
Multi-Cache: Dynamic, Efficient Partitioning for
Multi-Tier Caches in Consolidated VM

Environments
Sundaresan Rajasekaran, Shaohua Duan, Wei Zhang, Timothy Wood

Department of Computer Science, The George Washington University
{sundarcs, shaohuaduan, zhangwei1984, timwood}@gwu.edu

Abstract—Every physical machine in today’s typical datacenter
is backed by storage devices with hundreds of Gigabytes to
Terabytes in size. Data center vendors usually use hard disk
drives for their back-end storage as it is cheap and reliable.
However, the increase in the I/O accesses to the back-end storage
from one or many of the VMs hosted on a physical machine can
reduce its overall accesses time significantly due to contention.
This may not be suitable for interactive applications requiring
low latency that might be co-located with other I/O intensive
applications.

In this paper we present Multi-Cache, a multi-layer cache
management system that uses a combination of cache devices
of varied speed and cost such as solid state drives, non-volatile
memories, etc to mitigate this problem. Multi-Cache partitions
each device dynamically at runtime according to the workload of
each VM and its priority. We use a heuristic optimization tech-
nique that ensures maximum utilization of the caches resulting
in a high hit rate.

We use a weighted partitioning policy that improves latency
by up to 72% for individual workloads, and a overall hit rate
increase of up to 31% for host running several workloads together
in comparison to standard LRU caching algorithms.

Index Terms—virtualization, flash-cache

I. INTRODUCTION

As hardware increases in power, the number of VMs per
host also keeps increasing. A typical host in a datacenter
now packs tens to hundreds of VMs in order to maximize
resource utilization; the popular VMware ESXi hypervisor has
increased the number of VMs supported per host from 32
to 1024 [1] in recent years. To support this, hosts are now
equipped with Terabytes of hard disk space and Pettabytes of
externally attached storage systems.

While low cost hard drives have allowed data centers to
meet this growing capacity, their I/O latency and throughput
has stagnated. This is due to the hardware limitations of
magnetic hard disk drives with spinning platters. Moreover,
the fraction of random I/O operations on these devices tends to
increase as more VMs are consolidated to a host. To overcome
this limitation, studies have been done to analyze the feasibility
of replacing the hard disk devices entirely with solid state
drives (SSDs) [2]. Instead, a more practical approach that
modern datacenters take to speed up the I/O accesses of the
VMs is by using faster drives such as SSDs as caching devices
on the hosts.

In the coming years, a deeper hierarchy of storage devices
is expected to emerge, each with differing latency, throughput,
price, and capacity characteristics [3]. This offers new oppor-
tunities for efficiently managing data center storage, but it also
complicates the picture by providing a diverse set of options
to choose from. The difficulty of building an efficient caching
system is further compounded by the varied workload needs
of different VMs. As a result, a VM with poor data locality
and high random I/O, that cannot benefit from a cache might
greedily take all the cache space, despite there being other
VMs that could benefit more from it. Also, different VMs
can have different priorities, so a cache management system
should ensure that interference does not impact the Service
Level Agreements (SLA) of the VMs.

In this work we present a multi-tier cache management
solution that tries to solve these problems. Multi-Cache dy-
namically partitions a set of storage devices at runtime based
on the VMs’ workload and priority. The partitioning is based
on workload features such as the long term locality and the
intensity of recent bursts. Our contributions include:

• Workload characterization and cache utility models that
predict how different VMs will benefit from each tier in
the cache.

• An optimization framework and greedy heuristic that
partitions the cache layers at runtime to maximize overall
performance and account for priority levels.

• A simulation platform to evaluate our cache partitioning
algorithm on cache devices of varying throughput and
latency.

We have evaluated a range of workloads on our simulation
platform to demonstrate the benefits of multiple cache layers,
and the importance of intelligently managing how caches are
shared by competing VMs. Our results show a latency increase
of up to 72% for individual workloads that exhibit high data
locality, and a overall hit rate of a host running several VM
workloads of up to 31%.

II. BACKGROUND

Data centers often use network storage devices to store the
disks of virtual machines. Host side caching, where a fast local
disk on each host is used to cache data for one or more virtual

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100000 200000 300000 400000 500000 600000

H
it

 R
a
te

 (
%

)

Cache size (# of blocks)

Hit Rate Curve

Fig. 1. Hit Rate Curve

machines, can improve the performance of I/O accesses since
network latency and slow disk lookups are avoided [4], [5], [6].
Depending on the nature of the workloads even the simplest
implementation of host side caching can bring significant
improvement in performance [6]. One of the major factors
affecting the performance is the hardware performance of the
caching device itself.

The diversity of available storage devices that can be used
for caching is increasing, ranging from SATA and PCIe
SSDs to upcoming non-volatile memory (NVM) technologies.
Each of these technologies have different throughput, latency,
reliability, and cost trade-offs. Thus manually choosing an
appropriate caching device and capacity with respect to the
expected workload is difficult for several reasons. First, we
cannot always predict the nature of the workload. Second,
even if we could, workloads tend to be dynamic, so a static
assignment of disks to virtual machines will be inefficient in
the long term. Lastly, a host may run multiple VMs, so the
cache must be effectively shared between these VMs without
causing interference.

To mitigate this problem, automated software layer solutions
have been proposed that try to divide the cache space of a
single disk dynamically among different VMs based on the
nature and the priority of the workloads running inside the
VMs such that the overall I/O performance is maximized [7],
[8], [9]. Our work extends these systems to take advantage of
deepening storage hierarchy options, allowing several different
caching devices to be partitioned among a set of virtual
machines.

The effect of cache size on the performance of the appli-
cations have been studied rigorously for several decades [10],
[11], [12], [13]. Hit Ratio Curves as a function of a cache size
shows the hit rate an application has for a given cache size.
Figure 1 shows an example of an Hit Ratio Curve(HRC). For
a cache size that can hold 200,000 blocks, the given workload
will achieve a 42% hit rate if the same workload is replayed.
As long as a policy such as Least Recently Used (LRU) is
used for eviction, the hit rate increases monotonically with
the cache size, but it may level off based on the locality of
accesses in the workload.

Mattson et al. [10] pioneered a technique to effectively
calculate the Hit Ratio Curve for a working set [14]. Mattson
et al. constructed a histogram of reuse distances of all the

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Without MapReduce With MapReduce

H
it

 R
at

io
 (

%
)

Workload Type

Terminal Server
MapReduce TeraSort

Fig. 2. Hit Rate of interactive VM getting affected due to poor cache
management

blocks accessed in a given workload to accurately calculate
the HRC. A reuse distance of a block is the number of unique
block accesses between two consecutive references to that
block. Once such a histogram is created with all the reuse
distances, a CDF of the histogram would give us the hit ratio
as a function of the reuse distance, which is the cache size.
Tracking the reuse distances for all the blocks in a trace is
computationally intensive and thus it is highly impractical to
construct an HRC dynamically at runtime. Recently, a number
of techniques have been proposed to optimize the runtime and
space constraint of calculating HRCs. These techniques can
potentially compute HRCs in sub-linear time with a constant
space [15], [16], [17].

Once HRC curves are calculated for several VMs running
together on the same host, they can be used to partition the
cache among those VMs. Traditionally, system administrators
analyze the HRCs and manually allocate and partition the
host-side cache. However, this method is labor intensive, and
prevents the cache from being dynamically managed as VM
workloads change over time. Recently there has been work
done for dynamic cache partitioning [9], [7], [5] however, they
focus on managing a single shared cache layer and do not take
advantage of the deepening storage hierarchy.

III. MOTIVATION

The motivation for this work is two-fold. First, we show why
we need a smart partitioning algorithm. Second, we show the
benefits of a multi-layer cache.

A. The case for smart partitioning

The need for partitioning host side caches has been studied
in [9], [7], [5]. To further illustrate the need, we conduct a
simple experiment where two VMs residing in the same host
share a caching device that is managed with a global Least
Recently Used (LRU) eviction policy, i.e., blocks are stored
and evicted from a single cache in Least Recently Used order,
with no attention paid to the VM making the disk request.

The left side of figure 2 shows a VM running a Terminal
Server benchmark all by itself on a host, and the right side
shows the same Terminal Server benchmark running along
with a Terasort Hadoop benchmark. Terasort is an I/O intensive
job with minimal cache locality. As figure 2 shows, one
Terasort is able to significantly lower the hit rate of the

DRAM Flash HDD

Read(ns) 10-50 25,000 5-8*106

Write(ns) 10-50 200,000 5-8*106

Cost ($/GB)1 8-12 1-3 0.05-0.10

TABLE I
COMPARISON OF DATA STORAGE TECHNOLOGIES [20]

Terminal Server from 82% down to 30%, but achieves an
essentially 0% hit rate for itself.

The takeaway from this experiment is that I/O hungry jobs
can easily congest the cache space and thereby obstruct other
workloads that could potentially benefit more from the cache.
While it is possible for system administrators to carefully
specify which VMs can use a cache to avoid this kind of
contention, that is time consuming and difficult to do effi-
ciently if workloads change over time. An ideal solution would
be a cache management system that “learns” the behavior of
interfering workloads and prevents them from hurting other
workloads that have better cache locality.

B. The case for multi-layer cache

An ideal cache provides fast random-read and random-
write accesses. Table I shows the characteristic and pricing
of several of such storage technologies. There are several
other devices such as high performance PCI-express SSDs,
and the arrival new faster non-volatile storage devices referred
to as the Storage Class Memories (SCM) that constitute
NVRAM technologies should also serve as excellent caching
devices [18], [19].

However, even with the storage media available today,
there is not a single technology that will give the maximum
performance with minimal cost. This is because the nature
of many storage workloads is that a small set of blocks is
typically accessed far more frequently than the rest of the
working set, which is in turn accessed more frequently than the
remaining blocks. Thus placing the hottest data in a very fast
storage device can provide a substantial performance benefit,
but putting all data in such a device is too expensive. However,
poorly managing these resources can lead to poor performance
if the wrong data is kept in the wrong type of device.

To overcome these challenges, we propose MultiCache,
a system that optimizes the usage of cache space among
different workloads, and transparently scales to use multiple
cache devices. MultiCache accounts for the relative speeds
of different devices and short/long term behavior of VM
workloads. This system allows system administrators to easily
combine multiple cache devices and automatically allocate
them to diverse workloads.

IV. MULTI-CACHE PARTITIONING

Multi-Cache seeks to partition M cache layers among N
different virtual machines in order to derive the greatest overall

1Values averaged among various vendors and may vary

Monitor

VM

Layer-1

Layer-2

Miss

Hit

Layer-1
Address

Translator
Layer-2
Address

Translator

Layer-1
Expensive, Fast

Layer-2
Cheap, Slow

Hard Disk Drive, Cheapest, Slowest

Miss

Hit

Sampling
Workload

Characterizer

Cache Utility

Model

Partition Optimizer

Storage Layers

Layer-n
Cheaper, Slower

Layer-n

Layer-n
Address

Translator

Miss

Hit

Fig. 3. Multi-Cache System Architecture

performance subject to the priorities of different virtual ma-
chines. Calculating these partitions in an accurate and scalable
way requires new techniques for characterizing the workloads
of VM I/O patterns and calculating partitions. Assigning cache
space across multiple devices to multiple VMs reduces to the
NP-hard knapsack problem, so new heuristic approaches are
needed to efficiently find accurate solutions.

Figure 3 represents our system architecture. Our approach
consists of three major components–a Workload Character-
izer, a Cache Utility Model, and a Partition Optimizer. The
Workload Characterizer maintains information about the I/O
access pattern of each VM. To capture long-term I/O patterns
that affect cache locality we track the reuse distance (RD) for
each VM. However, traditional hit rate estimation mechanisms
using RD fail to consider the relative access speeds different
VMs access the cache, and they can also be disrupted by short-
term bursts in I/O which often often come from interactive
VMs. To capture these sudden bursts of disk activity, we use
Reuse Intensity (RI) which tracks the frequency of unique and
reused blocks over shorter time intervals.

The rest of the section explains how we characterize our
workload, use long-term behavior and short-term behavior and
various other parameters such as priorities of the workload and
latency of the target devices to build a Cache Utility Model,
and partition the different storage layers.

A. Long Term Behavior

The performance of a cache for a given workload depends
on the frequency at which its data blocks are being reused over
time. The measure of the frequency at which the data blocks
for a workload are being reused is given by Reuse Distance
(RD). Thus, RD is an accurate representation of the cache
hit rate for a given cache size. We have two goals using RD.

The first is the representation of the workload access history
in terms of data locality- the shorter the reuse distances a
workload has, better the data locality. Second, we want to
calculate this quickly in real time. To achieve this we use the
open source implementation of PARDA [21].

A histogram of all RD values gives the distribution of
data locality. This distribution is then used to compute Hit
Ratio Curves (HRC). HRC as a function of cache size gives
an estimate of the cache hit rate for a given cache size. We
calculate RD values and HRCs in 1 hour intervals. For every 1
hour we calculate RD independently of the previous interval,
i.e. we discard the values we obtained from the previous
intervals.

A longer interval between RD calculation means it takes
longer to obtain HRCs and partition the caches. The interval
needs to be short enough to accurately predict the hit rate of
the workload for the next interval, but not too long for the
prediction to realize the effects. We found in our experiments
that usually 1 hour of the trace time was a good value, but
this is a tunable parameter.

RD captures the long term behavior of the workload, but
cannot respond to short term bursts in I/O accesses. Quickly
responding and resizing the cache to accommodate sudden
bursts of I/O accesses is a key part of a cache management
system. We use Reuse Intensity to capture the short-term
behavior of the workloads.

B. Short Term Bursts

Different VMs will access the cache at different rates and
capturing the relative speed of their accesses is important.
Traditional HRC estimation mechanisms using RD fail to
consider the relative access speeds with which different VMs
access the cache. For instance, for certain web services, such as
stock market providers, capturing quick bursts in trend is vital.
To capture such small term workload spikes we use Reuse
Intensity (RI) [7]. We use RI as a measure to capture sudden
bursts of hit ratio in a cache.

RI = 1− # unique blocks
total blocks

(1)

Equation 1 represents the formula to calculate RI . It indi-
cates that more the workload is random, the closer the value
of RI will be to 0. For instance, if there are only 9 unique
blocks from a workload of 10 block requests, the value of
RI will be 0.1. On the other hand, if the workload has a lot
of repeated requests to the same block, the value of RI will
be close to 1. The value of RI is calculated once every 60
seconds, and can also be tuned as a user parameter.

Figure 4 shows an example of RI of 4 different web
workloads taken from the MSR Cambridge traces [22]. One
can see from the figure that some workloads have spikes such
as web0 where RI will be most useful, and some like web1
where RI might provide useful information at some instances
but not always. Thus for workloads that are very volatile,
where hit rates cannot be effectively predicted using RD, RI
is used extensively. Finally, for workloads such as web2 or

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

R
eu

se
 I

n
te

n
si

ty

Time(hour)

web0
web1
web2
web3

Fig. 4. Reuse intensities of different web workloads

2.50 0.5 1 1.5 2

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cache Size in blocks (10^6)

H
it

 R
at

e

Workload A

Workload B
Layer-2 Cache allocation for Workload A

Layer-2 Cache allocation for Workload B

Layer-1 Cache for A

Layer-1 Cache for B

Fig. 5. Split HRC between different Layers according to size

web3 RI is close to zero, indicating there are no bursts of
localized data accesses for these traces.

Now that we have the long term behavior captured for every
hour, and short term behavior captured for every minute, we
use these two values in conjunction with latency of the caching
device to build a cache utility model.

C. Cache Utility Model

Our Cache Utility Model predicts the benefit a VM can get
from the cache. For simplicity, our exposition only considers
a two layer caching model, and we will refer to the faster
Layer-1 as NVM, and the slower Layer-2 as SSD. This model
can easily be scaled to n layers.

MultiCache uses all of the layers dedicated to a VM as a
single LRU cache—i.e., blocks evicted from a fast cache are
demoted to a slower layer, and blocks accessed from the slow
cache are promoted to the top of the faster cache. As a result,
MultiCache can use the observed RD values to predict the
cache hit rate for different total cache sizes, as well as for
individual tiers. For example, Figure 5 shows two workloads
being assigned different amounts of cache space at each level;
for Workload A, the predicted overall hit rate will be 78%, of
which 45% will come from the 1 million blocks allocated to it
from the faster cache. Similarly, of the 40% predicted overall
hit rate of Workload B, 20% will come from the 0.5 million
blocks allocated from the faster cache. The goal of MultiCache
is to determine these split points in order to maximize cache
utility.

We use hi(ci) to indicate the predicted hit rate for cache
layer i with capacity ci for a given workload. Since we use
NVM as our first layer cache, it’s expected hit rate is simply:

hnvm(cnvm) = RD(cnvm)

Where RD is the percentage of RD values less than cnvm
(the size of the NVM cache). Once a size, cnvm is selected for
the NVM layer (as described below), the hit rate on the SSD
layer can be modeled. For the second and subsequent layers,
we need to adjust for the size and hit rate of the previous
caches since we only want to predict the hit rate seen in the
space used at this layer. For our second layer SSD cache, this
gives:

hssd(cssd) = RD(cssd + cnvm)− hnvm(cnvm)

These hit rates are the first terms in our cache utility function
and represent the expected hit rate over the long term. We
multiply the hit ratio of each layer by the latency of the caching
device to the back-end storage device. We use lb, lnvm and
lssd as the latencies of the backup device, NVM and SSD
respectively. This causes cache layers with faster access speeds
to provide greater cache utility for an equivalent size cache.
We add to this the RI value calculated for each workload,
adjusted by a term α:

CUnvm(cnvm) =
lb
lnvm

× hnvm(cnvm) + (αnvm ×RI)

CUssd(cssd) =
lb
lssd
× hssd(cssd) + (αssd ×RI)

Here αssd and αnvm represents the expected “benefit” a
particular application/workload can get from the RI values and
is calculated for each layer as follows using the total capacity
of each layer:

αssd =
capnvm

capssd + capnvm

αnvm = 1− αssd

Thus if the layer 1 NVM cache has a relatively smaller size,
it will cause alpha to become larger. As a result, RI will have
more impact on the cache utility of that layer. This is desirable
because RI is used by MultiCache to handle workload bursts,
which are likely to cause frequent accesses in the faster, but
smaller cache layers. If the first layer cache is very small,
then it makes sense to place greater weight on RI instead of
RD, because the cache will be too small to cache accesses for
the long term behavior of RD, and instead its effectiveness
will mainly be dominated by whether short local bursts can
be served.

D. Optimization Solver

For each workload (i.e., VM), MultiCache determines a
cache utility function for each cache storage layer. The goal
of MultiCache is then to determine how to set the cache sizes
in order to maximize the sum of utility functions. For the two-
layer cache case and n different VMs, this becomes:

maximize :

n∑
v=1

pv ∗ (CUv
nvm(cvnvm) + CUv

ssd(c
v
ssd))

subject to:

n∑
v=1

cvnvm = capnvm and

n∑
v=1

cvssd = capssd

This maximization problem includes a priority for each
VM, pv , which can be tuned by administrators to give extra
cache weight to specific VMs. Since optimizing for multiple
VMs using multiple caching layers is an NP-Hard problem,
we use a heuristic algorithm for our optimization. MultiCache
uses simulated annealing, and further simplifies the problem
by greedily selecting sizes for each layer iteratively. That
means that simulated annealing is first used to maximize the
CUv

nvm(cvnvm) term across all VMs, and then the selected
cache sizes are used to calculate the best CUv

ssd(c
v
ssd) for all

VMs. This substantially reduces the search space compared to
attempting to solve the maximization problem across all VMs
and all layers simultaneously.

Putting it all together, in our experiments we reallocate
cache sizes every hour but this is a tunable parameter. In
our setup, the Workload Characterizer continually collects
statistics, and for every hour we run our Cache Utility Model,
and resize the partition using Partition Optimizer that uses the
results from Optimization Solver.

V. EVALUATION

A. Simulation Platform & Workload Analysis

To evaluate MultiCache’s partitioning algorithms we have
implemented a Python-based cache simulator. Our simulator
accepts a trace of disk requests and simulates how the requests
will be stored into the different cache layers. Similar to prior
work [7], we ignore write requests and focus on read per-
formance. We compare our MultiCache partitioning algorithm
against Global LRU–a simple LRU policy that treats all layers
of the cache as a single partition shared by all disks.

In our work, we calculate the Reuse Distance values using
the open source implementation of PARDA [21]. PARDA uses
a hash table that maps a LBA to its most recent reference, and
a splay tree that holds the values of the number of distinct
locations referenced since this LBA’s most recent reference.
PARDA is extremely efficient as its design philosophy re-
sembles a map-reduce [23] approach. It computes the RD
in parallel by partitioning the trace into different sections,
processing them independently, and finally merging them back
together.

We chose PARDA over other existing techniques [15], [16]
because, a) Since we are running a simulation, we didn’t need
the online cache optimization decisions that are provided by
Counter Stack and SHARDS. b) PARDA provides accurate
Hit Ratio Curves as opposed to approximating them, and
c) PARDA’s implementation is open source, readily available
to implement, and could be easily integrated within our
system.

PARDA calculates the HRC curves for both read and write
requests. Since, we are interested only in read requests here,
we pre-processed the input trace to discard all write requests.

We use the block I/O traces from MSR Cambridge, hosted
by SNIA [22]. It includes the following workloads:

Server Function #Disk
usr User home directories 3
proj Project directories 5
prn Print server 2
hm Hardware monitoring 2
rsrch Research projects 3
prxy Firewall/web proxy 2
src1 Source control 3
src2 Source control 3
stg Web staging 2
ts Terminal server 1
web Web/SQL server 4
mds Media server 2
wdev Test web server 4

In our simulator we consider each volume of a particular
Server as an individual virtual machine, i.e. in the case of web,
there will be 4 VMs issuing requests using the traces web 0,
web 1, web 2 and web 3 respectively. This means that these
4 VMs will be sharing/competing for space among different
cache layers—in our case two layers, NVM and SSD.

We run our cache partitioning algorithm for every 1 hour
of the trace time. We measure the hit rate, estimated latency,
cache space and several other metrics for each interval.

B. MultiCache Performance

In this section, we show how MultiCache can effectively
identify the workloads with higher locality and allocate more
space for them in the fastest cache layer available. We use our
simulator to compare the hit rate achieved with MultiCache
against the Global LRU policy. We test each workload trace
individually, having the different disks within that trace com-
pete for cache space. We use a first layer cache that can hold
2.5 ∗ 105 blocks and a second layer cache that is ten times
larger.

Figure 6 represents the average hit rate of each disk under
each policy; we do not show workloads where the hit rate is
less than 1%. One can see from the figure that Multi-Cache
shows an equivalent or greater hit rate for all the workloads.
This is because in global LRU, as explained in section III,
the workloads that could benefit from having a bigger cache
are restricted from using it due to the neighboring workloads
that have random access patterns but higher request rates. In

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

hm-0 hm-1 mds-0 mds-1 prn-0 prn-1 web-0 web-1 web-3

H
it

 R
at

e
(%

)

Workload

MultiCache
Global LRU

Fig. 6. Hit ratio of all the workloads

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 10 100 1000 10000 100000 1x10
6

 1x10
7

 1x10
8

H
it

 R
a
te

 (
%

)

Cache size (# of blocks)

web0
web1
web2
web3

Fig. 7. MSR SNIA web workload

contrast, MultiCache recognizes the workloads that can benefit
from more cache and gives them more space and restricts the
VMs with random workloads from over utilizing the cache
space. Across all of the workloads, Mult-Cache is able to
improve the total hit rate by 31% percent.

For the following experiments we focus on MSR’s web
workload, mainly because the 4 volumes in the workload have
very different access patterns. We replay each of the volumes’
trace from a individual virtual machine. For instance the trace
web 0 will be replayed as if the requests are coming from
VM0, and web 1 from VM1 and so on. Figure 7 shows the
hit ratio curves for each of these workloads. Note that web 1
can never achieve a hit rate above 5%, even with a very
large cache, whereas web 0 and web 3 are able to achieve
reasonably high hit rates with relatively small cache sizes.
In contrast, web 2 sees essentially no hits unless there is an
extremely large cache size (note the x-axis is log scale). This
suggests that the workload has very poor temporal locality, but
that the entire disk contents are read through multiple times
over the trace, allowing the hit rate to be large if the cache
is big enough. In practice, such a workload is not cacheable–
the space dedicated to caching is typically significantly smaller
than the size of the backend disks. In our experiments we only
consider cache sizes in the range of 106 blocks, so web 2 is
not dedicated much cache space.

C. Partitioning Dynamic Workloads

This section illustrates the importance of a dynamic parti-
tioning policy, where cache sizes are automatically adjusted as
workloads enter different phases. The comparison of Globral
LRU and MultiCache over time are detailed in this section.
For clarity purposes, we show only first few hours of the

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30 35 40

C
a
c
h
e
 P

a
rt

it
io

n
 S

iz
e

#
 o

f
b
lo

c
k
s

(x
1
0

5
)

Time(hour)

Global LRU web0
Global LRU web1

Global LRU web2
Global LRU web3

(a) NVM Layer

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30 35 40

C
a
c
h
e
 P

a
rt

it
io

n
 S

iz
e

#
 o

f
b
lo

c
k
s

(x
1
0

6
)

Time(hour)

Global LRU web0
Global LRU web1

Global LRU web2
Global LRU web3

(b) SSD Layer

Fig. 8. Cache allocation using Global LRU on NVM and SSD caching layers

experiments in our figures; similar behavior is seen in the
remainder of the trace.

Figure 8 shows the cache allocation over time for different
VMs of the web workload using Global LRU policy. Global
LRU policy allocates cache space based on each VM’s I/O
request rate i.e. the higher the I/O request rate of a VM the
more cache space will be allocated, and vice-versa regardless
of whether it would benefit from the cache. Furthermore,
Global LRU does not explicitly distinguish between NVM or
SSD caching layers. As a result, this will aim to fill up the
NVM layer’s cache space first, and use the SSD if need be.

The figures shows that the first caching layer is used
primarily for web 0, with occasional spikes where web 2
crowds it out. The second layer is used primarily for web 2,
despite that workload having very poor locality for cache sizes
below 10 million blocks, as was shown in Figure 7. The other
disks receive almost no cache space, despite having greater
locality.

Figure 9 shows the cache allocation over time for different
VMs of the web workload using MultiCache. Multicache tries
to smartly allocate cache space such that the overall hit rate
of all the VMs is maximized. Comparing figure 8(a) and
figure 9(a), one can see that Multicache tries to give fair space
to each of the VMs, but gives priority to VMs on NVM layer
that exhibit high hit rate.

Unlike Global LRU, MultiCache gives minimal cache space
to web 2, since it predicts it will not have a high hit rate. In-
stead, MultiCache dedicates most space to web 0 and web 1.
The choice of web 1 is at first surprising, since Figure 7’s
hit ratio curve predicted a relatively low hit rate potential.
The explanation is that the HRC is generated from the entire
1-week trace, during most of which web 1 has quite poor
locality. However, for the first 30 hours of the trace, the
workload is quite different, and is capable of achieving a hit
rate as high as 80%. This is shown in Figure 10, where web 1
is able to achieve a very high hit rate for the first portion
of the trace; this drops after hour 30 since a workload shift
reduces the locality. As a consequence, MultiCache reduces
the partition size for web 1 for the remaining hours of the
experiment. This illustrates the importance of a dynamic cache
partitioning model that responds to workload changes.

A second workload of interest in figures 8 and 9 is the web3

VM. web3 has very low disk reads but they have high locality.
This kind of workload is similar to real world interactive VMs,
that often have low request rates but high data locality. Global
LRU completely neglects this type of workload in the presence
of competing high request workloads, but MultiCache smartly
allocates sufficient space for web3 in NVM layer for faster
access and the rest in SSD. The latency improvements of these
allocations will be discussed in the later sections.

The effect of cache space allocations on hit rate can be seen
in figure 10. Initially when the cache is empty, both methods
perform the same. Once both the cache layers are warmed
up with requests, we can see that the hit rate of the VMs
using Global LRU levels up at the bottom while MultiCache
reserves more space for VMs that can have higher hit rate and
thus maximizes the overall hit rate. The hit rate of the VMs in
Global LRU stays at the bottom for two reasons. One, Global
LRU allocates almost all of its cache space in the NVM layer
to web0 and web2 uses up all of the SSD’s space with its
high number of cold requests i.e. requests with no data locality
thus cannot benefit from cache. MultiCache realized this about
web2 and smartly doesn’t any cache space at all.

D. Cache partitioning performance
We next examine how using a multi-layer cache can improve

performance. We use the disk latency data from table I so our
simulator can report estimated response times for each read
request depending on whether it is a cache miss or a hit in
a particular layer. We use the latency data from the DRAM
column for our Layer-1 cache in anticipation of upcoming
non-volatile memory technologies that are expected to have
response times in a similar range [24], and use Flash for the
Layer-2 cache.

Figure 11 shows that MultiCache provides a significant
latency reduction. We can see that the latency of the web3,
the high locality workload, out competed in the Global case,
is the lowest for MultiCache since its small working set can
easily be kept in the faster Layer-1 cache. The web0 workload
also sees a significant latency improvement. It is important
to note that none of the workloads see worse performance in
MultiCache, even though they are allocated less space with
that policy than they can achieve with Global LRU.

The benefits of MultiCache can be explained by examining
the average cache partition size for each of the workloads

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30 35 40

C
a
c
h
e
 P

a
rt

it
io

n
 S

iz
e

#
 o

f
b
lo

c
k
s

(x
1
0

5
)

Time(hour)

MultiCache web0
MultiCache web1

MultiCache web2
MultiCache web3

(a) NVM Layer

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30 35 40

C
a
c
h
e
 P

a
rt

it
io

n
 S

iz
e

#
 o

f
b
lo

c
k
s

(x
1
0

6
)

Time (hour)

MultiCache web0
MultiCache web1

MultiCache web2
MultiCache web3

(b) SSD Layer

Fig. 9. Cache allocation using MultiCache on NVM and SSD caching layers

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

H
it

 R
a
ti

o
 (

%
)

Time (hour)

Global LRU web0
Global LRU web1
Global LRU web2
Global LRU web3

(a) GLobal LRU

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

H
it

 R
a
ti

o
 (

%
)

Time (hour)

MultiCache web0
MultiCache web1
MultiCache web2
MultiCache web3

(b) MultiCache

Fig. 10. Hit rate of VMs for web workload using Global LRU and MultiCache

on the two layers. Figure 12 shows what percentage of each
cache tier is allocated to each workload over the course of the
1 week trace. This shows how Global LRU ends up dedicating
a large portion of both caches to web2, which doesn’t benefit.
On the other hand, MultiCache uses about half of each layer
for web0, but also reserves sufficient space in the faster layer
to satisfy most of web3’s requests.

This performance can be further exemplified by the hit rates
of the workloads on the individual layers. Figure 13 divides
the achieved hits up by cache layer. For MultiCache, web0
about 10% of the hits come from NVM and 20% of the hits
come from SSD layer. Here, one can see that the latency of
web3 is very low because all the hits of web3 comes from
NVM layer.

Figure 12 and figure 13 together represent the benefit of
our partitioning algorithm. For instance, allocating 55% of the
NVM layers cache on average yields about 10% hit rate on
web0 while allocating about 25% of the same cache space
yields about 50% of hit rate on web3. Intuitively one might
think that more cache space must be allocated to web3, but
MultiCache predicts that web3 cannot gain anymore from extra
cache space, but other workloads might be able to do so. This
is the justification behind allocating more cache space to a
web0 instead of web3.

E. Total Cache Size
In this section we evaluate the effect of total cache size on

the hit ratio of different VMs running together. In the following
experiment we firstly show that MultiCache gives a higher hit
rate using a cache of any size. Secondly, we show that Global

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

MultiCache Global LRU

L
at

en
cy

 (
x
1
0

6
 m

s)

Partition Policy

web0
web1
web2
web3

Fig. 11. Latency comparison of web workload between Global LRU and
Multicache

LRU plateaus after a certain cache size when there is still
room for improvement.

In this experiment we run 6 VMs web 0 . . . web 3, prn 0
and prn 1 to create a greater level of contention on the cache,
and compare the overall hit rate under each cache management
policy. Figure 14 shows the average overall hit rate versus
different cache sizes; the x-axis shows the Layer-2 cache size,
which is always ten times larger than Layer-1. The average
overall hit rate is the total accesses of all the VM workloads
in the host divided their total hit rate. For instance if web0 and
web1 has a total number of hits as 5000 and 5 with accesses
10000 and 5000 respectively, then we report the total hit rate
as 33.3% (5005

15000 ∗ 100).
The figure shows that MultiCache always yields a higher

hit rate than Global LRU except for very small cache sizes of
less than 1.5 million blocks where both methods yield similar

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

NVM SSD NVM SSD

C
a
c
h

e
 P

a
rt

it
io

n
 (

%
)

web0 web1 web2 web3

Global LRUMultiCache

Fig. 12. Cache Partition for web workload

 0

 10

 20

 30

 40

 50

 60

web0 web1 web2 web3 web0 web1 web2 web3

H
it

 R
a
te

 (
%

)

NVM SSD

Global LRUMultiCache

Fig. 13. Hit rate for web workload

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 1 2 3 4 5 6

H
it

 R
a
te

 (
%

)

Cache Size in # of blocks (x10
6
)

MultiCache Total
MultiCache NVM

Global LRU Total
Global LRU NVM

Fig. 14. Total Hit rate across all VMs of the web workload

results. This is because as the cache size grows small and
the number of VMs increase, partitioning doesn’t help for
significant improvement unless there are multiple workloads
with high random I/O. In that case, MultiCache will smartly
prevent the random workloads from using the cache space.
With large cache sizes, MultiCache improves the overall hit
rate by 31% and the NVM hit rate by 89%.

VI. RELATED WORK

RD calculation is computationally intensive. A naive im-
plementation of Mattson’s algorithm [10] takes O(m) space
and O(n.m) runtime where n is the size of the workload, and
m is the number of unique blocks requests in the workload.

Standard implementations of the Mattson’s algorithm use a
combination of balanced tree to locate the previous reference
of a block, and a hash table for quick lookups into the tree.
This method still uses O(n log(m)) time, but the space still
remained to be O(m).

Recently there have been works [21], [15], [16] that calcu-
late RD in sublinear time with constant space. Wires et al. [16],
in his CounterStack algorithm, reduced the space complexity
down to O(log(m)) by using Hyperloglog [25] data structure
and by various other techniques such as down sampling and
pruning. Waldspurger et al. [15] on the other hand, in his
Shards algorithm, uses a hash based spatial sampling technique
to calculate approximate Hit Ratio Curves using just O(1)
space.

The closest work to ours, from which we extend upon
are by Meng et al. [7] and Luo et al. [26]. Meng et. al.’s
system vCacheShare and Luo et al.’s S-Cave dynamically al-
locates cache-space at runtime for virtualized environments. S-
Cave optimizes the cache based on identifying cache-friendly
and unfriendly workloads while vCacheShare monitors the
changes in data locality optimizing for long term cache
benefits and short term bursts in data reuse. We extend their
findings and present a case for the need of a multi-tier cache
and show through our simulation how a two tier can improve
the throughput and latency.

Studies have been done to evaluate the feasibility of replac-
ing the disks with flash storage [2], and improving its resource
utilization with minimal cost [27], but our work focuses on
sharing the flash cache amongst different VMs based on their
workload. Intel’s Turbo Memory [3] takes a similar approach
and uses a flash device as an extension of main memory.

Multiple storage devices used in conjunction to provide
a flash based caching solution have been studied. Many of
these consider the usage of Flash devices along with backup
devices to provide a host based caching solution, but our work
primarily varies with the following work in the sense that we
can use multiple flash devices together for caching and can
guarantee maximum utilization/performance benefits from all
of them.

Multi tiered flash based storage systems have been recently
studied [28], [29], [30]. Wang et. al. [28] proposed a alloca-
tion model that identifies bottlenecked workloads per-device
in a hybrid storage system. In this model, clients that are
bottlenecked on the same storage device receive throughputs
in proportion to their fair shares while allocation ratios among
clients in different bottleneck sets are chosen to maximize
overall system utilization.

Hystor [30] combines SSDs and HDDs and provisions it
as a single block device. It separates the performance critical
blocks and redirects the I/O requests for those blocks to the
SSD and the rest to HDD, thus improving performance for the
critcal data blocks. Similarly, Combo Drive [31] also abstracts
SSD and HDD as a single device, and internally redirects the
I/O to each of the different devices. Fusion Drive [32] is a
comercial implementaion of this model. Differentiated Storage
Services [33] classifies the block I/O request from the user-

level based on system policies and matches blocks with storage
devices.

VII. CONCLUSION

The deepening storage hierarchy, composed of non-
volatile memory, flash, and traditional hard drives offers
new opportunities in how virtual machine data can be
cached on end-hosts. We have presented MultiCache, a
multi-layer host-side cache that intelligently partitions a set of
storage devices to cache data for competing VM workloads.
MultiCache gathers workload data and characterizes the short
and long-term behavior of each VM to build an optimization
framework that maximizes cache utility. We have presented
how MultiCache can improve cache hit rates for a wide
range of workloads by predicting the locality of each VM’s
accesses and sizing each layer of the cache accordingly.

Acknowledgements: This work was supported in part by
NSF grant CNS-1253575.

REFERENCES

[1] “Configuration Maximums - vSphere 6.0 - VMware,” https://www.
vmware.com/pdf/vsphere6/r60/vsphere-60-configuration-maximums.
pdf.

[2] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron,
“Migrating Server Storage to SSDs: Analysis of Tradeoffs,” in Proceed-
ings of the 4th ACM European Conference on Computer Systems, ser.
EuroSys ’09. New York, NY, USA: ACM, 2009, pp. 145–158.

[3] J. Matthews, S. Trika, D. Hensgen, R. Coulson, and K. Grimsrud,
“Intel&Reg; Turbo Memory: Nonvolatile Disk Caches in the Storage
Hierarchy of Mainstream Computer Systems,” Trans. Storage, vol. 4,
no. 2, pp. 4:1–4:24, May 2008.

[4] A. Leventhal, “Flash Storage Memory,” Commun. ACM, vol. 51, no. 7,
pp. 47–51, Jul. 2008.

[5] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Condict, J. Kimmel,
S. Kleiman, C. Small, and M. Storer, “Mercury: Host-side flash caching
for the data center,” in Mass Storage Systems and Technologies (MSST),
2012 IEEE 28th Symposium on, Apr. 2012, pp. 1–12.

[6] D. A. Holland, E. Angelino, G. Wald, and M. I. Seltzer, “Flash Caching
on the Storage Client,” in Presented as part of the 2013 USENIX Annual
Technical Conference (USENIX ATC 13). San Jose, CA: USENIX,
2013, pp. 127–138.

[7] F. Meng, L. Zhou, X. Ma, S. Uttamchandani, and D. Liu, “vCacheShare:
Automated Server Flash Cache Space Management in a Virtualization
Environment,” in 2014 USENIX Annual Technical Conference (USENIX
ATC 14), ser. ATC ’14. Philadelphia, PA: USENIX Association, Jun.
2014, pp. 133–144.

[8] D. Lee, C. Min, and Y. I. Eom, “Effective flash-based SSD caching
for high performance home cloud server,” Consumer Electronics, IEEE
Transactions on, vol. 61, no. 2, pp. 215–221, 2015.

[9] R. Koller, A. J. Mashtizadeh, and R. Rangaswami, “Centaur: Host-side
SSD Caching for Storage Performance Control,” in Proc. of ICAC, 2015.

[10] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation
Techniques for Storage Hierarchies,” IBM Syst. J., vol. 9, no. 2, pp.
78–117, Jun. 1970.

[11] C. Chow, “On optimization of storage hierarchies,” IBM Journal of
Research and Development, vol. 18, no. 3, pp. 194–203, 1974.

[12] W. D. Strecker, “Cache memories for pdp-11 family computers,” ACM
SIGARCH Computer Architecture News, vol. 4, no. 4, pp. 155–158,
1976.

[13] A. J. Smith, “Disk Cache-Miss Ratio Analysis and Design Consider-
ations,” ACM Trans. Comput. Syst., vol. 3, no. 3, pp. 161–203, Aug.
1985.

[14] P. J. Denning, “The working set model for program behavior,” Commu-
nications of the ACM, vol. 11, no. 5, pp. 323–333, 1968.

[15] C. A. Waldspurger, N. Park, A. Garthwaite, and I. Ahmad, “Efficient
MRC Construction with SHARDS,” in 13th USENIX Conference on
File and Storage Technologies (FAST 15). Santa Clara, CA: USENIX
Association, Feb. 2015, pp. 95–110.

[16] J. Wires, S. Ingram, Z. Drudi, N. J. A. Harvey, and A. Warfield, “Char-
acterizing Storage Workloads with Counter Stacks,” in 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
14). Broomfield, CO: USENIX Association, Oct. 2014, pp. 335–349.

[17] T. Saemundsson, H. Bjornsson, G. Chockler, and Y. Vigfusson, “Dy-
namic performance profiling of cloud caches,” in Proceedings of the
ACM Symposium on Cloud Computing, ser. SOCC ’14. New York,
NY, USA: ACM, 2014.

[18] M. Nanavati, M. Schwarzkopf, J. Wires, and A. Warfield, “Non-volatile
storage,” Commun. ACM, vol. 59, no. 1, pp. 56–63, Dec. 2015.
[Online]. Available: http://doi.acm.org/10.1145/2814342

[19] S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge, “Storage
management in the nvram era,” Proc. VLDB Endow., vol. 7, no. 2, pp.
121–132, Oct. 2013. [Online]. Available: http://dx.doi.org/10.14778/
2732228.2732231

[20] “Beyond DRAM and Flash,” http://www8.hp.com/hpnext/posts/
beyond-dram-and-flash-part-2-new-memory-technology-data-deluge.

[21] Q. Niu, J. Dinan, Q. Lu, and P. Sadayappan, “PARDA: A Fast Parallel
Reuse Distance Analysis Algorithm,” in Parallel Distributed Processing
Symposium (IPDPS), 2012 IEEE 26th International, May 2012, pp.
1284–1294.

[22] D. Narayanan, A. Donnelly, and A. Rowstron, “Write Off-loading:
Practical Power Management for Enterprise Storage,” Trans. Storage,
vol. 4, no. 3, pp. 10:1–10:23, Nov. 2008.

[23] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[24] A. M. Caulfield, J. Coburn, T. Mollov, A. De, A. Akel, J. He, A. Ja-
gatheesan, R. K. Gupta, A. Snavely, and S. Swanson, “Understanding
the Impact of Emerging Non-Volatile Memories on High-Performance,
IO-Intensive Computing,” in Proceedings of the 2010 ACM/IEEE In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 1–11.

[25] P. Flajolet, . Fusy, O. Gandouet, and e. al, “Hyperloglog: The analysis
of a near-optimal cardinality estimation algorithm,” in IN AOFA 07:
PROCEEDINGS OF THE 2007 INTERNATIONAL CONFERENCE ON
ANALYSIS OF ALGORITHMS, 2007.

[26] T. Luo, S. Ma, R. Lee, X. Zhang, D. Liu, and L. Zhou, “S-CAVE: Ef-
fective SSD Caching to Improve Virtual Machine Storage Performance,”
in Proceedings of the 22Nd International Conference on Parallel Archi-
tectures and Compilation Techniques, ser. PACT ’13. Piscataway, NJ,
USA: IEEE Press, 2013, pp. 103–112.

[27] J. Tai, D. Liu, Z. Yang, X. Zhu, J. Lo, and N. Mi, “Improving Flash
Resource Utilization at Minimal Management Cost in Virtualized Flash-
based Storage Systems,” Cloud Computing, IEEE Transactions on,
vol. PP, no. 99, pp. 1–1, 2015.

[28] H. Wang and P. Varman, “Balancing Fairness and Efficiency in Tiered
Storage Systems with Bottleneck-aware Allocation,” in Proceedings of
the 12th USENIX Conference on File and Storage Technologies, ser.
FAST’14. Berkeley, CA, USA: USENIX Association, 2014, pp. 229–
242.

[29] J. Guerra, H. Pucha, J. Glider, W. Belluomini, and R. Rangaswami, “Cost
Effective Storage Using Extent Based Dynamic Tiering,” in Proceedings
of the 9th USENIX Conference on File and Stroage Technologies, ser.
FAST’11. Berkeley, CA, USA: USENIX Association, 2011, pp. 20–20.

[30] F. Chen, D. A. Koufaty, and X. Zhang, “Hystor: Making the Best
Use of Solid State Drives in High Performance Storage Systems,” in
Proceedings of the International Conference on Supercomputing, ser.
ICS ’11. New York, NY, USA: ACM, 2011, pp. 22–32.

[31] M. A. A. Sanvido, Z. Z. Bandic, and C. M. Kirsch, “Combo Drive:
Optimizing Cost and Performance in a Heterogeneous Storage Device,”
in In the 1st Workshop on Integrating Solid-state Memory into the
Storage Hierarchy, 2009.

[32] Apple, “Fusion Drive,” https://en.wikipedia.org/wiki/Fusion Drive, Oct.
2012.

[33] M. P. Mesnier and J. B. Akers, “Differentiated Storage Services,”
SIGOPS Oper. Syst. Rev., vol. 45, no. 1, pp. 45–53, Feb. 2011.

