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ABSTRACT

Application performance monitoring in large data centers re-
lies on either deploying expensive and specialized hardware
at fixed locations or heavily customizing applications and
collecting logs spread across thousands of servers. Such an
endeavor makes performance diagnosis a time-consuming
task for cloud providers and a problem beyond the control
of cloud customers. We address this problem using emerg-
ing software defined paradigms such as Software Defined
Networking and Network Function Virtualization as well as
big data technologies. In this paper, we propose NetAlyt-
ics: a non-intrusive distributed performance monitoring sys-
tem for cloud data centers. NetAlytics deploys customized
monitors in the middle of the network which are transpar-
ent to end host applications, and leverages a real-time big
data framework to analyze application behavior in a timely
manner. NetAlytics can scale to packet rates of 40Gbps us-
ing only four monitoring cores and fifteen processing cores.
Its placement algorithm can be tuned to minimize network
bandwidth cost or server resources, and can reduce monitor-
ing traffic overheads by a factor of 4.5. We present experi-
ments that demonstrates how NetAlytics can be used to trou-
bleshoot performance problems in load balancers, present
comprehensive performance analysis, and provide metrics
that drive automation tools, all while providing both low
overhead monitors and scalable analytics.
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1. INTRODUCTION

The growing popularity of cloud computing has led to
large-scale, distributed applications, complicating both per-
formance and correctness monitoring. Modern web appli-
cations have evolved from single server applications to rela-
tively simple multi-tier applications to larger scale distributed
systems. Now, a growing trend is to deploy such systems as
“microservices," wherein a large application is broken into
many smaller components each deployed in a virtual ma-
chine or container. While such an approach may simplify
development by encouraging modularity, it poses significant
challenges to system administrators who must deploy, con-
figure and analyze the performance of these systems.

Unfortunately, understanding the performance and ensur-
ing the correctness of distributed applications is a growing
challenge for system administrators. Debuggers are typi-
cally capable of analyzing a single process, while manually
examining logs for dozens or even hundreds of components
in a large distributed system quickly becomes overwhelm-
ing. Similarly, analyzing performance bottlenecks grows
more arduous as a system grows, especially as web services
expand from simple multi-tier architectures to distributed
configurations. While cloud platforms have greatly simpli-
fied application deployment, they have led to more complex
management concerns.

At the same time, there is a growing desire for the cloud
infrastructure to provide transparent services to users, al-
lowing them to easily take advantage of features such as
load balancing or fault tolerance. Ideally, the monitoring
and management of distributed systems would be performed
by the platform provider in as application-agnostic a way as
possible. As a result of the separation between developers
and IT administrators, system administrators troubleshoot-
ing an application may not understand the finer details about
how different components interact or which log files to ex-
amine on each server. Thus, there is a need for monitor-
ing systems that can be deployed in an ad-hoc manner with-
out requiring modification to end systems or tight integration
with applications.

Recently, software-based networking technologies are ch-
anging the way network data can be routed and inspected.
Software Defined Networking (SDN) allows a centralized
controller to dictate how packets are routed on a per flow



basis, simplifying redirecting packets when they need to be
handled in a special way. When combined with new Net-
work Function Virtualization (NFV) techniques, packets can
be routed to network functions: software elements that can
analyze and even modify packets with efficiency compara-
ble to hardware solutions. Consequently, a new opportunity
opens for flexible monitoring of specific network flows.

With NetAlytics, we explore how SDN, NFV, and big data
streaming analytic tools can combine to build a powerful
monitoring and debugging platform for distributed systems.
NetAlytics allows a system administrator to specify a simple
query defining types of traffic to monitor and data to gather,
as well as how that data should be analyzed. The query
is transformed into a set of SDN rules that direct the de-
sired traffic to dynamically instantiated NFV monitors that
efficiently extract the target data. This data is then aggre-
gated and sent through a highly scalable streaming analytics
engine, allowing system administrators to quickly get back
meaningful insights about their networks and the applica-
tions running within them.

One of the biggest challenges to developing a practical
solution to this problem is the large amount of data. For
example, the traffic of a large data center can easily go be-
yond 100s of Gbps when considering all links in the topol-
ogy. Given this scale, there is no existing tool that can store
all of the data and analyze them in real time, not to mention
how much congestion the extra monitoring traffic may cause
if it all must be routed to storage servers. Therefore, the goal
of NetAlytics is to unobtrusively identify and extract neces-
sary data and analyze application performance at real time.

NetAlytics makes the following contributions:

o NFV-based network monitors that are precisely deployed

to efficiently monitor packet flows.

e A control framework that uses SDNS to split traffic and
send targeted flows to the monitoring system.

e A query language that automatically produces a set of
SDN rules and deploys NFV monitors.

e A processing engine for real-time analytics on the ag-
gregated data, providing insights into application per-
formance and network behavior.

We have implemented NetAlytics utilizing DPDK [3] to build
efficient software-based monitors capable of processing traf-
fic rates of 10Gbps or more. The monitored data passes
through an Apache Storm [1] deployment to provide scal-
able, real-time analytics. We demonstrate that our platform
prototype incurs minimal performance overhead, use large
scale simulation to test our placement algorithm, and de-
scribe several scenarios where NetAlytics simplifies detect-
ing configuration errors, analyzing performance, and automat-
ing resource management based on live network data.

2. BACKGROUND
2.1 Software-Based Networks

Software Defined Networking allows a logically cen-
tralized software controller to manage a set of distributed

data plane elements. In the past, the data plane primarily
consisted of routers and switches but has been evolving to
include both hardware and software middleboxes such as
intrusion detection systems (IDS), WAN optimizers, deep
packet inspection (DPI) engines, etc. The SDN controller
provides a set of rules to the data plane indicating how to
forward through the network the different flows which are
typically matched by a set of IP header fields. These rules
can either be proactively installed, or the controller can be
invoked when a data plane element receives a packet that it
does not already have a rule for. As a result, the SDN con-
troller can customize how to route individual flows using its
own application logic. Thus, the SDN controller creates a
much more flexible network than previous routing protocols
that typically determined routes at much coarser grain based
on criteria such as weighted shortest path [6, 10, 13, 25].

Network Function Virtualization is a complementary
technology that allows data plane elements to be written as
software components running in virtual machines. While
virtualization often incurs high overhead, especially for I/O
activities, recent research [17, 18, 33] has demonstrated sev-
eral techniques for bypassing these overheads. Combined
with recent high performance network interface cards (NICs)
and multi-core CPUs, one can now run a software data plane
that has performance comparable to hardware ASICs while
providing much greater flexibility and easier deployment [7,
15, 19, 24, 27].

With NetAlytics, we take advantage of both of these tech-
nologies to provide a flexible software infrastructure within
the network that can redirect important flows to efficient
monitors.

2.2 Scalable Real-time Analytics

Given the high volume of data originating from these mon-
itors, an application running on a single machine would not
do. Nor could we wait to accumulate the data into large
batches and launch long-running MapReduce [11] jobs against
them for analysis. Instead, we opt for a scalable real-time
framework that is capable of processing the data efficiently
and reliably.  There are several options and we choose
Apache Storm [1] because it is publicly available, easy to
use and gave reasonable performance.

Initially developed to analyze trending topics, news feeds
and other real time events at Twitter and later open sourced
in 2011, Apache Storm is capable of processing millions of
messages per second [2]. Storm conceptualizes its workflow
as a directed acyclic graph (DAG) wherein one processor
emits data to other processors in the graph. To use Storm
terminology, a graph is a “topology” whose root nodes, or
“spouts”, feed other nodes, or “bolts”, in the topology. A
Storm cluster runs many of these topologies. It can also dy-
namically scale the topology as nodes are started and stopped
and gracefully handle node failures.

3. NETALYTICS DESIGN
NetAlytics is designed to be:

e Transparent: Require no per-host changes, while still
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Figure 1: NetAlytics pipeline

providing application-level performance monitoring.

e Real-time: Responsively collect and analyze data on
demand for interactive analysis.

e Scalable: Monitoring, data aggregation, and stream anal-

ysis layers all must scale independently based on re-
source needs.

o Efficient: Monitors and analysis engines should be run
only when and where they are needed .

The overall flow of our system is shown in Figure 1. Sys-
tem administrators have an interface wherein they input a
query with syntax similar to SQL that defines the data they
are interested in and how it should be processed. This query
is transformed into a set of SDN rules installed by the SDN
controller and a group of NFV-based monitors that must be
installed by an NFV Orchestrator. The query also specifies
composable processing elements that the analytics engine
deploys. The results of the processing are then returned to
the administrator, providing real-time insights into their net-
work and its applications.

3.1 Efficient NFV Monitoring & Parsing

NetAlytics takes advantage of high performance software
I/0O libraries to efficiently gather data from inside packets on
commodity servers. Each monitor runs flexible parsers that
extract a desired region of a packet and can be customized
for specific protocols at different layers, e.g., TCP/IP, HTTP,
or Memcached. These software-based monitors can be de-
ployed as virtual network functions by an NFV orchestrator,
allowing them to be started exactly when and where they are
needed.

‘When a monitor is instantiated, it is instructed to run one
or more parsers, capable of extracting information related to
a given protocol or application. NetAlytics provides a set of
common parsers as shown in Table 1. In addition, system
administrators can develop their own parsers with a simple
interface: they define a packet handler function called when
each packet arrives and make use of the monitoring library’s
output functions to emit the desired information extracted
from a packet or group of packets.

NetAlytics parsers are lightweight processes since they
must be able to keep up with network line rates, e.g. over
14 million packets per second on a 10 Gbps link with 64
byte packets. As a result, our parsers simply extract a small
amount of data from each packet or produce aggregate statis-
tics about flows. More complex data processing is deferred
to the streaming analytics system discussed below. For ex-
ample, we provide a http_get parser that can extract the

URL of an HTTP GET request. The parser periodically re-
leases a list of URLSs to be analyzed in more depth, e.g. com-
bining the list with TCP connection timing information gath-
ered by another parser, and ultimately ranking them to find
the fastest and slowest pages.

The parsers emit data tuples that become the input to the
analytics system. Typically, a parser emits either a tuple that
is miniscule compared to the full packet it was derived from
or a single tuple per group of packets. Thus, the amount
of data extracted from packets and sent to the analytics en-
gine is significantly smaller than the size of the raw pack-
ets. As a result, NetAlytics is more efficient than existing
network analytic systems that often mirror entire packets or
packet headers. NetAlytics further reduces the overhead of
transmitting data tuples by aggregating tuples produced by
all parsers and having the monitor send them in batches (po-
tentially after being compressed).

The first element in each tuple is an ID field, usually cal-
culated as a hash of the packet’s n-tuple, although parsers
may use a different ID when emitting data aggregated across
multiple flows. The ID field enables information from mul-
tiple parsers to be aggregated by the processing entities, e.g.
they might use the flow ID to combine TCP connection time
information gathered by one parser with HTTP GET request
information from a second.

Parsers Layer Description
tep_flow_key Net extract src_ip, dst_ip, src_port, dst_port
tcp_conn_time Net detect SYN/FIN/RST flags

tcp_pkt_size Net calculate tcp packet size

memcached_get App parse memcached get request

http_get App parse http get request and response

mysql_query App parse mysql query and response

Table 1: Common NetAlytics parsers

3.2 Data Aggregation and Analysis

Data processing in NetAlytics occurs in two layers: a dis-
tributed queuing service that aggregates data and the real-
time analytic engines that perform actual processing. We
build our system on top of Kafka [21] and Storm [1] which
respectively provide these services. Separating these into
two layers provides important scalability benefits, allowing
each layer of the system to be independently replicated based
on available capacity and the performance requirements of
the analytics engine itself.

An aggregation layer is necessary because typically the
analysis that must be performed on the tuples released from
the monitors cannot be executed at the same rate that data
is produced. Parsers, potentially distributed across multiple
monitoring hosts, send their data to one of the Kafka servers.
Kafka is a distributed queuing service wherein data tuples
can be buffered by topic. Using Kafka, we can fuse together
data streams from parsers replicated at different points in the
network. Alternatively, if several different unique parsers
are running, each will receive its own data buffer since the
parser type is used to select a buffer. The aggregation level
is particularly useful for NetAlytics queries that only need to
run for a short period but may gather a substantial amount of



data. In this case the Kafka servers can act as a large memory
buffer while the analytic engine slowly processes the data.

The Storm analytics engine is deployed as a topology con-
sisting of a data "spout", that requests data from Kafka, a
series of processing nodes, and a data sink that produces the
final result. The topology dictates how simple analytic build-
ing blocks such as counters, rankers, histogram generators,
etc. combine to transform the input data into the desired
result. NetAlytics provides topologies for several common
processing tasks, and we name the topology by connecting
a set of blocks’ name listed in Table 2, e.g. diff_group takes
two streams (e.g., the start and end times of a TCP flow) and
calculates their difference value, and then groups the results
by some attribute (e.g., the destination IP). System admin-
istrators can easily create more by combining the building
blocks within these topologies in new ways.

Blocks Description
top-k get k largest value of the stream
max/min | get the smallest/largest value of the stream
sum get the total sum value of the stream
avg get the average value of the stream
diff get the difference value of two streams
group group the results by one or more attributes

Table 2: Common NetAlytics topology building blocks

3.3 Specifying Queries

NetAlytics provides a query language for system admin-
istrators to easily describe what data must be gathered and
how it should be processed. The query syntax is designed
to be easily translated into a set of OpenFlow rules that will
direct the appropriate flows to the monitors. Table 3 shows
the query language syntax.

query ::= parser-clause addr-clause attr-clause process-clause

parser-clause ::= PARSE parser-list

parser-list ::= parser_name | parser-list, parser_name
addr-clause ::= FROM address-list TO address-list
address-list ::= address | address-list, address
address::= ip:port | subnet:port | hostname:port | *
attr-clause ::= LIMIT limit-rate SAMPLE sample-rate
limit-rate ::= amount_of_time | number_of_packets
sample-rate ::= interval | auto | *

process-clause ::= PROCESS processor-list
processor-list ::= processor | processor-list, processor
processor ::= (processor_name: argument-list)
argument-list ::= argument | argument-list, argument
argument ::= argument_name=value

Table 3: Query language syntax

The primary keywords are PARSE, FROM/TO, LIMIT
and PROCESS. PARSE specifies a list of one or more parsers
that are deployed on monitors. The TO and FROM statements
identify the traffic flows of interest; * means all hosts or
all ports within the specified host. LIMIT dictates the num-
ber of packets to monitor or how long the monitors and the
processors should run. In addition, a sampling rate to ap-
ply at the monitor can be specified, which is enforced by

hashing each packet’s n-tuple to do sampling by flow, not
packet. The sampling rate can be specified by SAMPLE.
"auto" means the sample rate is determined by the feedback-
driven sampling mechanism, or if its value is *, sampling is
disabled. Finally, the PROCESS clause specifies the Storm
topology file to deploy. Parameters for the Storm topology
can also be provided in the query. Consider these example
queries:

PARSE tcp_conn_time, http_get

FROM 10.0.2.8:5555 TO 10.0.2.9:80

LIMIT 90s SAMPLE auto

PROCESS (top-k: k=10, w=10s)

Here two independent parsers, t cp_conn_time and
http_get, will be installed in monitors that are routed traf-
fic between 10.0.2.8:5555 and 10.0.2.9:80. They will run
90s with an automatically adjusted sample rate. Their out-
put will be processed by the t op—k topology.

PARSE http_get FROM % TO hl1:80, h2:3306
LIMIT 5000p SAMPLE 0.1
PROCESS (diff-group: group=get)

In this example all connections to host h1 or h2 are parsed
by http_get with 10% of flows being sampled to gather
5000 packets and processed by the diff-group topology.

3.4 Query Instantiation

When a user submits a query, it is interpreted to determine
which parsing and processing engines need to be instantiated
and how flows need to be mirrored and rerouted.

The FROM/TO clauses identify the types of monitored
flows, typically by specifying flows destined for or originat-
ing from a particular IP and port. The values from these
clauses in the query are translated into the match portion of
an OpenFlow rule. Currently, we assume that all queries
contain a FROM and/or TO clause, since we use them for
monitor placement. Expanding NetAlytics to support more
generic network-wide monitoring is possible but requires ma-
nual monitor placement.

The PARSE portion of the query dictates which parsing
modules need to be deployed. These parsers are deployed
onto monitoring hosts as described in the next section. The
monitoring hosts selected to run the required parsers define
the action portion of the OpenFlow rule. In that rule, we cre-
ate an action list with both the standard output port leading to
the destination and a secondary output leading to the mon-
itor. The query interpreter combines the match and action
criteria to build a rule transmitted to the SDN controller via
its Northbound interface which in turn is either pulled on de-
mand by switches when they see new packets or proactively
pushed to the switches by the SDN controller. The new rules
mirror a copy of each matched packet to NetAlytics’s moni-
toring infrastructure, permitting it to process packets without
adding processing latency to the critical path.

The Storm topology indicated by the PROCES S clause de-
termines what analytic components need to be initialized and
connected together. Depending on the available resources,
Storm components start on available servers in close prox-
imity to the aggregators and monitors as described in the



PARSE http-get FROM S1:*, S2:*, S3:* TO D1:80, D2:80, D3:80 LIMIT 90s SAMPLE auto PROCESS top-k

LN . i
busy S1 S2 free D1 D2 D3 busy
busy busy busy busy S3 Monitor busy free
free free busy busy free Aggregator free busy
free free free free Monitor Processor free free
rack 1 rack 2 rack 3 rack 4 rack 5 rack 6 rack 7 rack 8

Figure 2: Based on a query, NetAlytics automatically places monitors, aggregators and processors to minimize network bandwidth and

balance load.

next section. Though it is possible add operations such as
join in the query language, we leave this as future work.

4. MONITORING OVERHEADS

NetAlytics’s goal is to unobtrusively monitor applications,
but the additional network traffic it creates by sending data
for analysis can cause overheads for other applications. We
provide two approaches for reducing this cost: careful mon-
itor placement and feedback-driven sampling.

4.1 Monitor & Analytics Engine Placement

NetAlytics places monitors, aggregators, and processors
in order to minimize the network bandwidth consumed by
monitoring traffic. We assume the data center is structured in
a tree structure, such as a Fat Tree [22, 5], and that NetAlyt-
ics has access to the data center network and server topology,
as well as an IP-to-host mapping table for any IPs that a sys-
tem administrator may want to monitor. Our placement al-
gorithm currently assumes that NFV monitors are deployed
on hosts at the leaf nodes of the tree, i.e. mixed with other
standard servers. In the future, deploying NFV services on
mixed hardware/software switches higher up in the network
hierarchy may become feasible. We also try to minimize the
resource consumption on those hosts caused by NFV moni-
tors, thus we design different placement strategies for differ-
ent trade-offs between network bandwidth and host resource
consumption. Since our focus is on quickly deploying mon-
itors for short term queries, we rely on fast heuristic algo-
rithms rather than optimization formulations.

Monitors: Given a query, NetAlytics extracts all flows to
be monitored according to the FROM and TO statement in
the query. For each flow, NetAlytics first determines its
source and destination host. For example, in Figure 2, there
are three flows, (S1:*->D1:80), (S2:*->D2:80) and (S3:*-

>D3:80). NetAlytics then finds all Top of Rack (ToR) switches

that contain the source and destination hosts. We say such
switches cover that flow.

We have two observations about monitor placement. First,
a flow f can only be monitored by a monitor under a ToR
switch which covers f. In Figure 2, the flow (S1:*->D1:80)
can be monitored by a monitor in either rack 2 or rack 5.
Second, one monitor under a ToR switch sw is able to moni-
tor all flows covered by sw. For instance, the monitor in rack

5 can track both (S1:*->D1:80) and (S3:*->D3:80). Based
on these two observations, we implement two monitor place-
ment strategies, random and greedy. Algorithm 1 details our
two monitor placement algorithms.

Algorithm 1 Monitor placement

Input: F': flow set; strategy: monitor placement strategy
1: while F' is not empty do
2: if strategy = random then

3: sw <— random pick a ToR switch covering
4: at least one flow
5: else if strategy = greedy then
6: sw <— choose a ToR switch covering most flows
7: h < host on switch sw with minimal load
8: m < place a monitor in h
9: for each f in flows covered by sw do
10: if m does not have enough capacity then
11: break
12: m.monitor(f)
13: F.remove(f)

The random strategy randomly selects a ToR switch and
places a monitor in the host with minimal load on that switch.
Then it uses that monitor to track as many flows as the mon-
itor can. This process repeats until all flows are monitored.
Instead of a random choice, the greedy strategy always places
a monitor on a ToR switch which covers the most flows. For
example, in Figure 2, the greedy strategy places two moni-
tors, in rack 5 and rack 6. The aim of greedy strategy is to
reduce the number of monitors to be placed.

Analytics Engines: Unlike monitors, analytics engine place-
ment does not have a position constraint. Data extracted
from any monitor can be sent to any analytics engine, and
bandwidth is less of a concern since we expect monitors to
only send a small amount of data from each flow to the ag-
gregation layer. We consider three strategies to place ana-
Iytics engines. Since the placement strategy for aggregators
and processors are very similar, we only discuss aggregators
in the following scenario.

Initially we tried a purely random algorithm—for each mon-
itor, randomly choose a host to place an aggregator. But this
random approach performs too poorly in terms of both net-



work and resource cost. Instead, we create a variant we call
local-random. For a monitor, before creating a new aggre-
gator, we check if there are some existing aggregators con-
nected to the same aggregate switch with the monitor. If so,
we choose that aggregator to process the monitor; otherwise
a random host is picked for the new aggregator.

Next we consider a first fit strategy. This method will not
place a new aggregator until all existing aggregators are sat-
urated. Specifically, we keep using one aggregator to pro-
cess monitors until the aggregator has no capacity left. Then
we randomly choose a host to place a new aggregator. This
minimizes resource cost (i.e., the number of servers used for
aggregation and processing), but potentially incurs high net-
work cost.

To reduce network cost we consider a greedy strategy that
shares the same idea with the monitor placement. It first
greedily finds an aggregate switch which connects to the
most monitors and chooses a host nearby the monitor under
that aggregate switch to place an aggregator. Again, the host
is selected according to its free capacity. If there is no avail-
able host, it falls back to choose one from the whole hosts
set. The detailed implementation of this greedy approach
can be found in Algorithm 2.

Algorithm 2 Aggregator placement

Input: M: monitor set
1: while M is not empty do

2: find a switch sw* among aggregate switches which
3: connects to the largest number of monitors in M
4: M* <— set of monitors under sw*
5: h < a host under sw* with enough capacity
6: if his NULL then
7: h < select one from all hosts with enough capacity
8: a < place an aggregator in h
9: for each m in M* do
10: if a does not have enough capacity then
11: break
12: a.process(m)
13: M.remove(m)

Our goal with this greedy method is to avoid sending traf-
fic up to the core switch level, since this wastes a more lim-
ited network resource. One possible placement of aggrega-
tors and processors is shown in Figure 2. This approach may
result in a larger number of aggregators and processors being
deployed than strictly necessary, but each will require fewer
resources since the processing load is more spread out. If
the number of used hosts is a concern, the first fit approach
is preferable.

Our focus with these algorithms is on determining place-
ments with different network bandwidth and host resource
trade-offs. Once a placement is determined, we assume the

position of aggregators and processors are fixed for that query.

Dynamic management of the the analysis layer during a query
is beyond the scope of this work, but techniques such as [28]
could be used.

4.2 Feedback-Driven Sampling

By default, monitors send all packets through the parsers
they are running, which in some cases may produce a higher
tuple output rate than the analytics engine or even the ag-
gregation layer can handle. To prevent overloading the other
parts of the system and to minimize wasted network band-
width, we propose an adaptive sampling scheme based on
feedback from the aggregation layer.

Each aggregation server can observe the rates that new
tuples are arriving from monitors and being sent to the pro-
cessing engines. In Storm, the processors pull data from the
aggregation layer. If the pull rate is less than the arrival rate
of new data, then the aggregation buffers overflow, causing
data to be dropped. This data loss wastes network bandwidth
between the monitors and aggregators.

To prevent this situation, we use a back pressure mech-
anism wherein the aggregation layer observes its input and
output rates to see if the system is overloaded. If the input
rate is too high and memory is low, then the aggregator sends
a status message back to the monitor indicating it has low
buffer space. The monitor consequently adjusts its sampling
rate, reducing the number of packets sent to the aggrega-
tor. Expanding upon this idea, the monitor could inform the
SDN controller of the overload. The controller could even
adjust its sampling rate so that fewer flows are sent to the
monitor, reducing the bandwidth overhead both between the
target server and the monitor, and between the monitor and
the aggregation layer.

5. NETALYTICS IMPLEMENTATION

NetAlytics’s monitoring system uses Intel Data Plane De-
velopment Kit (DPDK) [3], a library that provides high per-
formance access to packets by bypassing the OS with a user
space poll-mode driver. While our current prototype runs as
a multi-process application directly on each host, encapsu-
lating these processes within virtual machines using an NFV
platform is a future endeavor in order to further simplify de-
ployment [27, 24, 33, 18]. We use Kafka and Storm for the
aggregation layer and stream processing engines and wrap
them in a control framework that automatically starts the dif-
ferent components depending on the desired query.

5.1 Monitor Design

While NetAlytics monitors receive a mirrored packet stream
and thus do not directly impose any latency on running ap-
plications, they must be able to maintain a high throughput
and scale up efficiently as network speeds increase. In ful-
fillment of this goal, our implementation employs these key
concepts:

Zero-copy, Lockless: DPDK allows multiple processes to
access a packet with no copying and provides lock free data
structures that prevent synchronization overheads.

Multi-level queuing: We architect our monitoring system
as a hierarchy of queues, which improves scalability by ded-
icating cores and queues for each worker thread.

Batching: We use batching both within the monitor’s pro-
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Figure 3: NetAlytics monitor architecture includes the collector, parsers, and an output interface

cessor pipeline to lower the overhead of queue manipulation
operations and when preparing data tuples to be sent to the
aggregators.

Sampling: We use adaptive sampling that drops packets
early, reducing both CPU load and network bandwidth if the
downstream analytics system cannot keep up.

5.2 Monitor Architecture

NetAlytics monitor framework includes the collector, pa-
rsers, and an output interface. It is built on DPDK 2.1.0 and
takes advantage of its high performance packet processing
mechanisms.

Collector: receives packets from the NIC and puts them into
parser queues based on the sampling rate. The collector puts
a pointer to each packet into the queues, i.e. it does not
copy the packets themselves. The pointer eliminates copying
overheads but allows every packet to be processed in parallel
by all the different parsers running on the monitor. While we
have found a single Collector thread sufficient for handling
a 10Gbps input rate, one or more cores could be dedicated
to each network port using Receive Side Scaling to load bal-
ance across the collector threads on higher rate networks.

Parser: contains the protocol logic to extract important packet
data. Each parser runs as a separate process that uses shared
memory to access the packet queues filled by the Collec-
tor. One parser process may run multiple worker threads;
this provides scalability for computationally intensive pars-
ing functions.

ProtocolLib: implements common functions to work with
Ethernet, IP, TCP and UDP headers, in addition to payload
data. As a result, new parsers can be written with minimal
code. For example, our HTTP GET parser requires only 12
lines of application-specific code.

Output Interface: reorganizes processed data in a specific
format such as JSON and outputs the message via a TCP
socket or Kafka producer.

Figure 3 illustrates how packets flow through the monitor.
The Collector polls the NIC for new packets which are DMA
copied into shared memory. Then the Collector puts a copy
of the packet descriptor (i.e., a small data structure with a
pointer to the packet content) into the queues for all running
parsers, so each parser can analyze the packet in parallel. In
the simplest case, the parser may only have a single worker
thread that examines the new packets and possibly emits a
data tuple to the output interface. The more complex parser
in the lower portion of the figure makes use of a two-level

queuing system and multiple worker threads so that inspec-
tion of different packets can be scaled across multiple cores.
The parser’s dispatcher distributes packets among the set of
workers using round-robin order or based on the packet flow
ID to ensure consistent processing of flows, and we have a
reference count on each packet so we know when all collec-
tors and parsers have finished with it and it can be deleted.

5.3 Storm Topology

NetAlytics can use common Apache Storm patterns to an-
alyze the data gathered by monitors. Here, we describe how
our top-k topology is implemented since it is the most
complicated processor used in our experiments.

The Storm topology performs top-k analysis on monitored
data as shown in Figure 4. This flow expands upon the
Storm-Starter project’s Rolling Top Words topology, which
is similar to the approach Twitter uses to produce trending
topics and images. Once raw packets have gone through the
monitors, a list of keys (e.g., HTTP GET URLs) are emitted
and sent to the Kafka layer in batches.

Storm then uses multiple Kafka “Spouts” (i.e. data sources
linked to the Kafka servers) to poll for new messages. The
retrieved data is then emitted to the Parsing Bolts. The Pars-
ing Bolts hash the raw string obtained from Kafka to get
a signature. Each of these bolts emit the signatures with a
respective count of one to a Counting Bolt selected based
on the signatures. The hashing ensures that even if there
are multiple Parsing or Counting bolts, counts for the same
URLSs will always be directed to the same instance. As a
result, the Counting Bolts are capable of producing rolling
counts of the signatures. Since we are interested in the global
top-k instead of local signature frequencies, we combine the
frequencies using the Ranking Bolts. The Ranking Bolts use
a parallel reduction to construct rolling local top-k’s and then
combine them into the rolling global top-k. The final output
list of the top-k signatures can then be stored in a database,
used to update the query output display, or even matched
back to URLs.

6. NetAlytics EVALUATION

In this section we evaluate the scalability of the NetAlytics
architecture and the efficiency of our placement algorithms;
use cases for the system are discussed in Section 7. Exper-
iments are performed on a cluster of HP servers with dual
Xeon 5600 2.67 GHZ CPUs (6 cores per socket), a Intel
82599EB 10G Dual Port NIC, and 32GB memory.  All
servers are connected by a 10 Gigabit Ethernet switch.
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Figure 4: The flow of packets from the monitors through Storm.
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Figure 5: Monitor Throughput
6.1 System Scalability

The goal of NetAlytics is to scale to large data center net-
works where gigabits of traffic needs to be monitored and
then processed with low latency.

Monitors: We first evaluate the performance of the monitor
to demonstrate its ability to provide high speed packet pars-
ing. We use one server to run the monitor and the other for

traffic generation using PktGen-DPDK from WindRiver [30].

Figure 5 shows the achieved throughput when running two
different parsers: tcp_conn_time which performs mini-
mal processing and simply emits a data tuple when a SYN
or FIN flag is seen and http_get which does a deeper
packet analysis including copying out the URL requested in
an HTTP stream. In both cases we only use one thread (i.e,
one core) for the parser being tested. From the results, we
can see the simple TCP parser can achieve a higher through-
put, meeting the 10Gbps line-rate for packet sizes of 128
bytes. The more complex HTTP parser incurs greater over-
head because of its string processing requirements but still
is able to meet the line rate for packets sized 256 bytes or
greater, illustrating the efficiency of NetAlytics’s monitor-
ing platform. Our prior work has shown that adding addi-
tional threads and NICs can scale the underlying NFV plat-
form’s throughput up to 68 Gbps when processing real traffic
flows [44].

Processors and Aggregators: The analytics system based
on Kafka and Storm also must scale to handle high traffic
rates. We deployed four Kafka nodes, four Storm nodes and
three Zookeeper nodes. Zookeeper can provide service dis-
covery and coordination for both Kafka and Storm, and we
use three Zookeeper nodes to ensure it won’t be the perfor-
mance bottleneck. We run our experiments using one moni-
tor and keep the ratio of Kafka brokers and Storm workers as
1:2 so that storm spout and bolt don’t need to share the same
worker process. Figure 6 shows the maximum input rate can
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Figure 6: NetAlytics scales when increasing the number of pro-
cesses, the minimum NetAlytics setup includes four processes
(monitor, kafka, storm spout and bolt).

be handled by NetAlytics as we adjust the number of mon-
itors, Kafka brokers and Storm workers. With 16 processes
for the analytics subsystem, NetAlytics can process over 4
Gbps of incoming data. This modest CPU cost would be
sufficient to analyze the 40 Gbps links common at the core
of data center networks, assuming a 10:1 data reduction fac-
tor between the monitor and the aggregator.

To reach this rate we optimize the configuration of Kafka
and Storm to focus on throughput rather than reliability. Typ-
ically, Kafka provides reliable message delivery by persist-
ing copies of all messages to disk, limiting throughput to
the disk write rate (70 MB/s). Instead, we use a RAM disk
to store Kafka’s log and reduce the data retention window,
which improves throughput by more than an order of mag-
nitude. Since NetAlytics queries already involve sampling
the data stream, the potential for message loss is not signifi-
cant for our use case.

6.2 Placement Simulation

We have implemented all the proposed monitor and ana-
lytics engines placement algorithms in a simulator and use a
common data center topology to evaluate our design.

Topology: Our simulations use a three-level fat tree topol-
ogy with k=16, which contains 1024 hosts, 128 edge switches,
128 aggregate switches and 64 core switches described as in
[5]. We consider memory and CPU resource constraints at
the host when placing a NetAlytics node. The memory ca-
pacity of each host is a random number between 32 to 128
GB and the CPU capacity is a random number between 12
to 24. The utilization of both resources is between 40% to
80%.

Workload Generation: To simulate a data center workload,
we use a staggered traffic distribution: 50% within the ToR
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Figure 7: Network cost of placement algorithms

switch, 30% within the same aggregate switch, and 20%
across a core switch (ToRP=0.5, PodP=0.3, CoreP=0.2) as
in prior work [26]. Flow size distribution is generated by re-
ferring to [9]. The parameters of NetAlytics nodes are based
on our system evaluation results: each monitor process can
handle 10 Gbps traffic, one aggregator and two analyzer pro-
cesses can handle 1 Gbps traffic. We assume each host has
a 10 Gbps Ethernet NIC and has 2K to 20K flows. The total
number of flows is around 1000K and traffic size is around
1.2 Tbps. In each experiment, we set the number of flows
that need to be monitored and then randomly choose these
flows from the total workload. At the monitors, only 10%
data will be extracted and sent to the aggregators, and the
aggregators will send all data to the processors. We run each
experiment at least 10 times with random seed to get a stable
average cost.

Network and Resource Cost: We use network cost and re-
source cost to evaluate different placement algorithms. The
metric of network cost is the ratio of extra bandwidth con-
sumed by NetAlytics to the original workload traffic. We
use two ways to calculate this metric, one is Bandwidth Cost
defined as the total bandwidth that all flows consume times
the number of hops the flows need to go through from the
monitors to the aggregators. The other one is Weighted-
Bandwidth Cost which takes the network topology into con-
sideration, and gives each hop a different weight based on
which link it needs to use. We use a weight of 1 from host
to ToR switch, weight 2 to the aggregate switch, and weight
4 for core links. This metric is important since not all links
are equal in the data center, and cross-rack traffic is more
expensive and should be discouraged. The resource cost is
measured by the total number of NetAlytics processes which
includes all running monitor, aggregator and processor pro-
cesses.

Placement Algorithms: We compare three placement algo-
rithms Local-Random, Netalytics-Node and Netalytics-Net-
work. In the Local-Random algorithm, the optimized ran-
dom strategy is used for placing both monitors and analytics
engines. The goal of Netalytics-Node algorithm is to mini-
mize the number of nodes used for monitoring and process-
ing, and it uses the random strategy to place monitors and
first fit strategy for analytics engines. Netalytics-Network
tries to minimize traffic overhead given the resource con-
straints, and it uses the greedy strategy for all placements.
The simulation results demonstrate the trade-off between traf-
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Figure 9: Architecture and response times for each tier

fic and resource consumption.

Netalytics-Network Placement incurs the least amount
of extra traffic. Figure 7 shows the network cost of three
placement algorithms. The extra bandwidth increases lin-
early with the number of flows, but Netalytics-Network al-
gorithm consumes the least network bandwidth. Most im-
portantly, the two lines of Netalytics-Network almost over-
lap which means it successfully limits most NetAlytics traf-
fic within the rack. This is the result of its greedy coverage
strategy that tries to minimize the distance between monitors
and analytics engines. Netalytics-Node performs the worst
because the first fit placement requires monitored data to be
redirected across the whole topology. Local-Random im-
proves the analytics engines’ locality, so its network cost is
lower than Netalytics-Node.

Netalytics-Node Placement consumes the least amount
of resource. Figure 8 shows the resource cost of the three
placement algorithms. As we expect, the resource consump-
tion of Netalytics-Node is the lowest, as it always tries to fill
current nodes before creating a new node. Though it’s pos-
sible Local-random puts analytics engines near monitors, its
randomness still causes higher recourse cost than Netalytics-
Network. All algorithms level off with large number of flows.
The reason is one monitor can handle more than 100K flows
with average 10KB flow size. And due to data reduction,
we only need a small number of analytics engines which are
also insensitive to the number of flows.

7. NETALYTICS USE CASES

In this section we describe sample use cases where Net-
Alytics can help diagnose performance issues, analyze ap-
plication performance at fine granularity, and automate re-
source management.

7.1 Multi-Tier Performance Debugging

Our first use case shows how NetAlytics can detect bottle-
necks and debug network performance issues by monitoring
response time and throughput statistics. We setup a two-
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tier web application illustrated in Figure 9; the application
has a web front end proxy that load balances requests to a
replicated application tier. The application tiers retrieve data
either from a MySQL database or Memcached.

In the Figure 10, we can see the response time observed at
the client side is anomalous, with a much higher percentage
of requests having a longer response time than expected. To
diagnose this problem, a common method is to monitor the
CPU utilization on all servers. However, the CPU load on
both App servers is around 12% since each is simply receiv-
ing an input request and then making a network call to either
the MySQL database or the Memcached server. Checking
the CPU usage on the database and cache only reveals that
both servers have moderate load.

With NetAlytics, we first issue a query to starta t cp—co-—
nn—time parser and a diff-group—avg processor to
determine the response time breakdown per-tier. The parser
reports the start and end time of each TCP connection. The
processor is a generic topology that can be configured for
various purposes. In this case, it takes the difference of the
start and end times emitted by the parser, groups them by
source and destination IP, and calculates the average for each
group. As shown in Figure 9, we find the response time be-
tween Proxy and App Server 1 is four times larger than the
connections with App Server 2, although the times for reach-
ing the database and cache are similar from both. This sim-
ple query has quickly helped the administrator narrow down
the problem, although it is not yet clear why App Server 1 is
incurring a higher response time.

We next starta t co—pkt—size parser and a group—sum
processor to check the throughput for each connection, and
as shown in Figure 11, we find three times higher network
usage between App Server 1 and MySQL, and four times
smaller load to Memcached. From this, we can infer some-
thing is wrong with App Server 1’s configuration, and it
turns out it has been misconfigured and most of its requests
are served by the MySQL database instead of the much faster
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cache, leading to the substantially higher overall response
times observed from the proxy.

This scenario illustrates how NetAlytics can help an ad-
ministrator quickly measure per-tier performance at fine gran-
ularity. By allowing this kind of interactive debugging, it be-
comes far easier to determine the root cause of performance
anomalies in a distributed system, all without requiring any
application-level logging or server modifications.

7.2 Coordinated Performance Analysis

A second use case for NetAlytics is as an in-depth perfor-
mance analysis tool that gives application developers insight
into the the behavior of specific web pages and database
queries. Here we analyze a PHP web application that exe-
cutes queries against the sample MySQL Sakila DVD rental
database. To understand its performance requires that Net-
Alytics dispatch queries that combine several different mon-
itors spanning different network layers.

We first run the simple PARSE tcp_conn_time FROM
* TO h1:80,h2:3306 LIMIT 500s SAMPLE x*
PROCESS (diff-group: group=destIP) queryto
gather response time data for all TCP connections to either
the web or database host. Since our web application per-
forms minimal processing on its own, the response times are
dominated by the MySQL lookups, so the response times
returned for each host are nearly identical. We plot the his-
togram of web response times in Figure 12.

Delving deeper, an administrator might issue a second
query that makes use of two parsers:

PARSE (tcp_conn_time, http_get) FROM » TO
h1:80 LIMIT 500s SAMPLE = PROCESS
(diff-group: group=get). NetAlytics can start both
parsers which independently send the requested URL and
the connection time to the processors, which will group the
results based on the page requested, combining both network
and application-level data. Consequently, developers or ad-
ministrators can quickly see how the response times vary for
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different pages, as shown in Figure 13.

When running this test, we identified a bug in our own
PHP code: an incorrect variable name in the script was caus-
ing the page to not issue the appropriate database queries. As
a result, a page that should have had a very large response
time was completing with minimal latency, as shown in Fig-
ure 14. While this is only anecdotal evidence, it illustrates
how NetAlytics could be useful as part of a regression test-
ing suite that analyzes real-time performance after an appli-
cation is updated.

Finally, we examine the performance of the MySQL tier
more closely by measuring the response times for individ-
ual SQL queries. Since MySQL permits several queries to
be sent over a single TCP connection, measuring the full
connection time hides the individual query times. We have
implemented a mysql parser which observes a TCP stream
to detect individual query/response pairs. This parser emits
timing information on a per-query basis, as well as the query
statement itself. Figure 15 shows the response time break-
down for individual SQL queries.

While it is possible to obtain most of this information
by processing application logs, NetAlytics provides a non-
intrusive and efficient solution. As a comparison point, we
measure MySQL’s throughput with and without the general
query log enabled. The query log records response times for
all queries, but we find that it lowers the the throughput for
a simple statement from 40.8K to 33K queries per second,
a 20% drop. In contrast, NetAlytics incurs no overhead on
the actual application, and allows performance statistics to
be gathered only when needed.

7.3 Real-Time Popularity Monitoring

Next we consider a richer setting where we show how Ne-
tAlytics can be used to continuously automate resource man-
agement based on live network data.

To illustrate the potential for this situation, we first ana-
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Figure 16: NetAlytics uses Storm to measure video content popu-
larity over time (100 is most popular video).
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Figure 17: NetAlytics monitoring data can be used to dynamically
adjust the number of replicas for popular content

lyze a real network trace released by Zink et al. [48] which
contains information about client requests for YouTube video
clips recorded at a network gateway. We use our top-k
processor to analyze the T6 trace and find the Top-10 popu-
lar videos within each timing interval. Figure 16 shows the
popularity of the 2nd and 3rd most popular videos over time,
illustrating how even this top content sees fluctuations over
time. These measurements suggest that real time network
information could be useful for optimizing resource alloca-
tions and data replication management.

To emulate such a scenario, we use a setup with a load
balancer, three web servers, and two clients. Initially, we
have the first client make HTTP GET requests for one of
1000 urls at a moderate rate, and at a certain point, we make
the second client perform HTTP GET requests for 10 urls at
a fast rate to simulate the top-10 hot content.

To gather and process this data, we issue a query to start
a http_get parser and a top_k processor in NetAlytics.
The parser examines the body of client HTTP GET request
packets to determine the content being requested and the ac-
cessed video server. These URLS are then passed to the top-k
analysis storm topology described previously in figure 4.

Given the sheer volume of data produced by the moni-
tor, we cannot effectively analyze the results in real-time on
a single machine. Instead, NetAlytics instantiates multiple
Kafka and Storm nodes and routes the data gathered by the
parser to the aggregators.

Rather than simply display the list of top URLSs to a user,
we tie NetAlytics in this experiment to an automated re-
source management system that automatically adjusts the
number of web servers being used and dynamically repli-
cates content across them. To do this, we utilize the top-
k processor’s ability to store the URLs of the most popu-
lar content into a Redis in-memory data store. We also use
an Updater Bolt within the topology that checks if the fre-



quency of a URL is above a configurable upper threshold.
If so, it will add a server to the web server pool and repli-
cate the popular content to it. Likewise, the Update Bolt will
remove a server when the top-k frequency is below a con-
figurable lower bound. In order to prevent rapidly increas-
ing and lowering the number servers based on the rolling
top-k’s, we force the Update Bolt to back off for a predeter-
mined amount of time before resuming examining the top-k
for further adjustments.

In order to load balance incoming requests across the server
pool, we use an NGINX proxy that obtains its configuration
from the Redis database filled by the top-k Database Bolt.
Thus we are able to implement a dynamic proxy which can
quickly adjust to web traffic characterized by the NetAlytics
platform.

The results are shown in Figure 17. During the first ten
seconds, the workload is low and evenly distributed, but af-
ter 10 seconds the load on web server 1 rises when the sec-
ond client starts sending requests for a set of 10 urls. Net-
Alytics automatically detects the surging popularity of this
content and initializes two more servers to handle the load.
As expected, after 23 seconds, part of the load on server 1 is
redistributed to server 2 and 3.

Currently, this kind of content popularity information is
usually gathered by using daily or weekly log data analy-
sis tools such as Hadoop. As a result, resource allocations
based on application-level data are done manually at coarse
time intervals. With NetAlytics, we can provide these types
of insights at much finer grained time intervals, with no in-
strumentation of the server applications themselves.

8. RELATED WORK

Distributed System Performance Diagnosis: Previous re-
search projects have presented a variety of diagnosis tools
and frameworks to monitor and debug distributed systems
[39]. Common approaches includes monitoring performance
metrics [20, 38, 45], instrumenting applications [8, 14, 23,
42] and annotating logs [31, 41]. For example, X-Trace [14]
presents a framework to trace multiple applications at dif-
ferent network layers, but it needs to instrument all of the
elements and reconstruct casual relations offline to do de-
bugging. Pivot Tracing [23] introduces a novel happened-
before join operator that combines dynamic instrumentation
and causal tracing which means it can diagnose real-world
issues more effectively, yet it is Java-specific and requires
instrumentation of each application. Thus, many prior ap-
proaches are application specific and may rely on experts
with deep knowledge and experience of the system, which
makes them less practical in large deployments.

Several approaches for transparently determining applica-
tion performance have been proposed [4, 32, 34, 47]. Projects
like Aguilera et al. [4] treat each component of a distributed
system as a blackbox and perform performance debugging
by observing message traces. NetCheck [47] performs di-
agnosis by using a blackbox tracing mechanism to collect a
set of system call invocation traces from the relevant end-
hosts. NetAlytics has the same end goals as these works, but

in this paper, we focus on how to efficiently deploy network
monitors in software-based networks and use a scalable pro-
cessing engine to analyze network data in real time.

Networking Monitoring and Debugging: Networking mon-
itoring and control are always hot research topics in the net-
working communities. However, many operators are still us-
ing traditional tools like tcpdump [37], traceroute and Net-
Flow [12] to collect information from the end hosts or switches,
pinpoint the network problems and manually modify the con-
figuration.

The emergence of SDN provides the possibility to sim-
plify these time-consuming tasks. Compared to traditional
network, SDN provides network-wide visibility and allows
for constantly monitors network conditions and reacts rapidly
to problems [29]. Projects such as Hedera, MicroTE, OpenS-
ketch, OpenSample and CherryPick [6, 10, 35, 36, 43] pre-
sented several approaches to measure and control the net-
work such as detecting congestion and rerouting flows us-
ing OpenFlow [25] interface. However, these projects only
focus on analyzing flow-level data or aggregated informa-
tion, which makes them unapproachable to packet granular-
ity problems such as faulty interfaces [46].

Recent projects include EverFlow, Planck, NetSight and
OFRewind [16, 29, 40, 46] presented techniques to access
the packet level information and achieved different levels of
network visibility. For example, NetSight [16] records the
full packet histories and provides an API for network anal-
ysis programs to diagnose problems. EverFlow [46] lever-
ages commodity switch’s “match and mirror" capability to
trace specific packets and help network administrators trou-
bleshoot DCN faults. NetAlytics takes inspiration from these
works and focuses on how to gather and process packet-level
data in a more flexible and efficient way. Our implemen-
tation leverages a set of emerging techniques and tools such
as DPDK, Storm and SDN controllers. Compared to other
approaches that may use one of them independently, we fo-
cus on how to automatically glue these layers together to
provide analysis results in real time while incurring minimal
performance overhead.

9. CONCLUSIONS

The number and diversity of distributed applications are
growing in both public clouds and private data centers. Un-
derstanding the performance of these applications is a ma-
jor challenge, particularly when it is not feasible or desir-
able to directly instrument the applications or the virtual ma-
chines they run in. We have described NetAlytics, a platform
for large-scale performance analysis by processing network
data. NetAlytics uses Network Function Virtualization to de-
ploy software-based packet monitors into the network, and
uses Software Defined Networking to steer packet flows to
the monitors. The captured data is then aggregated and sent
to a processing engine based on the Apache Storm real-time
data analytics engine. Our NetAlytics prototype illustrates
how transparent network monitors can help diagnose perfor-
mance issues, analyze application performance at fine gran-
ularity, and automate resource management.
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