation shows NetVM out-
performs the current SR-IOV based system for forwarding
functions and for functions spanning multiple VMs, both in
terms of high throughput (34.5 Gbps) and reduced packet pro-
cessing latency (88.3 ns per packet). NetVM provides greater
flexibility in packet switching/demultiplexing, including sup-
port for state-dependent load-balancing. NetVM demonstrates
that recent advances in multi-core processors and NIC hardware
have shifted the bottleneck away from software-based network
processing, even for virtual platforms that typically have much
greater IO overheads.
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