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ABSTRACT
Managing Network Function (NF) service chains requires careful

system resource management. We propose NFVnice, a user space
NF scheduling and service chain management framework to pro-

vide fair, efficient and dynamic resource scheduling capabilities on

Network Function Virtualization (NFV) platforms. The NFVnice

framework monitors load on a service chain at high frequency

(1000Hz) and employs backpressure to shed load early in the ser-

vice chain, thereby preventing wasted work. Borrowing concepts

such as rate proportional scheduling from hardware packet sched-

ulers, CPU shares are computed by accounting for heterogeneous

packet processing costs of NFs, I/O, and traffic arrival character-

istics. By leveraging cgroups, a user space process scheduling ab-

straction exposed by the operating system, NFVnice is capable of

controlling when network functions should be scheduled. NFVnice

improves NF performance by complementing the capabilities of the

OS scheduler but without requiring changes to the OS’s schedul-

ing mechanisms. Our controlled experiments show that NFVnice

provides the appropriate rate-cost proportional fair share of CPU

to NFs and significantly improves NF performance (throughput

and loss) by reducing wasted work across an NF chain, compared

to using the default OS scheduler. NFVnice achieves this even for

heterogeneous NFs with vastly different computational costs and

for heterogeneous workloads.
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1 INTRODUCTION
Network Function Virtualization (NFV) seeks to implement network

functions and middlebox services such as firewalls, NAT, proxies,

deep packet inspection, WAN optimization, etc., in software in-

stead of purpose-built hardware appliances. These software based

network functions can be run on top of commercial-off-the-shelf

(COTS) hardware, with virtualized network functions (NFs). Net-

work functions, however, often are chained together [20], where a

packet is processed by a sequence of NFs before being forwarded

to the destination.

The advent of container technologies like Docker [34] enables

network operators to densely pack a single NFV appliance (VM/bare

metal) with large numbers of network functions at runtime. Even

though NFV platforms are typically capable of processing packets

at line rate, without efficient management of system resources in

such densely packed environments, service chains can result in

serious performance degradation because bottleneck NFs may

drop packets that have already been processed by upstream NFs,

resulting in wasted work in the service chain.

NF processing has to address a combination of requirements.

Just as hardware switches and routers provide rate-proportional

scheduling for packet flows, an NFV platform has to provide a fair

processing of packet flows. Secondly, the tasks running on the NFV

platform may have heterogeneous processing requirements that OS

schedulers (unlike hardware switches) address using their typical

fair scheduling mechanisms. OS schedulers, however, do not treat

packet flows fairly in proportion to their arrival rate. Thus, NF pro-

cessing requires a re-thinking of the system resource management

framework to address both these requirements. Moreover, standard

OS schedulers: a) do not have the right metrics and primitives to

ensure fairness between NFs that deal with the same or different

packet flows; and b) do not make scheduling decisions that account

for chain level information. If the scheduler allocates more process-

ing to an upstream NF and the downstream NF becomes overloaded,

packets are dropped by the downstream NF. This results in ineffi-

cient processing and wasting the work done by the upstream NF.

OS schedulers also need to be adapted to work with user space

data plane frameworks such as Intel’s DPDK [1]. They have to be

cognizant of NUMA (Non-uniform Memory Access) concerns of

NF processingand the dependencies among NFs in a service chain.

Determining how to dynamically schedule NFs is key to achieving

high performance and scalability for diverse service chains, espe-

cially in a scenario where multiple NFs are contending for a CPU

core
1

1
While CPU core counts are increasing in modern hardware, they are likely to

remain a bottleneck resource, especially when service chains are densely packed into

a single machine (as is often the case with several proposed approaches [23, 52]).
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Hardware routers and switches that employ sophisticated sched-

uling algorithms such as rate proportional scheduling [40, 50] have

predictable performance per-packet, because processing resources

are allocated fairly to meet QoS requirements and bottlenecks are

avoided by design. However, NFV platforms are necessarily differ-

ent because: a) the OS scheduler does not know a priori, the capacity

or processing requirements for each NF; b) an NF may have variable

per-packet costs (e.g., some packets may trigger DNS lookup, which

are expensive to process, and others may just be an inexpensive

header match). With NFV service chains, there is a need to be aware

of the computational demands for packet processing. There can

also be sporadic blocking of NFs due to I/O (read/write) stalls.

A further consideration is that routers and switches ‘simply’

drop packets when congested. However, an NF in a service chain

that drops packets can result in considerable wasted processing at

NFs earlier in the chain. These wasted resources could be gainfully

utilized by other NFs being scheduled on the same CPU core to

process other packet flows.

We posit that a scheduling framework for NFV service chains

has to simultaneously account for both task level scheduling on

processing cores and packet level scheduling. This combined prob-

lem is what poses a challenge:When you get a packet, you have to
decide which task has to run, and also which packets to process, and
for how long.

To solve these problems we propose NFVnice, an NFV manage-

ment framework that provides fair and efficient resource allocations

to NF service chains. NFVnice focuses on the scheduling and con-

trol problems of NFs running on shared CPU cores, and considers

a variety of realistic issues such as bottlenecked NFs in a chain,

and the impact of NFs that perform disk I/O accesses, which natu-

rally complicate scheduling decisions. NFVnice makes the following

contributions:

• Automatically tuning CPU scheduling parameters in order

to provide a fair allocation that weighs NFs based on both

their packet arrival rate and the required computation cost.

• Determining when NFs are eligible to get a CPU share and

when they need to yield the CPU, entirely from user space,

improving throughput and fairness regardless of the kernel

scheduler being used.

• Leveraging the scheduling flexibility to achieve backpres-

sure for service chain-level congestion control, that avoids

unnecessary packet processing early in a chain if the packet

might be dropped later on.

• Extending backpressure to apply not only to adjacent NFs

in a service chain, but for full service chains and managing

congestion across hosts using ECN.

• Presenting a scheduler-agnostic framework that does not

require any operating system or kernel modifications.

We have implemented NFVniceon top of OpenNetVM [54], a

DPDK-based NFV platform that runs NFs in separate processes

or containers to facilitate deployment. Our evaluation shows that

NFVnice can support different kernel schedulers, while substan-

tially improving throughput and providing fair CPU allocation

based on processing requirements. In controlled experiments using

the vanilla CFS BATCH [37] scheduler, NFVnice reduces packet

drops from 3Mpps (million packets per second) to just 0.01Mpps

during overload conditions. NFVnice provides performance isola-

tion for TCP flows when there are competing UDP flows, improving

throughput of TCP flows from 30Mbps to 4Gbps, without penal-

izing UDP flows, by avoiding wasted work. While this is scenario

dependent, we believe the performance benefits of NFVnice are

compelling. Further, our evaluations demonstrate that NFVnice,

because of the dynamic backpressure, is resilient to the variability

in packet-processing cost of the NFs, yielding considerable improve-

ment in throughput even for the large service chains (including

chains that span multiple cores).

2 BACKGROUND AND MOTIVATION
2.1 Diversity, Fairness, and Chain Efficiency
The middleboxes that are being deployed in industry are diverse

in their applications as well as in their complexity and processing

requirements. ETSI standards [13] show that NFs have dramatically

different processing and performance requirements. Measurements

of existing NFs show the variation in CPU demand and per packet

latency: some NFs have per-core throughput in the order of million

packets per second (Mpps), e.g., switches; others have throughputs
as low as a few kilo pps, e.g., encryption engines.

Fair Scheduling: Determining how to allocate CPU time to

network functions in order to provide fair and efficient chain per-

formance despite NF diversity is the focus of our work. Defining

“fairness” when NFs may have completely different requirements

or behavior can be difficult. A measure of fairness that we leverage

is the work on Rate Proportional Servers [40, 50], that apportion

resources (CPU cycles) to NFs based on the combination of an NF’s

arrival rate and its processing cost. Intuitively, if either one of these

factors is fixed, then we expect its CPU allocation to be proportional

to the other metric. For example, if two NFs have the same compu-

tation cost but one has twice the arrival rate, then we want it to

have twice the output rate relative to the second NF. Alternatively,

if the NFs have the same arrival rate, but one requires twice the

processing cost, then we expect the heavy NF to get about twice

as much CPU time, resulting in both NFs having the same output

rate. This definition of fairness can of course be supplemented with

a prioritization factor, allowing an understandable and consistent

way to provide differentiated service for NFs.

Unfortunately, standard CPU schedulers do not have sufficient

information to allocate resources in a way that provides rate-cost

proportional fairness. CPU schedulers typically try to provide fair

allocation of processing time, but if computation costs vary between

NFs this cannot provide rate-cost fairness. Therefore, NFVnice must

enhance the scheduler with more information so that it can appro-

priately allocate CPU time to provide correctly weighted alloca-

tions.

We adopt the notion of rate-cost proportional fairness for two

fundamental reasons: i) it not only seeks to maximize the through-

put for a given load across NFs, but even in the worst case scenarios

(highly uneven and high overload across competing NFs), it en-

sures that all competing NFs get a minimal CPU share necessary

to progress the NFs; and ii) the rate-cost proportional fairness is

general and flexible, so that it can be tuned to meet the QoS policies

desired by the operator. Further, the approach ensures that when

contending NFs include malicious NFs (those that fail to yield), or



NFVnice: Dynamic Backpressure and Scheduling for NF Chains SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

(a) Homogeneous NFs (b) Heterogeneous NFs

Figure 1: The scheduler alone is unable to provide fair resource allocations that account for processing cost and load.

misbehaving NFs (get stuck in a loop making no progress), such

NFs do not consume the CPU excessively, impeding the progress

of other NFs. While the Linux default scheduler addresses this

through the notion of a virtual run-time for each running task, we

fine-tune that capability to provide the correct share of the CPU

for an NF, rather than just allocating an equal share of the CPU for

each contending NF.

Efficient Chaining: Beyond simply allocating CPU time fairly

to NFs on a single core, the combination of NFs into service chains

demands careful resource management across the chain to mini-

mize the impact of bottlenecks. Processing a packet only to have it

dropped from a subsequent bottleneck’s queue is wasteful, and a

recipe for receive livelock [27, 36].

When an NF (whether a single NF or one in a service chain)

is overloaded, packet drops become inevitable, and processing re-

sources already consumed by those packets are wasted. For respon-

sive flows, such as a TCP flow, congestion control and avoidance

using packet dropmethods such as RED, REM, SFQ, CSFQ [14, 15, 28,

51] and feedback with Explicit Congestion Notification (ECN) [42]

can cause the flows to adapt their rates to the available capacity

on an end-to-end basis. However, for non-responsive flows (e.g.,

UDP), a local, rapidly adapting, method is backpressure, which can

propagate information regarding a congested resource upstream

(i.e., to previous NFs in the chain). NFVnice allows the upstream

node to determine either to propagate the backpressure information

further upstream or drop packets, thus minimizing wasted work. It

is important however to ensure that effects such as head-of-the-line

blocking or unfairness do not creep in as a result.

2.2 Existing OS schedulers are ill-suited for
NFV deployment

Linux provides several different process schedulers, with the Com-

pletely Fair Scheduler (CFS) [37] being the default since kernel

2.6.23. In this work we focus on three schedulers: i) CFS Normal, ii)

CFS Batch, and Round Robin.

The CFS class of schedulers use a nanosecond resolution timer

to provide fine granularity scheduling decisions. Each task in CFS

maintains a monotonically increasing virtual run-time which de-

termines the order and quantum of CPU assignment to these tasks.

The time-slice is not fixed, but is determined relative to the run-time

of the contending tasks in a time-ordered red-black tree [9, 19]. The

task with the smallest run-time (the left most node in the ordered

red-black tree) is scheduled to run until either the task voluntarily

yields, or consumes the allotted time-slice. If it consumes the allo-

cated time-slice, it is re-inserted into the red-black tree based on its

cumulative run-time consumed so far. The CFS scheduler is analo-

gous to weighted fair queueing (WFQ) scheduling [10, 53]. Thus,

CFS ensures a fair proportion of CPU allocation to all the tasks.

The CFS Batch variant has fewer timer interrupts than normal CFS,

leading to a longer time quantum and fewer context switches, while

still offering fairness. The Round Robin scheduler simply cycles

through processes with a 100 msec time quantum, but does not

attempt to offer any concept of fairness.

To explore the impact of these schedulers on NFV applications

we consider a simple deployment with three NF processes sharing

a CPU core. The NFs run atop a DPDK-based NFV platform that

efficiently delivers packets to the NFs. We look at two workloads:

1) equal offered load to all NFs of 5 Mpps; 2) unequal offered load,

with NF1 and NF2 getting 6 Mpps, and NF3 getting 3 Mpps. We also

consider the case where NFs have different computation costs. As

described above, the desirable behavior is for NFs to be allocated

resources in proportion to both their arrival rate and processing

requirements.

Table 1: Context Switches for Homogeneous NFs
Even Load Uneven Load

SCHED_

NORMAL

SCHED_

BATCH

SCHED_

RR

SCHED_

NORMAL

SCHED_

BATCH

SCHED_

RR

NF

csw-

ch/s

nvc

swch

/s

csw-

ch/s

nv

cswch

/s

csw-

ch/s

nvc

swch

/s

csw-

ch/s

nvc

swch

/s

csw-

ch/s

nvc

swch

/s

csw-

ch/s

nvc

swch

/s

NF1 0 339 0 333 266 3 0 3544 0 527 247 5

NF2 0 334 0 333 265 4 0 6205 0 479 246 5

NF3 0 333 0 334 266 3 9753 9 1007 0 248 3

Table 2: Context Switches for Heterogeneous NFs
Even Load Uneven Load

SCHED_

NORMAL

SCHED_

BATCH

SCHED_

RR

SCHED_

NORMAL

SCHED_

BATCH

SCHED_

RR

NF

csw-

ch/s

nvc

swch

/s

csw-

ch/s

nv

cswch

/s

csw-

ch/s

nvc

swch

/s

csw-

ch/s

nvc

swch

/s

csw-

ch/s

nvc

swch

/s

csw-

ch/s

nvc

swch

/s

NF1 0 33785 0 504 198 7 0 38585 0 503 85 10

NF2 0 32214 1 505 204 2 0 41089 4 496 92 1

NF3 65796 107 1010 8 206 0 79479 85 1004 4 93 0

In our first test, illustrated in Figure 1a, all 3 NFs have equal

computation cost (roughly 250 CPU cycles per packet). With an

even load sent to all NFs, we find that the three schedulers per-

form about the same, with an equal division of CPU time leading

to equal throughputs for each NF. However, reducing the traffic

to NF3 by half shows the different behaviour of the schedulers:
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while the CFS-based schedulers continue to evenly divide the CPU

(CFS’s definition of fairness), the RR scheduler allocates CPU time

in proportion to the arrival rate, which better matches our notion

of rate proportional fairness. This happens because RR uses a time

quantum that is substantially longer than an NF ever needs, so NFs

which yield the CPU earlier (i.e., because they have fewer packets

to process) receive less CPU time and thus have lower through-

put. Note the context switches (shown in Table 1) in RR case are

predominantly voluntary context switches, while the CFS based

schedulers incur non-voluntary context switches.

We next consider heterogeneous NFs (computation costs: NF1=

500, NF2=250 and NF3=50 CPU cycles) with even or uneven load.

Figure 1b shows that when arrival rates are the same, none of the

schedulers are able to provide our fairness goal—an equal output

rate for all three NFs. CFS Normal always apportions CPU equally,

regardless of offered load and NF processing cost, so the lighter

weight NF3 gets the highest throughput. The RR scheduler is the

opposite since it gives each NF an equal chance to run, but does

not limit the time the NF runs for. The CFS Batch scheduler is

in between these extremes since it seeks to provide fairness, but

over longer time periods. Notably, the Batch scheduler provides

NF3 almost the same throughput as Normal CFS, despite allocating

it substantially less CPU. The reason for this is that Normal CFS

can incur a very large number of context switches due to its goal

of providing very fine-grained fairness. Since Batch mode reduces

scheduler preemption, it has substantially fewer non-voluntary con-

text switches—reducing from 65K to 1K per second—as illustrated

in the Table 2. While RR also has low context switch overhead,

it allows heavy weight NFs to greedily consume the CPU, nearly

starving NF3.

These results show that just having the Linux scheduler handle

scheduling NFs has undesirable results as by itself it is unable to

adapt to both varying per-packet processing requirements of NFs

and packet arrival rates. Moreover, it is important to avoid the

overheads of excessive context switches. All of these scheduling

requirements must be met on a per-core basis, while accounting

for the behaviour of chains spanning multiple cores or servers.

3 DESIGN AND IMPLEMENTATION
In an NFV platform, at the top of the stack are one or more net-

work functions that must be scheduled in such a way that idle

work (i.e., while waiting for packets) is minimized and load on

the service chain is shed as early as possible so as to avoid wasted

work. However, the operating system’s process scheduler that lies

at the bottom of the software stack remains completely application

agnostic, with its goal of providing a fair share of system resources

to all processes. As shown in the prior section, the kernel sched-

uler’s metrics for scheduling are along orthogonal dimensions to

those desired by the network functions. NFVnice bridges the gap

by translating the scheduling requirements at the NFV application

layer to a format consumable by the operating system.

The design of NFVnice centers around the concept of assisted

preemptive scheduling, where network functions provide hints

to the underlying OS with regard to their utilization. In addition

to monitoring the average computation time of a network func-

tion per packet, NFVnice needs to know when NFs in a chain are

overloaded, or blocked on packet/disk I/O. The queues between

NFs in a service chain serve as a good indicator of pending work

at each NF. To facilitate the process of providing these metrics

from the NF implementation to the underlying operating system,

NFVnice provides network function implementations with an ab-

straction library called libnf. In addition to the usual tasks such

as efficient reading/writing packets from/to the network at line

rate and overlapping processing with non-blocking asynchronous

I/O, libnf co-ordinates with the NFVnice platform to schedule/de-

schedule a network function as necessary.

Modifying the OS scheduler to be aware of various queues in

the NFV platform is an onerous task that might lead to unneces-

sary maintenance overhead and potential system instability. One

approach is to change the priority of the NF based on the queue

length of packet at that NF. This will have the effect of increasing

the number of CPU cycles provided to that NF. This will require

the change to occur frequently as the queue length varies. The

change requires a system call, which consumes CPU cycles and

adds latency. In addition, with service chains, as the queue at an

upstream NF builds, its priority has to be raised to process packets

and deliver to a queue at the downstream NF. Then, the down-

stream NF’s priority will have to be raised. We believe that this

can lead to instability because of frequent changes and the delay

involved in effecting the change. This only gets worse with complex

service chains, where an NF is both an upstream NF for one service

chain and a downstream NF for another service chain. Instead,

NFVnice leverages cgroups [5, 33], a standard user space primitive

provided by the operating system to manipulate process scheduling.

NFVnice monitors queue sizes, computation times and I/O activities

in user space with the help of libnf and manipulates scheduling

weights accordingly.

3.1 System Components
Figure 2 illustrates the key components of the NFVnice platform.

We leverage DPDK for fast user space networking [1]. Our NFV

platform is implemented as a system of queues that hold packet de-

scriptors pointing to shared memory regions. The NF Manager runs

on a dedicated set of cores and is responsible for ferrying packet

references between the NIC queues and NF queues in an efficient

manner. When packets arrive to the NIC, Rx threads in the NF

Manager take advantage of DPDK’s poll mode driver to deliver the

packets into a shared memory region accessible to all the NFs. The

Rx thread does a lookup in the Flow Table to direct the packet to the

appropriate NF. Once a flow is matched to an NF, packet descriptors

are copied into the NF’s receive ring buffer and the Wakeup sub-

system brings the NF process into the runnable state. After being

processed by an NF, the NF Manager’s Tx Threads move packets

through the remainder of the chain. This provides zero-copy packet

movement.

Service chains can be configured during system startup using

simple configuration files or from an external orchestrator such as

an SDN controller. When an NF finishes with a packet, it enqueues

it in its Tx queue, where it is read by the manager and redirected

to the Rx queue of the next NF in the chain. The NF Manager also

picks up packets from the Tx queue of the last NF in the chain, and

sends it out over the network.
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Figure 2: NFVnice Building Blocks

We have designed NFVnice to provide high performance process-

ing of NF service chains. The NF Manager’s scheduling subsystem

determines when an NF should be active and how much CPU time

it should be allocated relative to other NFs. The backpressure sub-

system provides chain-aware management, preventing NFs from

spending time processing packets that are likely to be dropped

downstream. Finally, the I/O interface facilitates efficient asynchro-

nous storage access for NFs.

SystemManagement andNFdeployment:TheNFManager ’s

(Rx, Tx and Monitor) threads are pinned to separate dedicated

cores. The number of Rx, Tx and monitor threads are configurable

(C-Macros), to meet system needs, and available CPU resources.

Similarly, the maximum number of NFs and maximum chain length

can be configured. NFVnice allows NFs and NF service chains to be

deployed as independent processes or Docker containers which are

linked with libnf library. libnf exports a simple, minimal interface (9

functions, 2 callbacks and 4 structures), and both the NF Manager

and libnf leverage the DPDK libraries (ring buffers, timers, memory

management). We believe developing or porting NFs or existing

docker containers can be reasonably straightforward. For example,

a simple bridge NF or a basic monitor NF is less than 100 lines of C
code.

3.2 Scheduling NFs
Each network function in NFVnice is implemented inside its own

process (potentially running in a container). Thus the OS scheduler

is responsible for picking which NF to run at any point in time. We

believe that rather than design an entirely new scheduler for NFV,

it is important to leverage Linux’s existing scheduling framework,

and use our management framework in user space to tune any

of the stock OS schedulers to provide the properties desired for

NFV support. In particular, we exploit the CFS Batch scheduler,

but NFVnice provides substantially similar benefits to each of the

other Linux kernel schedulers. Figure 3 shows the NFVnice sched-

uling that makes the OS scheduler be governed by NF Manager via

cgroups, and ultimately assigns running NFs to shared CPU cores.

The detailed description of the figure is in the Sections 3.2 and 3.3.

Activating NFs: NFs that busy wait for packets perform very

poorly in a shared CPU environment. Thus it is critical to design the

NF framework so that NFs are only activated when there are packets

available for them to process, as is done in NFV platforms such as

netmap [43] and ClickOS [32]. However, these systems provide only

a relatively simple policy for activating an NF: once one or more
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Figure 3: NF Scheduling and Backpressure

packets are available, a signal is sent to the NF so that it will be

scheduled to run by the OS scheduler in netmap, or the hypervisor

scheduler in ClickOS. While this provides an efficient mechanism

for waking NFs, neither system allows for more complex resource

management policies, which can lead to unfair CPU allocations

across NFs, or inefficient scheduling across chains.

In NFVnice, NFs sleep by blocking on a semaphore shared with

the NF Manager, granting the management plane great flexibility in

deciding which NFs to activate at a given time. The policy we pro-

vide for activating an NF considers the number of packets pending

in its queue, its priority relative to other NFs, and knowledge of the

queue lengths of downstream NFs in the same chain. This allows

the management framework to indirectly affect the CPU scheduling

of NFs to be fairness and service-chain aware, without requiring

that information be synchronized with the kernel’s scheduler.

Relinquishing the CPU:NFs process batches of packets, decid-
ing whether to keep processing or relinquish the CPU between each

batch. This decision and all interactions with the management layer,

e.g., to receive a batch of packets, are mediated by libnf, which in

turn exposes a simple interface to developers to write their network

function. After a batch of at most 32 packets is processed, libnf will
check a shared memory flag set by the NF Manager that indicates if

it should relinquish the CPU early (e.g., as a result of backpressure,

as described below). If the flag is not set, the NF will attempt to pro-

cess another batch; if the flag has been set or there are no packets

available, the NF will block on the semaphore until notified by the

Manager. This provides a flexible way for the manager to indicate

that an NF should give up the CPU without requiring the kernel’s

CPU scheduler to be NF-aware.

CPU Scheduler: Since multiple NF processes are likely to be

in the runnable state at the same time, it is the operating system’s

CPU scheduler that must determine which to run and for how

long. In the early stages of our work we sought to design a custom

CPU scheduler that would incorporate NF information such as

queue lengths into its scheduling decisions. However, we found

that synchronizing queue length information with the kernel, at

the frequency necessary for NF scheduling, incurred overheads that

outweighed any benefits.

Linux’s CFS Batch scheduler is typically used for long running

computationally intensive tasks because it incurs fewer context

switches than standard CFS. Since NFVnice carefully controls when

individual NF processes are runnable and when they yield the CPU

(as described above), the batch scheduler’s longer time quantum

and less frequent preemption are desirable. In most cases, NFVnice
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Figure 4: Backpressure State Diagram

NFs relinquish the CPU due to policies controlled by the manager,

rather than through an involuntary context switch. This reduces

overhead and helps NFVnice prioritize the most important NF for

processing without requiring information sharing between user

and kernel space.

Assigning CPU Weights: NFVnice provides mechanisms to

monitor a network function to estimate its CPU requirements, and

to adjust its scheduling weight. Policies in the NF Manager can then

dynamically tune the scheduling weights assigned to each process

in order to meet operator specified priority requirements.

The packet arrival rate for a given NF can be easily estimated

by either the NF or the NF Manager. We measure the service time

to process a packet inside each NF using libnf. To avoid outliers

from skewing these measurements (e.g., if a context switch occurs

in the middle of processing a packet), we maintain a histogram of

timings, allowing NFVnice to efficiently estimate the service time

at different percentiles.

For each NF i on a shared core, we calculate load(i) = λi ∗ si , the
product of arrival rate, λ, and service time, s . We then find the total

load on each core, such as core m, TotalLoad(m) =
∑n
i=1 load(i),

and assign cpu shares for NFi on corem following the formula:

Sharesi = Priorityi ∗
load(i)

TotalLoad(m)

This provides an allocation of CPU weights that provides rate

proportional fairness to each NF. The Priorityi parameter can be

tuned if desired to provide differential service to NFs. Tuning pri-

ority in this way provides a more intuitive level of control than

directly working with the CPU priorities exposed by the scheduler

since it is normalized by the NF’s load.

3.3 Backpressure
A key goal of NFVnice is to avoid wasting work, i.e., preventing an

upstream NF from processing packets if they are just going to be

dropped at a downstream NF later in the chain that has become

overloaded. We achieve this through backpressure, which ensures

bottlenecks are quickly detected while minimizing the effects of

head of line blocking.

Cross-Chain Pressure: The NF Manager is in an ideal position

to observe behavior across NFs since it assists in moving packets

between them. When one of the NF Manager’s TX threads detects

that the receive queue for an NF is above a high watermark (HIGH_

WATER_MARK) and queuing time is above threshold, then it exam-

ines all packets in the NF’s queue to determine what service chain

NF1 NF2

NF3

NF4

NF5

A

C

B

A

A

D

C

B

D

C

B

Figure 5: OverloadedNFs (in bold) cause back pressure at the
entry points for service chains A, C, and D.

they are a part of. NFVnice then enables service chain-specific packet
dropping at the upstream NFs. NF Manager maintains states of each

NF, and in this case, it moves the NF’s state from backpressure watch
list to packet throttle as shown in Figure 4. When the queue length

becomes less than a low watermark (LOW_WATER_MARK), the

state moves to clear throttle, then again moves to the watch list if

the queue length goes beyond the high mark.

The backpressure operation is illustrated in Figure 5, where four

service chains (A-D) pass through several different NFs. The bold

NFs (3 and 5) are currently overloaded. The NFManager detects this

and applies back pressure to flows A, C, and D. This is performed

upstream where those flows first enter the system, minimizing

wasted work. Note that backpressure is selective based on service

chain, so packets for service chain B are not affected at all. Service

chains can be defined at fine granularity (e.g., at the flow-level) in
order to minimize head of line blocking.

This form of system-wide backpressure offers a simple mecha-

nism that can provide substantial performance benefits. The back-

pressure subsystem employs hysteresis control to prevent NFs

rapidly switching between modes. Backpressure is enabled when

the queue length exceeds a high watermark and is only disabled

once it falls below the low watermark.

Local Optimization and ECN: NFVnice also supports simple,

local backpressure, i.e., an NF will block if its output TX queue

becomes full. This can happen either because downstream NFs are

slow, or because the NF Manager TX Thread responsible for the

queue is overloaded. Local backpressure is entirely NF-driven, and

requires no coordination with the manager, so we use it to handle

short bursts and cases where the manager is overloaded.

We also consider the fact that an NFVnice middlebox server

might only be one in a chain spread across several hosts. To facili-

tate congestion control across machines, the NF Manager will also

mark the ECN bits in TCP flows in order to facilitate end-to-end

management. Since ECN works at longer timescales, we monitor

queue lengths with an exponentially weighted moving average and

use that to trigger marking of flows following [42].

3.4 Facilitating I/O
A network function could block when its receive ring buffer is

empty or when it is waiting to complete I/O requests to the un-

derlying storage. In both cases, NF implementations running on

the NFVnice platform are expected to yield the CPU, returning

any unused CPU cycles back to the scheduling pool. In case of
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// Read the next packet from the receive ring buffer
packet_descriptor* libnf_read_pkt();

// Output the processed packet to specified destination
int libnf_write_pkt(packet_descriptor*);

// Enqueue request to read from storage. Flow specific data
can be stored in context

int libnf_read_data(int fd, void *buf,
size_t size, size_t offset,
void (*callback_fn)(void *), void *context);

// Enqueue request to write to storage. Flow specific data
can be stored in context

int libnf_write_data(int fd, void *buf,
size_t size, size_t offset,
void (*callback_fn)(void *), void *context);

Figure 6: libnf API exposed to network function implemen-
tations.

I/O, NF implementations should use asynchronous I/O to overlap

packet processing with background I/O to maintain throughput.

NFVnice provides a simple library called libnf that abstracts such
complexities from the NF implementation.

The libnf library exposes a simple set of APIs that allow the

application code to read/write packets from the network, and read-

/write data from storage. The APIs are shown in Listing 6. If the

receive ring buffer is empty while calling the libnf_read_pkt
API, libnf notifies the NF manager and blocks the NF until further

packets are available in the buffer.

In case of I/O, an NF implementation uses the libnf_read_data
and libnf_write_data APIs. I/O requests can be queued along

with a callback function that runs in a separate thread context. Using

batched asynchronous I/O with double buffering, libnf enables the
NF implementation to put the processing of one or more packets

on hold, while continuing processing of other packets unhindered.

Batching reads and writes allows an NF to continue execution

without waiting for I/O completion. The size of the batches and the

flush interval is tunable by the NF implementation. Double buffering

enables libnf to service one set of I/O requests asynchronously while

the other buffer is filled up by the NF. When both buffers are full,

libnf suspends the execution of the NF and yields the CPU.

3.5 Optimizations
Separating overload detection and control. Since the NFV plat-

form [23] must process millions of packets per second to meet line

rates, we separate out overload detection from the control mecha-

nisms required to respond to it. The NF Manager’s Tx threads are

well situated to detect when an NF is becoming backlogged as it is

their responsibility to enqueue new packets to each NF’s Tx queue.

Using a single DPDK’s enqueue interface, the Tx thread enqueues a

packet to a NF’s Rx queue if the queue is below the high watermark,

while getting feedback about the queue’s state in the return value.

When overload is detected, an overload flag is set in the meta data

structure related to the NF.

The control decision to apply backpressure is delegated to th

NF Manager’s Wakeup thread. The Wakeup thread scans through

the list of NFs classifying them into two categories: ones where

backpressure should be applied and ones that need to be woken

up. This separation simplifies the critical path in the Tx threads

and also provides some hysteresis control, since a short burst of

packets causing an NF to exceeds its threshold may have already

been processed by the time the Wakeup thread considers it for

backpressure.

Separating load estimation and CPU allocation. The load
on an NF is a product of its packet arrival rate and the per-packet

processing time. The scheduler weight is calculated based on the

load and the cgroup’s weights for the NF are updated. Since chang-

ing a weight requires writing to the Linux sysfs, it is critical that

this be done outside of the packet processing data path. libnfmerely

collects samples of packet processing times, while the NF Manager

computes the load and assigns the CPU shares using cgroup virtual

file system.

The data plane (libnf) samples the packet processing time in

a lightweight fashion every millisecond by observing the CPU

cycle counter before and after the NF’s packet handler function is

called. We chose sampling because measuring overhead for each

packet using the CPU cycle counters results in a CPU pipeline

flush [3], resulting in additional overhead. The samples are stored in

a histogram, in memory shared between libnf and the NF Manager.

The processing time samples produced by each NF are stored in

shared memory and aggregated by the NF Manager. Not all packets

incur the same processing time, as some might be higher due to

I/O activity. Hence, NFVnice uses the median over a 100ms moving

window as the estimated packet processing time of the NF. Every

millisecond, the NF Manager calculates the load on each NF using

its packet arrival rate and the estimated processing time. Every

10ms, it updates the weights used by the kernel scheduler.

4 EVALUATION
4.1 Testbed and Approach
Our experimental testbed has a small number of Intel(R) Xeon(R)

CPU E5-2697 v3 @ 2.60GHz servers, 157GB memory, running

Ubuntu SMP Linux kernel 3.19.0-39-lowlatency. Each CPU has dual-

sockets with a total of 56 cores. For these experiments, nodes were

connected back-to-back with dual-port 10Gbps DPDK compatible

NICs to avoid any switch overheads.

Wemake use of DPDK based high speed traffic generators, Moon-

gen [12] and Pktgen [38] as well as Iperf3 [11], to generate line

rate traffic consisting of UDP and TCP packets with varying num-

bers of flows. Moongen and Pktgen are configured to generate 64

byte packets at line rate (10Gbps), and vary the number of flows as

needed for each experiment.

We demonstrate NFVnice’s effectiveness as a user-space solution

that influences the NF scheduling decisions of the native Linux

kernel scheduling policies, i.e., Round Robin (RR) for the Real-time

scheduling class, SCHED_NORMAL (termed NORMAL henceforth)

and SCHED_BATCH (termed BATCH) policies in the CFS class.

Different NF configurations (compute, I/O) and service chains with

varying workloads (traffic characteristics) are used. For all the bar

plots, we provide the average, the minimum and maximum values
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Table 3: Packet drop rate per second
NORMAL BATCH RR(1ms) RR(100ms)

Default NFVnice Default NFVnice Default NFVnice Default NFVnice

NF1 3.58M 11.2K 2M 0 0.86M 0 0.53M 0

NF2 2.02M 12.3K 0.9M 11.5K 2.92M 12K 0.03M 12K

Table 4: Scheduling Latency and Runtime of NFs
NORMAL BATCH RR(1ms) RR(100ms)

measured in ms Default NFVnice Default NFVnice Default NFVnice Default NFVnice

NF1-Avg. Delay

NF1-Runtime

0.002

657.825

0.112

128.723

0.003

312.703

1.613

143.754

1.022

-

0.730

-

0.924

-

0.809

-

NF2-Avg. Delay

NF2-Runtime

0.065

602.285

0.008

848.922

1.144

836.940

0.255

803.185

0.570

-

0.612

-

0.537

-

0.473

-

NF3-Avg. Delay

NF3-Runtime

0.045

623.797

0.025

1014.218

0.149

826.203

0.009

1047.968

0.885

-

0.479

-

0.703

-

0.646

-

Figure 7: Performance of NFVnice in a service chain of 3 NFs
with different computation costs

observed across the samples collected every second during the

experiment. In all cases, the NFs are interrupt driven, woken up by

NF manager when the packets arrive while NFs voluntarily yield

based on NFVnice’s policies. Also, when the transmit ring out of

an NF is full, that NF suspends processing packets until room is

created on the transmit ring.

4.2 Overall NFVnice Performance
Wefirst demonstrate NFVnice’s overall performance, both in through-

put and in resource (CPU) utilization for each scheduler type. We

compare the default schedulers to our complete NFVnice system,

or when only including the CPU weight allocation tool (which

we term cgroups) or the backpressure to avoid wasted work at

upstream NFs in the service chain.

4.2.1 NF Service Chain on a Single Core: Here, we first consider
a service chain of three NFs; with computation cost Low (NF1, 120

cycles), Medium (NF2, 270 cycles), and High (NF3, 550 cycles). All

NFs run on a single shared core.

Figure 7 shows that NFVnice achieves an improvement of as

much as a factor of two times in throughput (especially over the RR

scheduler).We separately show the contribution of the cgroups and
backpressure features. By combining these, NFVnice improves the

overall throughput across all three kernel scheduling disciplines.

Table 3 shows the number of packets dropped at either of the up-

stream NFs, NF1 or NF2, after processing (an indication of truly

wasted work). Without NFVnice, the default schedulers drop mil-

lions of packets per second. But with NFVnice, the packet drop

rate is dramatically lower (near zero), an indication of effective

avoidance of wasted work and proper CPU allocation.

Table 5: Throughput, CPU utilization and wasted work in
chain of 3 NFs on different cores

Default NFVnice

Svc. rate Drop rate CPU Util Svc. rate Drop rate CPU Util

NF1

(∼550cycles)
5.95Mpps - 100% 0.82Mpps - 11% ±3%

NF2

(∼2200cycles)
1.18Mpps 4.76Mpps 100% 0.72Mpps 150Kpps 64% ±1%

NF3

(∼4500cycles)
0.6Mpps 0.58Mpps 100% 0.6Mpps 70Kpps 100%

Aggregate 0.6Mpps - 300% 0.6Mpps - 175% ±3%

We also gather perf-scheduler statistics for the average schedul-

ing delay and runtime of each of the NFs. From Table 4, we can see

that i) with NFVnice the run-time for each NF is apportioned in a

cost-proportional manner (NF1 being least and NF3 being most),

unlike the NORMAL scheduler that seeks to provide equal alloca-

tions independent of the packet processing costs. ii) the average

scheduling delay with NFVnice for the NFs (that is the time taken

to begin execution once the NF is ready) is lower for the NFs with

higher processing time (which is exactly what is desired, to avoid

making a complex NF wait to process packets, and thus avoiding

unnecessary packet loss). Again this is better than the behaviour

of the default NORMAL or RR schedulers
2
.

Figure 8: Different NF chains (Chain-1 and Chain-2, of
length three), using shared instances for NF1 and NF4.

4.2.2 Multi-core Scalability: We next demonstrate the benefit

of NFVnice with the NFs in a chain across cores, with an NF being

pinned to a separate, dedicated core for that NF. We use these

experiments to demonstrate the benefits of NFVnice, namely: a)

avoiding wasted work through backpressure; and b) judicious re-

source (CPU cycles) utilization through scheduling. When NFs are

pinned to separate cores, there is no specific role/contribution for

Figure 9:Multi-core chains: Performance ofNFVnice for two
different service chains of 3 NFs (each NF pinned to a differ-
ent core), as shown in Fig. 8.

2
Even though, for this experiment, RR(100ms) performs as well as NFVnice, it

performs very poorly with variable per-packet processing costs, as seen in 4.3.1 and

for chains with heterogeneous computation costs, as in 4.3.2 scenarios.
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Table 6: Throughput, CPU utilization and wasted work in
a chain of 3 NFs (each NF pinned to a different core) with
different NF computation costs

Default NFVNice

Svc.Rate

(pps)

Drop

Rate

(pps)

CPU

Util.%

Svc.Rate

(pps)

Drop

Rate

(pps)

CPU

Util.%

NF1

(∼270cycles)

Chain1 3.26M

2.86M 78.6% ±0.4

6.498M

0 82.1% ±0.5Chain2 3.26M 0.583M

Aggregate 6.522M 7.08M

NF2

(∼120cycles)

Chain1 3.26M

∼0 52.8% ±1.2

6.498M

∼0 58% ±0.7Chain2 - -

Aggregate 3.26M 6.498M

NF3

(∼4500cycles)

Chain1 -

2.68M 100% ±0

-

<100 100% ±0Chain2 0.582M 0.582M

Aggregate 0.582M 0.582M

NF4

(∼300cycles)

Chain1 3.26M

0 60% ±0.7

6.498M

0 84% ±0.7Chain2 0.582M 0.582M

Aggregate 3.842M 7.08M

the vanilla OS schedulers, and for such an experiment we use the

default scheduler (NORMAL).

First, we consider the chain of 3 NFs, NF1 (Low, 550 cycles), NF2

(Medium, 2200 cycles) and NF3 (High, 4500 CPU cycles). Compared

to the default scheduler (NORMAL), NFVnice plays a key role in

avoiding the wasted work and efficiently utilizing CPU cycles. Ta-

ble 5 shows that NFVnice’s CPU utilization by NF1 and NF2 on

their cores is dramatically reduced, going down from 100% to 1̃1%

and 64% respectively, while maintaining the aggregate throughput

(0.6 Mpps). This is primarily because of backpressure ensuring that

the upstream NFs only process the correct amount of packets that

the downstream NFs can consume. Excess packets coming into the

chain are dropped at the beginning of the chain. When we use only

the default NORMAL scheduler by itself, NF1 and NF2 use 100% of

the CPU to process a huge number of packets (the ‘service rate’ in

the Table 5), only to be discarded at the downstream NF3.

We now consider two different service chains using 4 cores in the

system. Chain-1 has three NFs: NF1 (270 cycles), NF2 (120 cycles)

andNF4 (300 cycles) running on 3 different cores. Chain-2 comprises

NF1, NF3(4500 cycles) and NF4. The same instances of NF1 and

NF4 are part of both chain-1 and chain-2 as shown in Figure 8.

Moongen generates 64-byte packets at line rate, equally splitting

them between two flows that are assigned to chain-1 and chain-2.

Table 6 shows that in the Default case (NORMAL scheduler), NF1

processes almost an equal number of packets for chain-1 and chain-

2. However, for chain-2, the downstream NF3 discards a majority

of the packets processed by NF1. This results not only in wasted

work, but it also adversely impacts the throughput of chain-1. On

the other hand, with NFVnice, backpressure has the upstream NF1

process only the appropriate number of packets of chain-2 (which

has its bottleneck at the downstream NF, NF3). This frees up the

upstream NF1 to use the remaining processing cycles to process

packets from chain-1. NFVnice improves the throughput of chain-1

by factor of 2. At the same time, it maintains the throughput of

chain-2 at its bottleneck (NF3) rate of 0.6Mpps. Overall, NFVnice not

only avoids wasted work, but judiciously allocates CPU resources

(at upstream NFs) proportionate to the chain’s bottleneck resource

capacity as shown in the Figure 9.

4.3 Salient Features of NFVnice
4.3.1 Variable NF packet processing cost. We now evaluate the

resilience of NFVnice to not only heterogeneity across NFs, but also

Figure 10: Performance of NFVnice in a service chain of
3 NFs with different computation costs and varying per
packet processing costs.

variable packet processing costs within an NF. We use the same

three-NF service chain used in 4.2.1, but modify their processing

costs. Packets of the same flow have varying processing costs of 120,

270 or 550 cycles at each of the NFs. Packets are classified as having

one of these 3 processing costs at each of the NFs, thus yielding 9

different variants for the total processing cost of a packet across the

3 -NF service chain. Figure 10 shows the throughput for different

schedulers. With the Default scheduler, the throughput achieved

differs considerably compared to the case with fixed per-packet

processing costs as seen in Figure 7. For the Default scheduler,

the throughput degrades considerably for the vanilla coarse time-

slice schedulers (BATCH and RR(100ms)), while the NORMAL and

RR(1ms) schedulers achieve relatively higher throughputs. When

examining the throughput with only the CPU weight assignment,

CGroup, we see improvement with the BATCH scheduler, but not as

much with the NORMAL scheduler. This is because the variation in

per-packet processing cost of NFs result in an inaccurate estimate of

the NF’s packet-processing cost and thus an inappropriate weight

assignment and CPU share allocation. This inaccuracy also causes

NFVnice (which combines CGroup and backpressure) to experience

a marginal degradation in throughput for the different schedulers.

Backpressure alone (the Only BKPR case), which does not adjust the

CPU shares based on this inaccurate estimate is more resilient to the

packet-processing cost variation and achieves the best (and almost

the same) throughput across all the schedulers. NFVnice gains

this benefit of backpressure, and therefore, in all cases NFVnice’s

throughput is superior to the vanilla schedulers. We could mitigate

the impact of variable packet processing costs by profiling NFs

more precisely and frequently, and averaging the processing over

a larger window of packets. However, we realize that this can be

expensive, consuming considerable CPU cycles itself. This is where

NFVnice’s use of backpressure helps overcome the penalty from

the variability, getting better throughput and reduced packet loss

compared to the default schedulers.

4.3.2 Service Chain Heterogeneity. We next consider a three NF

chain, but vary the chain configuration—(Low,Medium,High);(High,

Medium, Low); and so on for a total 6 cases—so that the location

of the bottleneck NF in the chain changes in each case. Results in

Figure 11 show significant variance in the behaviour of the vanilla

kernel schedulers. NORMAL and BATCH perform similar to each

other in most cases, except for the small differences for the reasons
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Figure 11: Throughput for varying combinations of 3 NF service chain with Heterogeneous computation costs

described earlier in Section 2. We also looked at RR with time slices

of 1ms and 100ms, and their performance is vastly different. For

the small time-slice, performance is better when the bottleneck

NF is upstream, while RR with a larger time-slice performs better

when the bottleneck NF is downstream. This is primarily due to

wasted work and inefficient CPU allotment to the contending NFs.

However, with NFVnice, in almost every case, we can see consider-

able improvements in throughput, for all the schedulers. NFVnice

minimizes the wasted cycles independent of the OS scheduler’s

operational time-slice.

Impact of RR’s Time Slices with NFV: Consider the chain con-

figurations “High-Med-Low” and “Med-High-Low” in Figure 11.

RR(100 ms time slice) performs very poorly, with very low through-

put < 40Kpps . This is due to the ‘Fast-producer, slow-consumer’

situation [44], making the NF with “High” computes hog the CPU

resource. Now, in the default RR scheduler, the packets processed

by this NF would be dequeued by the Tx threads but will be sub-

sequently dropped, as the next NF in the chain does not get an

adequate share of the CPU to process these packets. The upstream

NF that is hogging the CPU has to finish its time slice and the OS

scheduler then causes a involuntary context switch for this “High”

NF. However, with NFVnice, the queue buildup results in generat-

ing a backpressure signal across the chain, forcing the upstream

NF to be evicted ( i.e., triggering a voluntary context switch) from

the CPU as soon as the downstream NFs buffer levels exceed the

high watermark threshold. The upstream NF will not execute till

the downstream NF gets to consume and process its receive buffers.

Thus, NFVnice is able to enforce judicious access to the CPU among

the competing NFs of a service chain. We see in every case in Fig-

ure 11, NFVnice’s throughput is superior to the vanilla scheduler,

emphasizing the point we make in this paper: NFVnice’s design

Figure 12: Throughput (Mpps) with varying workload mix,
random initial NF for each flow in a 3 NF service chain (ho-
mogeneous computation costs)

can support a number of different kernel schedulers, effectively

support heterogeneous service chains and still provide superior

performance (throughput, packet loss).

4.3.3 Workload Heterogeneity. We next use 3 homogeneous

NF’s with the same compute cost, but vary the nature of the incom-

ing packet flows so that the three NFs are traversed in a different

order for each flow. We increase the number of flows (each with

equal rate) arriving from 1 to 6, as we go from Type 1 to Type 6,

with each flow going through all 3 NFs in a random order. Thus,

the bottleneck for each flow is different. Figure 12, shows that the

native schedulers (first four bars) perform poorly, with degraded

throughput as soon as we go to two or more flows, because of the

different bottleneck NFs. However, NFVnice performs uniformly

better in every case, and is almost independent of where the bot-

tlenecks are for the multiple flows. Moreover, NFVnice provides
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Figure 13: Benefit of Backpressure with mix of responsive
and non-responsive flows, 3 NF chain, heterogeneous com-
putation costs

a substantial improvement and robustness to varying loads and

bottlenecks even across all the schedulers (NORMAL, BATCH, RR

with 1ms or 100 ms slice.)

4.3.4 Performance isolation. It is common to observe that when

there are responsive (TCP) flows that share resources with non-

responsive (UDP) flows, there can be a substantial degradation

of TCP performance, as the congestion avoidance algorithms are

triggered causing it to back-off. This impact is exacerbated in a

software-based environment because resources are wasted by the

non-responsive UDP flows that see a downstream bottleneck, re-

sulting in packets being dropped at that downstream NF. These

wasted resources result in less capacity being available for TCP.

Because of the per-flow backpressure in NFVnice, we are able to

substantially correct this undesirable situation and protect TCP’s

throughput even in the presence of non-responsive UDP.

In this experiment, we generate TCP and UDP flows with Iperf3.

One TCP flow goes through only NF1 (Low cost) and NF2 (Medium

cost) on a shared core. 10 UDP flows share NF1 and NF2 with the

TCP flow, but also go through an additional NF3 (High cost, on a

separate core) which is the bottleneck for the UDP flows - limiting

their total rate to 280 Mbps.

We first start the 1 TCP flow. After 15 seconds, 10 UDP flows start,

but stop at 40 seconds. As soon as the UDP flows interfere with the

TCP flow, there is substantial packet loss without NFVnice, because

NF1 and NF2 see contention from a large amount of UDP packets

arriving into the system, getting processed and being thrown away

at the queue for NF3. The throughput for the TCP flow craters from

nearly 4 Gbps to just around 10-30 Mbps (note log scale), while the

total UDP rate essentially keeps at the bottleneck NF3’s capacity of

280 Mbps. With NFVnice, benefiting from per-flow backpressure,

the TCP flow sees much less impact (dropping from 4 Gbps to about

3.3 Gbps), adjusting to utilize the remaining capacity at NF1 andNF2.

This is primarily due to NFVnice’s ability to perform selective early

discard of the UDP packets because of the backpressure. Otherwise

we would have wasted CPU cycles at NF1 and NF2, depriving the

TCP flow of the CPU. Note that the UDP flows’ rate is maintained at

the bottleneck rate of 280Mbps as shown in Figure 13 (UDP lines are

one on top of the other). Thus, NFVnice ensures that non-responsive

flows (UDP) do not unnecessarily steal the CPU resources from

other responsive (TCP) flows in an NFV environment.

Figure 14: Improvement in Throughput with NFs perform-
ing Asynchronous I/O writes withNFVnice

4.3.5 Efficient I/O handling by NFVnice. It is important for NFs

to be able to perform I/O required by the packet of a flow, while

efficiently continuing to process other flows (e.g., packet monitors,

proxies, etc.). Using Moongen we send 2 flows at line rate. Both

the flows share the same upstream NFs, but only one of the flows

performs I/O i.e., logs the packets to the disk using NFVnice’s I/O

library. Figure 14 compares the aggregate throughput achieved with

and without NFVnice, using the BATCH scheduler in the kernel.

We vary the packet size. NFVnice maintains a higher throughput

consistently, even for small packet sizes. Moreover, NFVnice main-

tains progress on the second flow while I/O is being performed for

packets of the first flow, thus providing better isolation.

4.3.6 Dynamic CPU Tuning and fairness. Dynamic CPU tuning:
NFVnice dynamically adjusts the CPU allocations based on the

packet processing cost and arrival rate for eachNF. TwoNFs initially

with different computation costs (ratio 1:3) run on the same core,

with MoonGen transmitting a flow each to the two NFs at the same

rate. To demonstrate adaptation, we have the computation cost of

NF1 temporarily increase 3 times(to the same level as NF2) during

the 31 sec. to 60 sec. interval.

Figure 15a has the default NORMAL scheduler evenly allocating

the CPU between NF1 and NF2 regardless of their computation cost

throughout. On the other hand, NFVnice allocates NF2 three times

the CPU as NF1 initially. At t=30s, NFVnice allocates each NF half

of the CPU. And at t=60s, we go back to the original allocation. We

observed that the throughput for the two flows (not shown) is equal

throughout, indicating the capability of NFVnice to dynamically

provide a fair allocation of resources factoring in the heterogeneity

of the NF CPU compute cost.

Fairness measure: We evaluate the fairness in throughput as we

increase the diversity of computation for each of the NFs for default

CFS scheduler and NFVnice. We vary the number of NFs sharing

the core. Each NF has the same packet arrival rate, but different

computation cost. At diversity level 1, we start with a single flow

(uses NF1, compute cost 1). With a diversity level of two, we have 2

flows, flow 1 uses NF1 (compute cost 1), flow 2 uses NF2 (compute

cost 2). At a diversity level of 6, there are 6 NFs, with the ratio

of computation costs of 1:2:5:20:40:60, and one flow each going to

the corresponding NF. At diversity level 6, the NORMAL scheduler

allocates 16.6% of the CPU to each of the NFs, being unaware of

the computation cost of each NF. Thus, the throughput for flow 1 is

1.02 Mpps, while flow 6 is only 0.07 Mpps. With NFVnice, the CPU
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(a) Effect of Dynamic CPUWeight Updates (b) Measure of Fairness (c) Effect of rate-cost proportional fairness on
CPU Utilization and Throughput

Figure 15: Adaptation to Dynamic Load and Fairness measure of NFVnice compared with the NORMAL scheduler

Figure 16: Performance of NFVnice for different NF service
chain lengths.

allocated to the lightweight NF is 1%, while the heavyweight NF gets

46%, and all the flows achieve nearly equal throughput 15c). Using

Jain’s fairness index [24], we show that the vanilla scheduler is

dramatically unfair (going down to 0.62) while NFVnice consistently

achieves fair throughout (Jain’s fairness index of 1.0) as shown in

figure 15b).

4.3.7 Supporting longer NF chains. Wenow see howwell NFVnice

can support longer NF service chains. We choose three different

NFs, as in 4.2, and increase the chain length from 1 NF up to a

chain of 10 NFs, including one of the 3 NFs each time. We examine

two cases: (i) all the NFs of the chain are on a single core (denoted

by SC); and (ii) three cores are used, and as the chain length is

increased, the additional NF is placed on the next core in round-

robin fashion (represented by MC). Results are shown in Figure 16.

For the single core, NFVnice achieves higher throughput than the

Default scheduler for longer chains, with the greater improvements

achieved for chain lengths of 3-6. As the chains get longer (>7 NFs

sharing the same core), the improvement with NFVnice is not as

high. For the multiple core case, NFVnice improves throughput

substantially, especially as more NFs are multiplexed on a care (e.g.,

chain lengths > 4), compared to the Default scheduler. Of course,

the improvement with NFVnice will depend on the type of NFs and

their computation costs, for individual use-cases.

4.3.8 Tuning and Overhead Considerations. Tuning NFVnice: To
tune the key parameters of NFVnice, viz., the HIGH_WATER_

MARK and LOW_WATER_MARK, the thresholds for the queue

occupancy in the Rx ring, we measure the throughput, wasted work,

context-switch overheads and achieved Instructions per Cycle (IPC)

count for different configurations. We use a 3 NF, “Low-Med-High”

service chain, and use Pktgen to generate line rate minimum packet

size traffic. We begin with a fixed ’margin’ (difference between the

High and Low thresholds). With the margin at 30, we vary the

high threshold. Below 70%, the throughput starts to drop (under-

utilization), while above 80% the number of packet drops at the

upstream NFs increases (insufficient buffering). We then varied the

NF service chain length (from 2 to 6), and computation costs (per

packet processing cost from 100 cycles to 10000 cycles) to see the

impact of setting the water marks. Across all these cases, we ob-

served that a choice of 80% for the HIGH_WATER_MARK worked

’well’. With the high water mark fixed at 80%, we varied the LOW_

WATER_MARK, by varying the margin. With a very small margin

(1 to 5), packet drops increased, while a margin above 30 degraded

throughput. We chose a margin of 20 because it provided the best

performance across these experiments. We acknowledge that these

watermark levels and thresholds are sensitive to overall path-delay,

chain length and processing costs of the NFs in the chain, and that

these parameters are necessarily an engineering compromise.

Periodic profiling and CPU weight assignment granularity: We

based our frequency of CPU profiling based on the overheads of

rdtsc (observed to be roughly 50 clock cycles) and average time to

write to the cgroup virtual file system (5 µ seconds). We discard the

first 10 samples to effectively account for warming the cache and

to eliminate outliers.

5 RELATEDWORK
NF Management and Scheduling: In recent years, several NFV plat-

forms have been developed to accelerate packet processing on

commodity servers [4, 21, 23, 32, 43]. There is a growing interest in

managing and scheduling network functions. Many works address

the placement of middleboxes and NFs for performance target or

efficient resource usage [16, 25, 30, 39, 41, 46]. For example, E2 [39]

builds a scalable scheduling framework on top of BESS [21]. They

abstract NF placement as a DAG, dynamically scale and migrate

NFs while keeping flow affinity. NFV-RT [30] defines deadlines

for requests, and places or migrates NFs to provide timing guar-

antees. These projects focus on NF management and scheduling

across cluster scale. Our work focuses on a different scale: how

to schedule NFs on shared cores to achieve fairness when flows

have load pressure. Different from traditional packet scheduling for

fairness on hardware platforms [18, 47, 49, 50], software-based NFs

or middleboxes are more complex, resulting in diversity of packet
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processing costs. Furthermore, different kinds of flow arrival rates

exacerbate the difficulty of fair scheduling.

PSPAT [45] is a recent host-only software packet scheduler.

PSPAT aims to provide a scalable scheduler framework by decou-

pling the packet scheduler algorithm from dispatching packets

to the NIC for high performance. NFVnice considers the orthog-

onal problem of packet processing cost and flow arrival rate to

fairly allocate CPU resources across the NFs. PIFO [48] presents the

packet-in-first-out philosophy distinct from the typical first-in-first-

out packet processing models. We use the insight from this work

to decide whether to accept a packet and queue it for processing

at the intended NF or discard at the time of packet arrival. Then,

the enqueued packets are always processed in order. This approach

of selective early discard yields two benefits: i) it avoids dropping

partially processed (through the chain) packets, thus not wasting

CPU cycles; ii) it avoid CPU stealing and allows CPU cycles to be

judiciously allocated to other contending NFs.

User space scheduling and related frameworks: Works, such as [2, 6],

consider cooperative user-space scheduling, providing very low

cost context switching, that is orders of magnitude faster than reg-

ular Pthreads. However, the drawbacks with such a framework are

two-fold: a) they invariably require the threads to cooperate, i.e.,

each thread must voluntarily yield to ensure that the other threads

get a chance to share the CPU, without which progress of the

threads cannot be guaranteed. This means that the programs that

implement L-threads must include frequent rescheduling points for

each L-thread [2] incurring additional complexity in developing

the NFs. b) As there is no specific scheduling policy (it is just FIFO

based), all the L-threads share the same priority, and are backed

by the same kernel thread (typically pinned to a single core), and

thus lack the ability to perform selective prioritization and the

ability to provide QoS differentiation across cooperating threads.

Nonetheless, NFVnice’s backpressure mechanism can still be effec-

tively employed for such cooperating threads to voluntarily yield

the CPU as necessary. Another approach used by systems such as

E2 [39] and VPP [4] is to host multiple NFs within a shared address

space, allowing them to be executed as function calls in a run to

completion manner by one thread. This incurs very low NUMA

and cross-core packet chaining overheads, but being monolithic, it

is inflexible and impedes the deployment of NFs from third party

vendors.

Congestion Control and Backpressure: Congestion control and back-

pressure have been extensively studied in the past [7, 8, 22, 26, 29,

35]. DCTCP [7] leverages ECN to provide multi-bit feedback to

the end hosts. MQ-ECN [8] enables ECN for tradeoff of both high

throughput and low latency in multi-service multi-queue produc-

tion DCNs (Data Center Network). All of these focus on congestion

control in DCNs. However, in an NFV environment, flows are typi-

cally steered through a service chain. The later congestion is found,

the more resources are wasted. If the end hosts do not enable ECN

support or there are UDP flows, it is especially important for the

NFV platform to gracefully handle high load scenarios in an efficient

and fair way. Using multiple mechanisms (ECN and backpressure),

NFVnice ensures that overload at bottlenecks are quickly detected

in order to avoid congestion and wasted work. Fair Queueing: Or-
thogonal work such as [17, 31], propose to ensure fair sharing of

network resources among multiple tenants by spreading requests

to multiple processing entities. That is, they distribute flows with

different costs to different processing threads. In contrast, NFVnice

seeks to achieve fairness by scheduling the NFs that process the

packets of different flows appropriately, Thus, a fair share of the

CPU is allocated to each competing NF.

6 CONCLUSION
As the use of highly efficient user-space network I/O frameworks

such as DPDK becomes more prevalent, there is be a growing need

to mediate application-level performance requirements across the

user-kernel boundary. OS-based schedulers lack the information

needed to provide higher level goals for packet processing, such as

rate proportional fairness that needs to account for both NF pro-

cessing cost and arrival rate. By carefully tuning scheduler weights

and applying backpressure to efficiently shed load early in the the

NFV service chain, NFVnice provides substantial improvements in

throughput and drop rate and dramatically reduces wasted work.

This allows the NFV platform to gracefully handle overload scenar-

ios while maintaining efficiency and fairness.

Our implementation of NFVnice demonstrates how an NFV

framework can efficiently tune the OS scheduler and harmoniously

integrate backpressure to meet its performance goals. Our results

show that selective backpressure leads to more efficient alloca-

tion of resources for NF service chains within or across cores, and

scheduler weights can be used to provide rate proportional fairness,

regardless of the scheduler being used.
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