CRIMES: Using Evidence to Secure the Cloud

Sundaresan Rajasekaran
George Washington University
sundarcs@gwu.edu

Neel Shah

George Washington University
nshah95@gwu.edu

ABSTRACT

Cloud applications are appealing targets to attackers, yet current
cloud infrastructures have few ways of helping defend their cus-
tomers from attacks. However, the use of virtual machines, and the
economy of scale found in cloud platforms, provides an opportunity
to offer strong security guarantees to tenants at low cost to the
cloud provider. We present CRIMES, an evidence based, modular
security framework for cloud platforms that uses speculative execu-
tion coupled with memory introspection tools to detect malicious
behavior in real time. By buffering VM outputs (i.e., outgoing net-
work packets and disk writes) until a scan has been completed,
CRIMES gives strong guarantees about the amount of damage an
attack can do, while minimizing overheads. When an attack is
detected, CRIMES rolls back to a recent checkpoint and performs
automated forensic analysis to help pinpoint the source of an attack.
Our evaluation demonstrates that CRIMES incurs less overhead
compared to memory protection tools such as AddressSanitizer,
while offering valuable forensic analysis for buffer overflow attacks
and malware detection across multiple applications and the OS.

CCS CONCEPTS

« Security and privacy — Virtualization and security; Dis-
tributed systems security;

ACM Reference Format:

Sundaresan Rajasekaran, Harpreet Singh Chawla, Zhen Ni, Neel Shah,
Emery Berger, and Timothy Wood. 2018. CRIMES: Using Evidence to Secure
the Cloud. In 19th International Middleware Conference (Middleware ’18),
December 10-14, 2018, Rennes, France. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3274808.3274812

1 INTRODUCTION

Cloud applications are storing ever increasing volumes of data—
data that is often of high value to attackers who wish to steal
company secrets or personal information. Unfortunately, current

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on thefi rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Middleware '18, December 10—14, 2018, Rennes, France

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5702-9/18/12...$15.00
https://doi.org/10.1145/3274808.3274812

Harpreet Singh Chawla
George Washington University
harpreetsc@gwu.edu

Emery Berger
University of Massachusetts Amherst
emery@cs.umass.edu

Zhen Ni
George Washington University
leonizhen@gwu.edu

Timothy Wood
George Washington University
timwood@gwu.edu

cloud platforms are better prepared to offer performance manage-
ment services than they are to offer security. This leaves the onus
on customers to ensure the integrity of their applications.

Security remains a challenging problem for applications and
operating systems. On one extreme are approaches such as virus
scanners that periodically scan a system to detect evidence of at-
tacks; this incurs relatively low overhead, but can leave a system
vulnerable for long periods of times between scans. At the other
end of the spectrum are memory safety tools such as Address San-
itizer [32], Safecode [14], or Intel MPX [26] which use runtimes,
compilers, or specialized hardware to instrument memory accesses
and detect attacks such as buffer overflows as soon as they occur.
Such systems can add high cost, and only focus on a limited set of
attacks within a single application. A further challenge is not only
detecting attacks, but precisely pinpointing the root cause in order
to prevent such an attack from happening again in the future.

In this work, we introduce a new framework to improve security
of Virtual Machines (VMs) in the cloud. We call it CRIMES because
it offers the following properties:

Comprehensive: Provide security against a wide set of attacks
ranging from the application layer to the OS.

Responsive: Detect security threats in real time, without hurting
the usability of the system.

Insightful: Automatically provide in-depth forensic analysis to
help pinpoint the root cause of an attack.

Modular: Support customizable security modules to meet customer
needs in diverse cloud environments.

Evidence-based: Use evidence left by attacks to efficiently detect
security threats.

Safe: Detect attacks with zero-window of vulnerability so attacks
have no external impact.

CRIMES achieves these characteristics with a few key techniques.
First, rather than using expensive in-line checks to detect an attack
(e.g., bounds checking for buffer overflows), CRIMES exploits the
fact that many attacks leave evidence behind in memory that can be
detected afterwards in a more efficient way. To prevent an attack
from damaging the system between the point of an exploit and a
scan, CRIMES uses speculative execution so that external outputs
(e.g. disk writes or network packets) are only released after the
integrity of the system has been verified. Finally, CRIMES uses
virtual machine introspection (VMI) so that it can interpret the
memory of a VM tofi nd evidence of attacks and automate forensic
analysis to helpfi nd the root cause of an attack after it occurs.

Middleware ’18, December 10-14, 2018, Rennes, France

CRIMES uses an optimized continuous checkpointing mecha-
nism that takes snapshots of VM memory as often as every 20
milliseconds to achieve speculative execution and frequent security
scans. At the end of each checkpoint, it introspects into the VM’s
main memory for a detailed security analysis looking for evidence
of attacks. If there are no anomalies found, the VM resumes spec-
ulative execution until the next security scan. On the other hand
if CRIMES detects an attack, the VM is paused and a post-attack
analysis is done which tries to pinpoint the root cause of the attack.
Our contributions in this work are:

o A framework for online detection of attacks in VMs by leveraging
memory introspection tools.

e VM checkpointing optimizations to support efficient speculative
execution between security scans.

o Post-attack analysis methods that automate forensic analysis or
give precise visibility at the point of an attack.

We have implemented CRIMES on the Xen virtualization plat-
form. Our optimized checkpointing procedure improves perfor-
mance by 33% compared to the Remus checkpointing system (which
does not offer security guarantees) and only adds 9.8% overhead to
the PARSEC benchmark suite when checkpointingfi ve times per
second. CRIMES achieves this at the expense of doubling the VM’s
memory cost (to maintain a clean checkpoint), and using output
buffering which can increase latency. For time sensitive applications
such as web servers, CRIMES provides an asynchronous scanning
approach that reduces overhead but weakens security guarantees.
We demonstrate several potential use cases for CRIMES, including
both malware analysis and buffer overflow detection. We have our
code open sourced at https://github.com/SunnyRaj/crimes-4.9.

Our work on CRIMES extends our preliminary study on security
as a cloud service [30]. This paper removes the requirement of a
separate host for scanning services and adds multiple optimizations
to reduce checkpoint overhead. Further, our complete CRIMES
system supports Sync and Async scans, demonstrates malware
detection and heap overflow attack prevention, and adds automated
post-mortem analysis.

2 SECURITY AS A CLOUD SERVICE

Virtualization platforms have grown in popularity primarily be-
cause they facilitate application deployment and server consoli-
dation, which has in turn led to the growth of cloud computing
platforms. Today’s clouds run many thousands of VMs, and offer
them services such as autoscaling [23, 24, 31] and failover [13, 35].
These services can be provided at the infrastructure level, often
with no modifications to customer applications.

Unfortunately, security threats in cloud environments are in-
evitable. Current tools that detect and prevent attacks are typically
deployed by customers inside their VMs, e.g., virus scanners or
memory safety compilers or runtimes. Instead, we make the case
for placing security tools in the virtualization layer as a service
offered by the cloud provider. This provides several benefits. First,
security systems based in the hypervisor are significantly more
difficult for an attacker to compromise compared to ones inside a
VM [16]. Second, cloud-managed security reduces the burden on
customers to keep the security software up to date in every VM.
Finally, a hypervisor-based approach makes it easier to provide

S. Rajasekaran et al.

full system protection against threats to both applications and the
operating system.

While prior work on cloud security has focused on issues such
as network monitoring [34] and virus scanning [5], our work in
CRIMES targets any type of attack that leaves behind some evi-
dence observable in memory, e.g., buffer overflows or attacks that
modify key kernel data structures. Tools such as libVMI [27] and
Volatility [4] grant a hypervisor the ability to interpret VM memory
tofi nd forensic evidence of attacks, but currently these tools are
used manually for offline analysis after an attack has happened. The
CRIMES framework allows the cloud to automatically use these
in an online manner to proactively analyze each VM for signs of
an attack using lightweight libVMI tools, with additional, more
detailed Volatility-based forensics once an attack is found. This
process is fully automated,fi tting in with the cloud computing goal
of scalable, “zero-touch” management.

A key concern in providing security is the window of vulnerabil-
ity, i.e., the length of time between when an attack occurs and when
it is detected and stopped. Many recent high profile data breaches
have illustrated that this time period can often stretch to months [1].
Some security systems, such as periodic virus scanners, may have
windows of vulnerability of minutes or hours in order to reduce
overhead by amortizing scans over a longer period. At the other
extreme, memory safety techniques such as AddressSanitizer [32],
SoftBound [25], and SafeCode[14] provide an ideal, zero window
of vulnerability by instrumenting accesses to immediately detect
attacks such as buffer overflows. This negates the impact of an at-
tack, but it can come at high performance cost. In CRIMES, we seek
to provide the best of both worlds by performing multiple scans
per second and using output buffering to provide external users
the same guarantee as a zero window of vulnerability approach.

Threat Model: This section outlines the threat model that CRIMES
assumes and protects against. Our focus is on providing an effi-
cient framework to analyze VMs in real time, so we assume that
attacks leave evidence in memory that can be detected by one of our
scanners. There are well known techniques forfi nding in-memory
evidence of many attacks that CRIMES can leverage, e.g..finding

buffer overflows by checking canaries [8, 22], comparing kernel
structures against known-good state to detect attacks like system
call table hijacking [11], or parsing kernel data structures tofind

anomalous behavior such as illicit processes [18]. We assume that
an attack will leave evidence in memory, and we provide support
from within the VM to ensure this happens (e.g., setting canaries
in the heap). We assume that attackers are not able to erase the
evidence that they leave within our scan interval, which is typically
on the order of tens of milliseconds. We believe this is a reason-
able assumption, because while an attack may exploit the system
to gain higher privilege, it typically cannot reconstruct memory
from before the attack. For example, special bits such as a heap
“canary” can be created by a random number generator outside
the attacker’s control and inserted around objects in memory — if
they are inadvertently overwritten by an attack such as a buffer
overflow, the system can detect the canary is not correct. Finally,
we assume an attack can affect applications and/or the OS within a
VM, but that it cannot affect the system outside the VM boundary.

CRIMES: Using Evidence to Secure the Cloud

o cP

History ec\

O
= \ _ P
A‘udit Pass
)
N
Audit Fail N
m) A
CRIMES © N

Domain-0 (Host)

Middleware ’18, December 10-14, 2018, Rennes, France

Introspected VM

o= Ol=y —
o O = =1
App App

I Syscall I Unmodified -
Slab
Table Kernel _

Figure 1: VMs run on cloud hosts taking checkpoints periodically for analysis. @ The Detector modulefi nds the “places” to
scan, and @ uses VM introspection techniques to search for evidence of vulnerabilities, such as validating canaries in the
OS and applications, or ensuring the integrity of key kernel data structures. @ If the audit fails the Analyzer performs post-
mortem analysis, else if it passes @ Checkpointer is initiated, and (B it starts taking checkpoints of the VM, andfinally ® the
checkpoints are stored and added to the history of previous checkpoints.

3 DESIGN

CRIMES is a modular framework for detecting attacks in the cloud.
Figure 1 illustrates the design of CRIMES. Our prototype is imple-
mented as part of the Xen hypervisor [6] and provides three key
features to the VMs that run on the hypervisor. First, the Check-
pointer speculatively executes the VM for a predetermined epoch,
pauses the execution and takes a checkpoint of the VM at the end
of each epoch. Second, while the VM is in a paused state, the Detec-
tor does a comprehensive security audit of the VM andfi nds any
traces of evidence of an attack. Third, onfi nding such evidence, it
stops the execution of the VM, and the Analyzer starts a post-attack
analysis phase for a thorough forensic inspection. The rest of the
section explains each of these design features in detail.

3.1 Speculative Execution

Figure 2 shows the timeline of a VM execution with CRIMES. The
execution is split into epochs. During each epoch the VM is executed
speculatively, i.e., the VM runs normally but with all of its external
outputs such as disk writes or network packets buffered. Buffering
keeps all of the VM’s external outputs during the epoch in the
hypervisor. At the end of each epoch, the VM is suspended, its
integrity is determined by a thorough security audit, a checkpoint
is created, and the buffer is released.

Buffering the VM’s output guarantees that in the event of an
attack during the epoch, the effect does not propagate outside of the
VM. This ensures that end-users will not be affected by this attack. If
the security scan at the end of the epoch succeeds, then the buffer is
released, committing the result of the speculative execution period.
The VM is then speculatively executed for the next epoch and the
cycle continues.

In the case where the VM fails the security audit, CRIMES seeks
to provide automated analysis to help identify the cause of the
attack, or even reverse it. To do that, a checkpoint of the VM’s
state (e.g., CPU registers, memory, and disk) is created after each
successful scan to provide a point that can be safely rolled back to.
The VM can then be either replayed if one suspects the failure was
due to a transient fault and/or an in-depth forensic analysis can be
done tofi nd the root cause of the attack.

In our current implementation, CRIMES focuses on checkpoint-
ing CPU and memory state, but this can easily be extended to
include disk snapshots as well [13]. Creating a checkpoint requires
the VM to be paused, so this process is the source of most over-
head in CRIMES—in Section 4.1 we describe several optimizations
we introduce to lower this cost. Our current implementation only
maintains the most recent checkpoint, however, CRIMES could be
extended to include a history of checkpoints that would facilitate
forensic analysis. The interval of each checkpoint epoch is a tunable
parameter that is set depending on the applications that run on
the VM and the level of security the VM requires. Each epoch can
range from tens to a few hundred milliseconds.

A lower interval leads to more frequent audits, which reduces
the impact of output buffering, but can increase checkpointing
overhead. For example, a VM that hosts a web server demands
quick response times (low latency), but since the network packets
are buffered, the response time of a VM may be extended by the
sum of the epoch interval and the time taken for the security audit
to complete. In such a case of a latency sensitive VM the epoch
intervals can be as low as 10 — 20ms. In the case of the VMs that
aren’t dependent on network or disk latency, such as CPU bound
workloads, the epoch intervals can be set higher, e.g. 200ms, to
reduce checkpointing overhead.

The output buffering described above can offer protection with
zero window of vulnerability, thus we call this mode Synchronous
Safety, as presented in [9]. However, not all VMs require such
a strong guarantee. By disabling buffering, CRIMES can provide
Best Effort Safety, where attacks can still be detected quickly, but
they may cause some external output to leave the system before
detection. However, since many current systems have windows of
vulnerability of minutes or even days, Best Effort protection may
still be desirable since it can offer higher performance yet only
millisecond level vulnerability periods.

3.2 Detection

Determining if a VM is safe requires a robust and comprehensive
audit of the VM at the end of each epoch. This section describes
how CRIMES can efficiently detect and pinpoint a range of memory

Middleware ’18, December 10-14, 2018, Rennes, France

Speculative Execution Speculative Execution

. with no attacks @ E 5 with Attack Executed .3
e — 3| > O
8 o 8_ 8 =
a 535 |8 Rollback §
S O
<5 Post-Mortem _ Attack
----------- » Pinpointed

CRIMES Execution Timeline

Figure 2: CRIMES speculatively executes the VM during
each epoch, with comprehensive security audits at the end
to verify system integrity. If an attack is detected, the VM is
rolled back for a in-depth forensic analysis

errors and malware running within a VM. To interpret the inside of
a VM from the hypervisor, we need information about its symbol
names and the corresponding memory addresses. Virtual Machine
Introspection (VMI) techniques make this possible, for example by
using a System.mapfi le to locate kernel data structures for a VM
running a known version of Linux [16].

VMI is mainly used for offline memory forensic analysis on VMs.
VMI techniques help forensic investigators to view and analyze key
user-level and kernel objects, symbols, and other key components
from outside the VM. This allows a robust analysis of what happens
inside the VM at any given point in time.

CRIMES can perform introspection on a VM with or without
the aid of the VM. The Detector component in CRIMES provides
a modular framework for different VMI-based security scans. At
the end of each epoch, the Checkpointer component messages the
Detector to trigger a scan.

To reduce the cost of performing audits at the end of each epoch,
the Checkpointer provides the Detector with a list of dirtied pages.
This allows the security audit to focus only on pages that have
been modified, and thus might contain evidence of an attack. The
Detector will trigger one or more of its Scan Modules, which can be
customized depending on the type of attacks that a VM may face
and whether the VM is made aware of the scanning system. The
main goal of our work is to provide a framework to which such
modules can be added to check for different types of security issues
in the VM, depending on the nature of the tasks that the VM runs.
Moreover, we focus on keeping the overheads of the scans minimal
(within a few milliseconds).

Unaided Security Modules: In some cases it is possible to detect
evidence of an attack with no assistance from within the VM. These
types of scans typically look for anomalous data in well known
kernel or application data structures. For example, VMI can be used
to monitor the kernel’s list of active tasks for blacklisted processes,
or to compare the system call table against a known good state
to ensure it hasn’t been hijacked. Alternatively, a security mod-
ule could focus on the outputs of the VM, e.g., scanning outgoing
network packets for suspicious content. Such scans require basic
knowledge of the VM’s internals (provided by a virtual machine
introspection library), but do not require any modifications inside
the VM.

Guest-aided Security Modules: Many attacks do not leave ev-
idence behind on their own, so CRIMES also supports scanning

S. Rajasekaran et al.

modules that get assistance from within the guest VM. This can
be used to proactively install “tripwires" inside the VM’s memory
so that the external scan can more easilyfi nd evidence of an at-
tack. Several prior systems have demonstrated the benefit of trip
wires [9, 22]. For example, the guest could run a library to automat-
ically place canaries after objects in the stack or heap, facilitating
hypervisor-level scans for buffer overflows. This can allow CRIMES
tofi nd a much broader range of attacks. We have implemented mod-
ules of each of the above types, which are detailed in Section 4.2.

3.3 Response

After a Detector module identifies a potential attack—memory er-
rors or malware—the CRIMES Analyzer is activated to generate a
comprehensive security report to aid administrators with mitigat-
ing this form of attack in the future. Before generating this report,
CRIMES can optionally perform additional forensics to pinpoint
the exact system state when the attack started. Once an attack is
detected, CRIMES suspends the VM to prevent damage. The Ana-
lyzer’s response can be broken down into two stages:

Rollback and Replay (optional): CRIMES detects attacks at the
end of a checkpoint interval, but the actual exploit must have oc-
curred sometime earlier during that epoch. To narrow down the
point of the attack, CRIMES can “rollback” the VM to the checkpoint
prior to the start of the attack. Then, we “replay” the VM and run it
in an advanced forensics mode (determined by the Scan Module) to
gatherfi ne-grained details regarding the attack. Note that during
the replay phase our main goal is to determine the root cause of the
attack, not provide high performance. This allows us to run more
expensive security scans such as intercepting all writes to memory
addresses to inspect their contents.

Postmortem Analysis: At any point, CRIMES maintains two in-
stances of the VM: one at the current epoch (the primary VM) and
another snapshot at the previous checkpoint’s epoch (the backup
VM). As a result, CRIMES doubles the memory requirement of the
VM. If we rollback and replay the VM after detecting a potential
attack, then we would have three snapshots: the two that CRIMES
already maintains, and an additional at the point of the attack. If
the Detector modulefi nds traces of an attack, then the VM is paused.
At this point, we can generate two memory dumps of the VM:
one at the last known safe checkpoint and the other at the point
where the audit failed. Having two memory dumps around the at-
tack significantly simplifies attack analysis. CRIMES can determine
the differences between the two dumps and highlight them for an
investigator.

In both cases, we use these dumps as input to the Volatility
Framework. We expand on using memory dumps with Volatility for
postmortem analysis in Sections 5.5 and 5.6. In our case study, we
run a plethora of Volatility commands to generate a comprehensive
security report of the VM.

4 IMPLEMENTATION

CRIMES’s implementation leverages Xen’s Remus high availability
system [13] for checkpointing, and LibVMI [27] and Volatility [4]
for memory analysis and forensics.

CRIMES: Using Evidence to Secure the Cloud

Remus speculatively executes VMs in epoch intervals by ex-
tending the final stages of Xen’s live migration mechanism to take
regular checkpoints of the VM’s memory and disk state at the end
of each interval. Remus guarantees that should the primary host
go unresponsive Remus will failover to the backup VM, which then
will become the primary. Another feature that Remus provides is
network buffering. It buffers all the outgoing network packets of the
VM in the hypervisor during an epoch interval and releases them
only after receiving an acknowledgement of a complete checkpoint
from the backup VM.

CRIMES builds upon Remus’s framework, but uses the backup
VM to represent the most recent clean snapshot, and rather than
just waiting until data is sent to the backup, we perform a security
audit before proceeding to the next epoch.

In this section wefi rst describe the implementation of CRIMES
with three different optimizations done to Remus for providing a
responsive and a comprehensive cloud security system. Then, we
describe the different types of security detection and analysis mod-
ules using LibVMI library andfi nally, describe how we implement
our forensic analysis tool using Volatility.

4.1 Optimizing Speculative Execution

Remus provides continuous checkpointing, but we have found that
this can come at very high cost. Below we show the timeline of
events at the end of each checkpoint interval for a version of Re-
mus that has been modified to perform a VMI-based integrity scan
before the checkpoint is created.

suspend ¢ Suspend active VM to paused state.
vmi ¢ Introspect the VM for integrity.
bitscan ¢ Scan bitmap to select dirty pages to propagate.
map ¢ Map VM’s virtual to physical memory.
copy ¢ Propagate the VM’s state to its backup.
resume ¢ Resume VM execution from suspended state.

During these steps the VM is paused, so applications can make no
useful progress. In Table 1 we show the time the VM spends in each
state for different intensity web workloads. In this test the backup
VM runs on the same host as the primary to minimize overhead.

Workload (ms) suspend vmi bitscan map copy resume

Light 0.96 0.34 1.83 1.6 1258 1.5
Medium 0.98 0.34 1.97 1.88 14.63 1.48
High 1.27 0.33 2.79 2.63 19.98 2

Table 1: Cost breakdown of time spent in paused state for
different workloads using web-benchmark for an epoch in-
terval of 20ms with no optimizations

These results show that the workload directly affects the time
a VM spends in the paused state, and that this cost can rise to
tens of milliseconds. Clearly this is an unacceptable cost; here the
VM will run for a 20 millisecond epoch, then be paused for nearly
30 milliseconds before repeating the process in the next epoch.
Copying data from the primary to backup alone takes about 70%
of the total time spent in the paused state. We found that when
the backup is propagated to a remote host, the overhead increased
multi-fold because of the added cost of network transmission.

Middleware ’18, December 10-14, 2018, Rennes, France

While the goal of Remus is to offer availability in the face of host-
level failures, our focus is only on security. Instead of storing the
backup on a remote machine, CRIMES keeps its checkpoints on the
local host, which permits several key performance optimizations.
If users desire both high availability and security, CRIMES could
be configured to perform remote checkpoints and security scans.
Our experiments show that this would incur minimal overhead on
top of the cost of Remus. The onus is to optimize checkpointing in
such a way that we spend minimum time performing tasks in the
suspended state. To this end, we found several optimizations that
improve the performance of our framework.

Optimization 1: memcpy, not write: There are two major factors
affecting the time taken to copy data for a checkpoint. Since Remus
is designed for transmitting checkpoints over the network, it uses
sockets to transmit the data, which adds several unnecessary costs.
First, the sockets use the writev system call to propagate the ma-
chine state to the backup machine. Although, writev is optimized
over using write system call by grouping multiple writes together,
writing all the machine state over the socket for each interval incurs
a high overhead. Second, regardless of whether the backup was
sent to a different host or the local host Remus uses ssh to write
the memory pages over the socket. Using ssh encrypts the dirty
page data, which is necessary for security when moving across the
network, but is an unnecessary cost if the destination is the local
host.

CRIMES optimizes this overhead by performing an in-memory
copy of memory pages at each checkpoint rather than writing the
pages through a socket. In the default Remus system, its Check-
pointer process only maps the memory pages of the primary VM,
while a “Restore” process on a remote host maps in the pages of
the backup. We extend the CRIMES Checkpointer so that it maps
the memory pages from both the primary VM and the backup VM
into its own process address space. To acheive this, we modify the
Restore code to write the backup VM’s Machine Frame Numbers
(MFNs) to a temporaryfi le read by the Checkpointer. Once CRIMES
has the MFNs of the Backup VM it maps those addresses to its
virtual address space by using the Xen’s xenforeignmemory_map
function. This allows it to use memcpy instead of write to copy
modified pages from the target VM into the backup checkpoint.

Optimization 2: Global Memory Mapping: A second overhead
we observed was how the Remus Checkpointer maps the pages
of the primary and backup VMs for each checkpoint. In the orig-
inal system, the Checkpointer maps in only the dirty pages and
then unmaps them after their content has been copied. This cycle
of mapping and unmapping is repeated each checkpoint interval,
potentially causing high overhead. Further, the overhead is exacer-
bated in CRIMES, since the Checkpointer must map pages for both
the primary and backup VM.

We found that the conversion of VM-specific Page Frame Num-
bers (PFNs) to physical Machine Frame Numbers (MFNs), and re-
peated mapping and unmapping each checkpoint interval incurs a
very high overhead, and increases linearly with the increase in the
number of dirty pages at each checkpoint. CRIMES optimizes this
by maintaining a global data structure with the full PFN to MFN
mapping which is loaded once at the start of the CRIMES system.

Middleware ’18, December 10-14, 2018, Rennes, France

We use array as our choice of data structure because the PFNs
increase from 0 to the size of the memory. Thus, all the MFNs are
indexed by its corresponding PFNS making all lookups in constant
O(1) time. Performing the full mapping at startup increases initial-
ization time, but eliminates the cost of repeated mappings every
epoch. Since adjusting mappings requires expensive hypercalls and
page table modifications, this provides a significant drop in pause
time.

Optimization 3: Dirty Page Scan: Ourfi nal optimization was to
modify how Remus determined which pages were dirty. Remus
maintained an internal dirty bitmap data structure where each bit
correspond to a page in the memory. If a particular page has been
dirtied during an interval, the corresponding value in the bitmap is
marked with the value 1 and 0 otherwise.

At each checkpoint, Remus searches linearly bit by bit on the
dirty bitmap to determine which pages were dirtied. Although, the
overhead of this method was not as significant as others, this still
incurs unnecessary cost, linearly increasing with the size of the
total memory.

CRIMES reduces the dirty bit scan cost based on the intuition that
most pages in memory will not be dirty, and often dirty pages will
be grouped consecutively. We exploit this fact by having CRIMES
scan the bitmap by the machine word size (e.g., 4 or 8 bytes) since
most memory regions are not modified and the bits will all be 0.
Only if word is not 0, then we check each bit within that word to
get the dirty pages.

4.2 Detection and Analysis Modules

We have implemented two detection and post attack analysis mod-
ules to demonstrate the types of attacks CRIMES can handle. The
first targets Linux VMs and leverages a custom memory allocator
in the VM to detect buffer overflow attacks, while the secondfinds
illicit processes in unmodified Windows VMs and performs forensic
analysis.

Malware Detection: This scanning module uses introspection to
check the list of active processes running on a VM for evidence of
known malware or other programs forbidden by an administrator.
This mechanism needs no support from the VM, and can be done
solely from the hypervisor level. The list of active processes is com-
pared against a black-list of known malicious processes (which we
obtain from [3]). If no matches are found, then the checkpointing
mechanism continues. In case a match is found, the checkpointing
mechanism stalls and the VM running the server pauses for further
introspection in the post mortem analysis phase.

Buffer Overflow Detection: Next, we implement a canary-based
buffer overflow detection [12] module. For this, we need the help of
our VM to provide the scan module with the addresses of canary-
protected heap objects. We create a simple malloc wrapper inside
the VM for C programs. This malloc wrapper assigns a canary (or
tripwire) at the end of every allocated memory object in the user
space of the VM’s operating system.

At the end of each epoch, the Checkpointer sends a list of dirt-
ied pages during that checkpoint to the Detector, and the canary

S. Rajasekaran et al.

addresses associated with the objects allocated on these pages can
then be monitored by the scanning module. The scan checks the
values held by these canaries against the expected value that the ca-
naries should hold. If the values match, that implies that the buffers
associated with them haven’t overflown. Otherwise, the checkpoint-
ing mechanism triggers an alert, and the VM running the server
pauses for further introspection in the post-mortem analysis phase
of our framework.

Once a canary is detected to have a modified value we need to
find the execution path that led to the overflow. For this purpose,
we need to rollback to the last checkpoint and replay the VM. This
allows us to monitor the VM’s memory for changes, and pinpoint
the instruction which caused the buffer overflow.

We use Xen’s capacity for memory event-monitoring to detect
changes on the page(s) containing the corrupted canaries. The event-
monitoring component leverages Xen event channels through Lib-
VMI to monitor read, write, and execute events that occur on par-
ticular pages of memory. In Xen, each VM has a ring buffer to hold
events that are to be consumed by some external service such as
our forensic analysis tool. LibVMI provides abstractions to easily
consume events from this ring buffer. In this security module’s case,
we are interested in memory events, as opposed to instructions or
interrupts. LibVMI’s VMI_EVENT_MEMORY macro enables monitoring
of read/write/execute operations on a region of memory.

During the replay phase, the post mortem Analyzer will poll
the events ring buffer to monitor for events to the targetted page.
When an event is found, the memory operation is analyzed to see
if it targets the canary (as opposed to some other portion of the
page). Once the write to the canary is found the VM is paused-at
the exact instruction which triggered the original overflow.

At this point, CRIMES has fully detected and replayed an attack.
During that process it has created several snapshots of the VM: at
the previous “good” checkpoint, at the end of the “bad” epoch, and
finally at the precise point of the attack. The forensics phase of
the analyzer can then utilize the Volatility Framework to provide a
comprehensive security report based on these memory snapshots.

It is important to note that event monitoring with Xen is expen-
sive. Due to its expensive nature, CRIMES does not enable event
monitoring during normal operation. Instead, event monitoring is
only utilized after we detect an attack and must replay it. If event
monitoring was used in the former case, it would incur a significant
performance loss.

Memory Forensics: In addition to the two detection and response
modules described above, we have also explored several other
memory forensic capabilities that can be integrated with CRIMES.
CRIMES can detect hidden processes using Volatility’s psscan (Win-
dows) (which performs heuristic memory search for spotting all
processes by looking into memory allocations of process stacks)
and psxview (which gives a cross-section view between pslist and
psscan plugins for Windows) or linux_psxview (which does a de-
tailed analysis of processes running on a Linux machine). Therefore,
any processes that appear in psscan but not in pslist for Windows
or kmem_cache and pid_hash but not in pslist for Linux can poten-
tially be malicious.

Once a malicious process has been detected, we can dump the
process and get essential information, such as pid, uid, and time

CRIMES: Using Evidence to Secure the Cloud

PARSEC 3.0 Benchmarks

blackscholes Uses PDE to calculate portfolio prices

swaptions Use HJM framework and Monte Carlo sim-
ulations

vips Perform affine transformations and convo-
lutions

radiosity Compute the equilibrium distribution of
light

raytrace Simulate real-time raytracing for anima-
tions

volrend Renders a three-dimensional volume onto a
two-dimensional image plane

bodytrack Body tracking of a person

fluidanimate Simulate incompressiblefl uid for interactive
animations

freqmine Frequent itemset mining

water-nsquared Solves molecular dynamics N-body problem

Table 2: Parsec Benchmarks Suite used in our experiments

stamp for deeper analysis. CRIMES can call Volatility plugins to
automatically gather data such as openfi le descriptors and network
connections. We talk about our Volatility memory forensic case
study for buffer overflow detection on Linux machines and malware
detection through signature matching on Windows machines in
Section 5.5 and Section 5.6, respectively.

5 EVALUATION

5.1 Setup - machines, benchmarks

To evaluate CRIMES, we demonstrate how performance optimiza-
tions to Remus foster a speculative execution environment with
which our modular security scans can run with little overhead. Our
experiments are run on HP ProLiant GL160 G6 servers with two
Intel Xeon X5650 CPUs @ 2.67 GHz and 16 GB of RAM that run
Xen 4.7 with an Ubuntu 14.04, Linux kernel 3.7, Domain-0. Our VMs
run OpenSUSE 13.1 with Linux kernel 4.8 running GCC version
4.8.1

We use PARSEC [7] version 3.0 for our evaluation, a common
CPU and memory intensive benchmark suite. We run PARSEC
benchmark with the memory safety tool AddressSanitzer [32] by
compiling it with -fsanitize=address flag. For network work-
loads we chose to use wrk, a HTTP benchmarking tool [17] as the
workload generator with NGINX version 1.11.4 as our web server.

5.2 Performance Overhead

Wefi rst evaluate the performance overhead of the CRIMES frame-
work. All the experiments were run with both the primary and
backup VM running on a single host, with network buffering un-
less specified otherwise. Here we use a 200ms epoch interval and
evaluate the impact of epoch length in the next section.

We compare our system to Remus modified to perform a VMI
scan each interval but without our optimizations (labeled No-opt).
We also compare against Google’s Address Sanitizer (AS), which
offers protection against a variety of memory errors such as buffer
overflows. We consider three variants of CRIMES:

Middleware ’18, December 10-14, 2018, Rennes, France

a) memcpy enhances Remus with only our local memory copy
optimization,

b) Pre-map uses both local memory copying and our preemptive
mapping optimization, andfi nally,

c) Full-opt represents the complete CRIMES system with the
above two optimization along with optimized dirty page scan-
ning.

For simplicity, our CRIMES prototype is configured to only run
a minimal no-op scan; however, we show in the next section that
the scan cost is quite small since it is only performed once at the
end of each interval. We expect similar performance when running
more complex scanning modules.

Figure 3 shows the normalized runtime of benchmarks from
the PARSEC suite under several different schemes. We report the
runtime of each benchmark normalized against running it inside
the same VM with no security enabled, thus a value of 2 indicates
the benchmark took twice as long to complete. Using the geometric
mean of all benchmarks, wefi nd that CRIMES sees an average
runtime increase of only 9.8%. This is substantially better than
unoptimized Remus or Address Sanitizer which increase runtime
by 40 to 60%. This is because AddressSanitizer does comprehensive
checks on the critical path of the application execution, while our
scans are done only once per interval. We believe that adding more
comprehensive checks to CRIMES will not impact the overhead
significantly as the checks range between hundreds of microseconds
to a few milliseconds as shown in the subsequent sections.

The runtime of CRIMES with our Full optimization is at most 50%
worse than the baseline. We see the highest overhead on thefluidan-
imate benchmark. Here the performance of unoptimized Remus is
particularly bad (nearly 5X the runtime without protection). This
is because the number of memory pages dirtied byfl uidanimate for
a checkpoint interval on average was 5X times higher than bench-
marks with low overhead such as raytrace. CRIMES’s optimized
data copying provides significant improvements, particularly for
benchmarks with high dirty page rates.

CRIMES consistently performs better than Address Sanitizer. In
addition, our framework is able to protect against a wider range
of attacks across multiple applications and the operating system.
Further, CRIMES can detect some security threats with no modifi-
cations inside the VM at all.

5.3 Overhead Details

Cost Breakdown: Figure 4 shows the average time the VM run-
ning the swaptions benchmark spends in the paused state between
each epoch interval over different set of optimizations.

The highest cost saving for CRIMES comes from optimizing the
copy time i.e., performing an in-memory copy instead of sending
the data (pages) over a socket. No-opt spends about 71% of its time
in the copy phase. This includes the time it takes to initially copy the
data onto a buffer and sending that data over a socket using writev
system call to the backup VM. On the contrary, CRIMES spends
only about 5% of its time for copying its data into the backup VM.

The cost of map varies for memcpy and no-opt optimization
while it is constant for the other two optimizations. This is because
in the case of Full and Pre-map we map the virtual addresses (PFNs)

Middleware ’18, December 10-14, 2018, Rennes, France

L [P

)
T

=

)

=1

e

Z

Normalized runtime
(with native)
T

S. Rajasekaran et al.

black-scholes swaptions vips radiosity raytrace volrend

bodytrack fluidanimate freqmine water-spatial water-n” Geometric-Mean

Figure 3: Normalized performance of PARSEC benchmarks with 200ms checkpoint interval

w
@

EZZ7 resume
= copy

map
bitscan
[By

suspend

w
S

1)
@

[N)
S

—
=
T

Cost Breakdown (ms)

—
=)
T

3]
T

Full Pre-map Memcpy No-opt

Figure 4: Absolute Cost breakdown for swaptions from PAR-
SEC benchmark for 200ms epoch interval

to its corresponding hardware address (MFN) only once at the
beginning and keep the full set of pages mapped across all intervals.

Since the Pre-map optimization is not enabled in the memcpy
case, mapping takes twice as much as time as the No-opt case simply
because at each epoch memcpy has to map both its primary process
and the Backup VM’s memory while No-opt only has to map its
primary process’ PFNs.

Ourfi nal piece of optimization that was included in the Full case
was the cost cut from bitscan. This optimization reduces the 2.7ms
time that it takes on all other optimizations down to 0.14ms for
Full. Thus, with all of our optimizations combined, in the Fully
Optimized case we are reducing the total pause time from 29.86ms
to 10.21ms decreasing the time spent in pause state by 67%.

Interval Length: Figure 5 shows how the epoch interval affects
different component of CRIMES. Figure 5b shows the normalized
runtime of 4 benchmarks using Full optimization with respect to
different epoch intervals. Since the PARSEC benchmark suite is
very CPU and I/O intensive pausing and re-executing within very
small time intervals incurs a high overhead. Thus we see that the
normalized runtime decreases (performance increases) with higher
the epoch interval. This is the primary reason behind using a higher
checkpoint interval for any CPU and I/O intensive benchmark.

Furthermorefi gure 5b shows that with the increase in the epoch
interval the pause time increases. This is directly correlated with
the increase in the number of dirty pages per epoch interval shown
in Figure 5c.

Figure 6a shows the normalized runtime offl uidanimate bench-
mark’s normalized runtime with our different optimization. Re-
gardless of the optimizations the performance of worsens with
smaller epoch interval but it is imperative to see that even as the
performance gets worse, with our optimizations the runtime is 3.5X
faster than the No-opt case. This is a case where CRIMES performs
exceptionally well because the number of dirty pages per epoch
was the highest (5X) of all other benchmarks.

Bitmap Scan: To illustrate the full potential of bitmap scan opti-
mization we simulated the cost of scanning a bitmap. We created
a randomly generated bitmap representative of the size of a VM
and compared the cost of scanning it bit by bit versus scanning in
chunks. Figure 6b illustrates the cost of bitmap scan with respect to
the size of the VM. As the VM size increases the number of pages
to scan to locate the dirty pages also increases. One can see that
in the bit by bit case (Not optimized) the scanning cost increases
much more rapidly than the scan by chunk case (Optimized).

VMI Scan Cost: Invoking virtual machine introspection typically
takes 100s of milliseconds to complete. However, most of this cost
is related to VMI initialization, which performs routines such as
detecting the operating system kernel version and configuring ad-
dress translations. Since this information will not change while the
VM is running, CRIMES only needs to do this once. As a result, the
cost to do a VMI scan during each checkpoint can be substantially
reduced. To demonstrate this, we break down the cost of running
two common VMI routines: process-list, which walks the kernel’s
task queue to determine the running processes, and module-list,
which examines the set of loaded kernel modules. We measure the
time to run each of these modules 100 times on a Ubuntu Linux
VM. As shown in Table 3, the preliminary LibVMI initialization
consumes an average of about 66 milliseconds, with an additional
53 milliseconds used for mapping additional data structures. The
actual scan of either the process list or the module list is completed
in under 2 milliseconds. Only thisfi nal cost is incurred during each
checkpoint in CRIMES.

Our current prototype focuses on LibVMI based introspection
since it has the highest performance, with Volatility only being used
for automated post-failure analysis. Volatility does not offer funda-
mentally different functionality than LibVM]I, but its Python-based

CRIMES: Using Evidence to Secure the Cloud

Middleware ’18, December 10-14, 2018, Rennes, France

freqmine = = volrend == ** freqmine = = volrend ==~ freqmine = = volrend ==~
swaptions °°°° ‘water-spatial swaptions °°°° ‘water-spatial x10" swaptions °**°* ‘water-spatial
. 12 =16
. «
£ | Vs 1 E:
E S g1 S
3 e - = ~
511 -, Nee—ao = =
g -..__.. -'._._.___ 'g 12 e - - - B=}
5 | TTteeeeeana..... 2 - - - - 2 A
cee. = 8°° ##
“ 1 1 1 1 1 1 1 1 EIETIR 100 Tl o i sl 1 1
60 80 100 120 140 160 180 200 60 80 100 140 160 180 200 60 80 100 120 140 160 180 200

Epoch interval (ms)

(a) Normalized Runtime

Epoch interval (ms)

(b) Paused time

Epoch interval (ms)

(c) Dirty page per epoch

Figure 5: Normalized Performance of Parsec Benchmarks with Full Optimization

Full = = Memcpy = """
Pre-map “*°°* No-opt

7
g
E 6
e 5
2
o4
E o 3f=remeem .
] -

1 1 Ty ———

60 80 100 120 140 160 180 200
Epoch interval (ms)
(a) Fluidanimate runtime
70
60 Optimized = .
Not Optimized = = Vi

’é\ 50 ,
< 0 ==
E 30 ,

20 -

- -
10 -
=T L T T 1 1
0 2 4 6 8 10 12 14 16

VM Size (GB)

(b) Simulated Bitmap Scan cost

Figure 6: Optimization Benefits

Time Cost (usec) process-list module-list

Initialization 67,096 66,025
Preprocessing 53,678 54,928
Memory Analysis 1,444 1,777

Table 3: LibVMI analysis costs in microseconds

interface and library of helper functions can make it easier to write
complex scans. Unfortunately, Volatility has much higher cost — an
average of 2.5 seconds for initialization and 500 milliseconds to per-
form a process scan identical to the LibVMI version. Other Volatility
tools such as scanning to reveal the openfi le descriptors have simi-
lar cost. This overhead is infeasible for running synchronously at
every checkpoint interval, but we note that CRIMES’s maintenance
of a prior checkpoint means that complex security tools such as
Volatility could be used asynchronously on the last checkpoint as
the VM continues to run. We leave investigation of such techniques
as future work.

5.4 Impact of Best Effort Safety

To evaluate the impact of Best Effort Safety we ran NGINX web
server on the VM and measured its throughput and latency when
accessing simple HTML pages. We generated the workload using
the wrk benchmark as the client. Figures 7a and 7b show the nor-
malized latency and throughput of the wrk benchmark with respect
to the epoch interval for both Best effort Safety and Synchronous
safety with Full optimization. All values shown are normalized
against performance of the VM without any speculative execution,
i.e., no security scans or checkpoints are being done. The average
maximum throughput and latency achieved in this baseline were
17094 req/s and 2.83 ms respectively.

In the case of best-effort safety, where we do not buffer any
output packets, the performance is almost equal with having no
protection at all. This is because the VM is network limited, and
the overhead of making checkpoints is relatively low because of
the low dirty page rate.

This is good, if the end-user prefers performance over a small
compromise in security. It is hard to quantify the damage an attack
can do, but we can quantify the protection in some way—the epoch
interval still will determine how often we scan for attacks, so we
can still guarantee that a system will be compromised for at most
X milliseconds.

It is worth to note that we will still be able to detect the attack
if it happened at the end of each epoch. But in case of an attack,
rolling back to the previous checkpoint does not guarantee to undo
the effects of the attack, especially if such an attack executes any
irreversible system calls such as sending out network packets.

In contrast, with Synchronous Safety, we do buffer all outgoing
packets and that impacts the performance of the VM significantly.
As the interval increases the latency worsens because of buffering,
and the throughput falls because packets are held for a longer
period of time. This has a large effect on the three-way handshake
at the start of new TCP connections. Since nginx is serving small
files, this causes a high overhead. It should be noted that a larger
checkpoint interval normally decreases overhead, but for the web
benchmark it has the opposite effect because the incoming client
workload is unable tofi 1l the server to capacity because of the high
latency caused by network buffering. Since our workload generator
is closed loop, i.e., new connections are not created until old ones
complete, the impact on throughput is exacerbated.

Middleware ’18, December 10-14, 2018, Rennes, France

Synchronous Safety
Best Effort Safety = = ©

Norm. Latency

I il s e i i i i B

20 40 60 80 100 120 140 160 180 200

Epoch interval (ms)

(a) Latency

‘a

& o8

S

S 06 Synchronous Safety

S Best Effort Safety = = -
g 04

S

Z 02

20 40 60 80 100 120 140 160 180 200

Epoch interval (ms)

(b) Throughput

Figure 7: Performance of Web Server

The main takeaway here is that the epoch interval and security
mode should be chosen based on the workload of the VM. For
instance, it is desirable to choose a large epoch interval for CPU
bound VMs, while for a network intensive VM it is better to choose
smaller intervals or use best effort safety. If best effort safety is
sufficient, than a larger interval can be used to reduce overhead.

5.5 Case Study 1 - Overflow Attacks

In this case study we demonstrate how the CRIMES Buffer Overflow
protection system can detect and respond to attacks. Inside the VM
we run a simple C program built with our custom memory allocator
that adds an 8 byte canary at the end of each heap object and
stores a lookup table of canary addresses that can be read by the
hypervisor-based scanning module. At the end of every checkpoint,
the Checkpointer reports the pages dirtied during that epoch. The
Detector then checks the integrity of any canaries stored within
those dirtied pages. Scanning for canaries at the end of an epoch
is substantially faster than instrumenting all memory accesses; we
find that our scanner can validate 90,000 canaries per millisecond.

Figure 8 illustrates a timeline of the attack and response in this
case study. We trigger a buffer overflow within the program, over-
writing a canary, at some point within the 50 ms epoch interval at,
say, time ¢y ms. After 24.4 ms, the epoch ends, the VM is paused
and a scan is performed. It takes the Detector approximately 3 ms
to suspend the VM and begin the scan, whichfi nishes in less than 1
ms. The canary is detected to have a modified value, thus indicating
the presence of an overflow and the need for replay and forensic
analysis. At time ty + 29 ms, CRIMESAi nishes preparing the backup
checkpoint for replay and resumes its execution, starting from the
checkpoint prior to the attack.

CRIMES automatically replays the VM for this epoch in order
to pinpoint the exact instruction which caused the buffer overflow.
The replay module accepts the address of the canary and configures

S. Rajasekaran et al.

el
o
Speculative Execution :5|_ h= ~
= with Attack Executed | §|& F|< Replay 'g Post Mor:tem
g ——————» 2|=5|8------ > < Analysis
iy 2 E é & 15 ~ mem dump: 5 sec
F 24.4ms 'S ‘g write checkpoints: 100+ sec
- < ” L
10 /7 >

CRIMES Attack Detection Timeline

Figure 8: CRIMES detects the attack at the end of the inter-
val and then quickly reverts to a snapshot and begins replay
within 29 ms. Withinfi ve seconds CRIMES has produced a
detailed forensic report, coupled with multiple full system
snapshots written to disk within a few minutes.

Xen’s event monitoring system to intercept any memory writes to
that page by marking its protection bits.! By examining the address
of the memory write that triggered the fault, CRIMES verifies that
this is the invalid write that corrupted the canary. At this point the
replay VM is suspended and post-mortem analysis is performed.

Our Buffer Overflow Post-Mortem Analysis tool uses Volatil-
ity to automatically extract useful forensics from the VM. Itfirst
uses the linux_dump_map Volatility plug-in to extract a memory
dump for the specific process and the address space, obtained using
Volatility’s linux_proc_map plug-in, that experienced the attack.
This takes approximately 5 seconds on our system. This will pro-
vide valuable information for forensic analysts or developers who
can look at the contents of the application’s stack and heap at the
instant of the attack to determine the root cause and more easily
patch the application. Finally, CRIMES produces three full system
checkpoints for future analysis: at the start of the epoch before the
attack, at the end of the epoch after the attack, and at the point of
the attack found during replay.

In total, CRIMES took under 30 ms from when the attack oc-
curred until it completes its forensic analysis (not including the
time for replay, or to save checkpoints to disk which can take tens
of seconds for large VMs). The time taken for detecting an attack
varies according to the frequency at which the Checkpointer takes
checkpoints (in this case 50 ms). However, due to CRIMES’s use of
speculative execution, the outputs of the VM after the point of the
exploit are all buffered, limiting external impact of the attack.

5.6 Case Study 2 - Malware Detection

Our second case study explores a windows desktop VM environ-
ment and how CRIMES can help detect unauthorized applications
with no modifications to the VM itself. We create a “malware” pro-
gram that reads registry information on the Windows machine,
writes the data it gathers into afi le, and sends thatfi le to an ex-
ternal host. This represents common attacks that extract personal
information from a victim’s PC and transmit the data to an aggre-
gation server.

!Unfortunately, we have found that the current Xen release does not fully support
HVM VMs for Remus, whereas the event monitoring code only works with HVM VMs;
this has prevented us from fully evaluating rollback in our system [2]. However, this is
not a fundamental limitation and is expected to be resolved in upcoming Xen versions.

CRIMES: Using Evidence to Secure the Cloud

Our Malware Detection module checks for the presence of known
malware by scanning the list of active processes against a black-
list such as McAfee’s registry [3]. Of course this simple detection
scheme could be extended for detection of more advanced malware
threats that attempt to hide their visibility. Performing the process
scanning audit at the end of each checkpoint has low overhead of
approximately 0.3 microseconds. We leverage libVMI tofi nd the
relevant windows kernel data structures without requiring any
modifications inside the VM.

When we start our illicit program, the scanning module quickly
detects it at the end of the checkpoint interval. In this case, CRIMES
does not require replay of the VM since it is not looking for a spe-
cific memory event. Instead, our Malware Post Mortem Analysis
is immediately triggered to automatically gather forensics about
the system’s behavior. The Analyzer modulefi rst uses Volatility’s
procdump plugin to extract a copy of the malware executable, which
can later be analyzed in depth in a sandbox environment. Next, the
Analyzer uses the netscan and handles plugins to gather forensic in-
formation about socket connections and currently openfi le handles.
These are automatically performed on the checkpoints from both
the start and end of the latest epoch so that they can be compared.
The analysis module diffs the two outputs, producing information
such as the network connection and openfi le list shown below. This
provides a security analyst immediate access to useful information
like the network host 104.28.18.89 that was being contacted by our
“malware".

Malware detected:
Name PID Start
reg_read.exe 2656 2017-05-02 22:51:08

Open Sockets:
Protocol Local Address Foreign Address State
TCPv4 192.168.1.76:49164 104.28.18.89:8080 CLOSE_WAIT

Open File Handles:

\Device\HarddiskVolume2\Windows
\Device\HarddiskVolume2\Users\root\Desktop
\Device\HarddiskVolume2\Users\root\Desktop\write_file.txt

The Analyzer also triggers a deeper malware scan tofi nd evi-
dence of rootkits or other threats on the system using Volatility
plugins psscan. It also runs the psxview plugin which further helps
locate any malware that might have hidden itself from the Win-
dows’ process structure. The results of all of this analysis is gathered
into a report which can be provided to an administrator along with
the system checkpoints and extracted malware executable.

6 RELATED WORK

VM Checkpointing and Speculative Execution: Continuous
checkpointing of VMs was brought to Xen by Remus [13] for pro-
viding high availability by replicating VMs across a data center.
SecondSite [29] was built on top of Remus to provide disaster re-
covery across the wide area. In addition to using checkpoints for
crash failures, it has also been studied for recovering from transient
errors [38], debugging [19], and performing intrusion analysis [15].

Middleware ’18, December 10-14, 2018, Rennes, France

CRIMES is different from these in that it uses continuous check-
pointing to provide zero window of vulnerability for a wide range
of security scans. Additionaly, to maintain usability of the system
we further optimized the Remus system to reduce its overheads.

Rollback and Replay Analysis: Several prior approaches pro-
vide deterministic record and replay techniques at different gran-
ularities. Flashback [36] allows replay and analysis for detecting
software bugs, DejaView [20] allows the user to create checkpoints
by combining display, operating system andfi le system virtual-
ization without modifying applications, operating system kernels
or other internal functionalities of the system, thus, allowing the
user to replay and analyze the state of the system, and Crosscut
[10] allows for multi-stage recording at different levels of abstrac-
tion. Crosscut comes closest to our work of performing record
and replay on a virtual machine for uses such as forensic anal-
ysis. Currently CRIMES does not guarantee deterministic replay
functionality, meaning that after an attack occurs it may not be
possible to replay identical behavior to pinpoint the precise attack
location. We believe that techniques from these prior systems could
be incorporated into CRIMES to offer this functionality if necessary.

Memory Analysis: Previous approaches to memory safety such
as AddressSanitizer [32], SafeCode [14], and SoftBound [25] instru-
ment code with memory checks that run inline in an application to
detect errors such as buffer overflows. These tools require special
compilation with the application that needs to be monitored, and
they can incur high overhead since they run within the critical path.
Our work is based on ideas included in DoubleTake [22], which also
uses periodic scans and speculative execution to detect memory
bugs. This prior work focuses on a single application in a special
runtime system, and cannot detect evidence of attacks within the
operating system. CRIMES performs full system scans once every
checkpoint, offering a wider range of protection modules that can
be used on modified or unmodified applications, as well as the ker-
nel. Our goal is to build a general purpose framework for security
analysis. CRIMES security modules could be developed that utilize
the comprehensive program instrumentation provided by a tool
such as AddressSanitizer, while moving many of its checks to the
periodic hypervisor-based scans to reduce overhead.

Hypervisor-based Security: We draw inspiration in our work
from Aftersight [9], a hypervisor based platform for decoupling
VM execution from security analysis. Aftersight relies on deter-
ministic record and replay approaches to have a secondary VM
execute the same set of instructions as a primary, while adding
additional security checks. Compared to CRIMES, this requires sub-
stantially more resources (i.e., an Aftersight VM fully utilizing a
CPU core will require an additional CPU core to be dedicated to
the secondary, whereas CRIMES only requires additional memory).
Further, Aftersight only supports single-core VMs, since enforcing
system wide determinism is very expensive for multi-core setups.
Similar to our work, Forensic VMs [33] rely on VMI to analyze
VMs for attacks, but they cannot provide automated post attack
analysis or the zero window of vulnerability guarantees offered by
CRIMES. Other approaches to providing security in the hypervi-
sor include virus scanning [28], root kit detection [39], etc. Such

Middleware ’18, December 10-14, 2018, Rennes, France

systems could be incorporated into CRIMES as detection modules,
granting them the ability to not only detect attacks, but perform
additional analysis afterwards. Work has also been done on using
virtualization to build efficient honeypot farms [37]; an extension
to CRIMES would be to build a post-mortem analysis module that
transforms an attacked VM into a carefully monitored honeypot to
gather further information about attacks.

Virtual Machine Introspection: Virtual Machine Introspection
wasfl rst introduced by Garfinkel and Rosenblum in 2003 [16]. Their
work isolates the intrusion detection architecture from the moni-
tored virtual machine, while still retaining visibility into the virtual
machine’s state. In the past few years, LibVMI [27] has emerged as
the primary open-source introspection tool, while Volatility [4] can
build on top of libVMI to offer more complex forensic operations.
VMI-Honeymon [21] provides assessment and experiment on Lib-
VML, and successfully captures over 70 percent of 2300 malware
samples.

7 CONCLUSION

Dynamic program analyses can precisely detect attacks, but their
inline security checks can incur high overhead. This limits their
application to a small portion of the system, e.g., certain memory
accesses within a single process. Our work on CRIMES demon-
strates the potential to provide full-system security services from
the hypervisor layer, at relatively low cost through asynchronous
security scans. From this vantage point we can use virtual machine
introspection to peer inside a VM to detect evidence of a wide
range of attacks across both applications and the OS. By combining
introspection with frequent checkpointing, CRIMES can not only
detect attacks, but roll back and replay them in order to perform
automated forensic analysis. We believe this is a powerful combina-
tion that can give administrators valuable insights into the sources
of an attack.

Acknowledgments: This work was supported in part by NSF
grants CNS-1525992 and CNS-1525888. We thank the anonymous
reviewers and our shepherd, David Eyers, for their valuable feed-
back on this paper.

REFERENCES

[1] 2014. Target Data Breach. http://www.ibtimes.com/timeline- targets-
data-breach-aftermath-how-cybertheft- snowballed- giant- retailer- 1580056
http://www.ibtimes.com/timeline-targets-data-breach-aftermath-how-
cybertheft-snowballed-giant-retailer-1580056.

[2] 2017. LibVMI Events Unable to Initialize - Google Groups.
//groups.google.com/forum/#!topic/vmitools/DKzoWeLGx1c
//groups. google.com/forum/#!topic/vmitools/DKzoWeLGx1c.

[3] 2018. McAfee - View Recent Malware. https://www.mcafee.com/
threat-intelligence/malware/latest.aspx https://www.mcafee.com/threat-
intelligence/malware/latest.aspx.

[4] 2018. The Volatility Foundation - Open Source Memory Forensics. http:
//www .volatilityfoundation.org http://www.volatilityfoundation.org.

[5] Gary Anthes. 2010. Security in the cloud. Commun. ACM 53, 11 (2010), 16-18.

[6] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,

Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and the Art of

Virtualization. In Proceedings of the Nineteenth ACM Symposium on Operating

Systems Principles (SOSP "03). ACM, New York, NY, USA, 164-177. https://

doi.org/10.1145/945445.945462

Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. Dissertation.

Princeton University.

https:
https:

=

—_

8]

[12

[13

[14

[15

[20

[21

~
5,

[23

[24]

[25

™
2

[27

[28

S. Rajasekaran et al.

Gang Chen, Hai Jin, Deqing Zou, Bing Bing Zhou, Zhenkai Liang, Weide Zheng,
and Xuanhua Shi. 2013. Safestack: Automatically patching stack-based buffer
overflow vulnerabilities. IEEE Transactions on Dependable and Secure Computing
10, 6 (2013), 368-379.

Jim Chow, Tal Garfinkel, and Peter M. Chen. 2008. Decoupling Dynamic Pro-
gram Analysis from Execution in Virtual Environments. In USENIX 2008 Annual
Technical Conference (ATC’08). USENIX Association, Berkeley, CA, USA, 1-14.
http://dl.acm.org/citation.cfm?id=1404014.1404015

Jim Chow, Dominic Lucchetti, Tal Garfinkel, Geoffrey Lefebvre, Ryan Gardner,
Joshua Mason, Sam Small, and Peter M. Chen. 2010. Multi-stage Replay with
Crosscut. SIGPLAN Not. 45, 7 (March 2010), 13-24. https://doi.org/10.1145/
1837854.1736002

Mihai Christodorescu, Reiner Sailer, Douglas Lee Schales, Daniele Sgandurra,
and Diego Zamboni. 2009. Cloud security is not (just) virtualization security: a
short paper. In Proceedings of the 2009 ACM workshop on Cloud computing security.
ACM, 97-102.

Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole,
Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. 1998.
StackGuard: Automatic Adaptive Detection and Prevention of Buffer-overflow
Attacks. In Proceedings of the 7th Conference on USENIX Security Symposium
- Volume 7 (SSYM’98). USENIX Association, Berkeley, CA, USA, 5-5. http:
//dl.acm.org/citation.cfm?id=1267549.1267554

Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson,
and Andrew Warfield. 2008. Remus: High Availability via Asynchronous Virtual
Machine Replication. In Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation (NSDI'08). USENIX Association, Berkeley,
CA, USA, 161-174. http://dl.acm.org/citation.cfm?id=1387589.1387601
Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. 2006. SAFECode: En-
forcing Alias Analysis for Weakly Typed Languages. In Proceedings of the 27th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI '06). ACM, New York, NY, USA, 144-157. https://doi.org/10.1145/
1133981.1133999

George W Dunlap, Samuel T King, Sukru Cinar, Murtaza A Basrai, and Peter M
Chen. 2002. ReVirt: Enabling intrusion analysis through virtual-machine logging
and replay. ACM SIGOPS Operating Systems Review 36, SI (2002), 211-224.

Tal Garfinkel, Mendel Rosenblum, and others. 2003. A Virtual Machine Introspec-
tion Based Architecture for Intrusion Detection.. In Networked and Distributed
System Security Symposium (NDSS), Vol. 3. 191-206.

Will Glozer. 2018. wrk - a HTTP benchmarking tool. https://github.com/wg/wrk
https://github.com/wg/wrk.

Amarnath Jasti, Payal Shah, Rajeev Nagaraj, and Ravi Pendse. 2010. Security
in multi-tenancy cloud. In Security Technology (ICCST), 2010 IEEE International
Carnahan Conference on. IEEE, 35-41.

Samuel T King, George W Dunlap, and Peter M Chen. 2005. Debugging operat-
ing systems with time-traveling virtual machines. In Proceedings of the annual
conference on USENIX Annual Technical Conference. 1-1.

Oren Laadan, Ricardo A. Baratto, Dan B. Phung, Shaya Potter, and Jason Nieh.
2007. DejaView: A Personal Virtual Computer Recorder. SIGOPS Oper. Syst. Rev.
41, 6 (Oct. 2007), 279-292. https://doi.org/10.1145/1323293.1294289

Tamas K. Lengyel, Justin Neumann, Steve Maresca, and Bryan Payne. [n. d.].
Virtual Machine Introspection in a Hybrid Honeypot Architecture. In Presented
as part of the 5th Workshop on Cyber Security Experimentation and Test. USENIX,
Bellevue, WA. https://www .usenix.org/conference/cset12/workshop-program/
presentation/Lengyel

Tongping Liu, Charlie Curtsinger, and Emery D. Berger. 2016. Double-
Take: Fast and Precise Error Detection via Evidence-Based Dynamic Anal-
ysis. In International Conference on Software Engineering. http://lib-arxiv-
008.serverfarm.cornell.edu/abs/1601.07962

Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A Lozano. 2014. A review of
auto-scaling techniques for elastic applications in cloud environments. Journal
of Grid Computing 12, 4 (2014), 559-592.

Ming Mao, Jie Li, and Marty Humphrey. 2010. Cloud auto-scaling with dead-
line and budget constraints. In Grid Computing (GRID), 2010 11th IEEE/ACM
International Conference on. IEEE, 41-48.

Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
2009. SoftBound: Highly Compatible and Complete Spatial Memory Safety
for C. In Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI "09). ACM, New York, NY, USA,
245-258. https://doi.org/10.1145/1542476.1542504

Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and Christof
Fetzer. 2017. Intel MPX Explained: An Empirical Study of Intel MPX and
Software-based Bounds Checking Approaches. CoRR abs/1702.00719 (2017).
http://arxiv.org/abs/1702.00719

Bryan D Payne. 2012. Simplifying virtual machine introspection using libvmi.
Sandia report (2012).

Daniel Quist, Lorie Liebrock, and Joshua Neil. 2011. Improving antivirus accuracy
with hypervisor assisted analysis. Journal in Computer Virology 7, 2 (May 2011),
121-131. https://doi.org/10.1007/s11416-010-0142-4

CRIMES: Using Evidence to Secure the Cloud

[29] Shriram Rajagopalan, Brendan Cully, Ryan O’Connor, and Andrew Warfield.
2012. SecondSite: Disaster Tolerance As a Service. In Proceedings of the 8th ACM
SIGPLAN/SIGOPS Conference on Virtual Execution Environments (VEE '12). ACM,
New York, NY, USA, 97-108. https://doi.org/10.1145/2151024.2151039
Sundaresan Rajasekaran, Zhen Ni, Harpreet Singh Chawla, Neel Shah, Timothy
Wood, and Emery Berger. 2016. Scalable Cloud Security via Asynchronous Virtual
Machine Introspection. In 8th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 16). USENIX Association, Denver, CO. https://www.usenix.org/
conference/hotcloud16/workshop-program/presentation/rajasekaran

Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. 2011. Efficient autoscaling

in the cloud using predictive models for workload forecasting. In Cloud Computing

(CLOUD), 2011 IEEE International Conference on. IEEE, 500-507.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry

Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In Proceed-

ings of the 2012 USENIX Conference on Annual Technical Conference (USENIX

ATC’12). USENIX Association, Berkeley, CA, USA, 28-28. http://dl.acm.org/

citation.cfm?id=2342821.2342849

[33] A.L. Shaw, B. Bordbar, J. Saxon, K. Harrison, and C. I. Dalton. 2014. Forensic
Virtual Machines: Dynamic Defence in the Cloud via Introspection. In 2014 IEEE
International Conference on Cloud Engineering. 303-310. https://doi.org/10.1109/
IC2E.2014.59

[34] Seungwon Shin and Guofei Gu. 2012. CloudWatcher: Network security monitor-
ing using OpenFlow in dynamic cloud networks (or: How to provide security
monitoring as a service in clouds?). In Network Protocols (ICNP), 2012 20th IEEE
International Conference on. IEEE, 1-6.

[35] Dilbag Singh, Jaswinder Singh, and Amit Chhabra. 2012. High availability of
clouds: Failover strategies for cloud computing using integrated checkpointing
algorithms. In Communication Systems and Network Technologies (CSNT), 2012
International Conference on. IEEE, 698-703.

[36] Sudarshan M. Srinivasan, Srikanth Kandula, Christopher R. Andrews, and
Yuanyuan Zhou. 2004. Flashback: A Lightweight Extension for Rollback and
Deterministic Replay for Software Debugging. In Proceedings of the Annual Con-
ference on USENIX Annual Technical Conference (ATEC "04). USENIX Association,
Berkeley, CA, USA, 3-3. http://dl.acm.org/citation.cfm?id=1247415.1247418

[37] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C.
Snoeren, Geoffrey M. Voelker, and Stefan Savage. 2005. Scalability, Fidelity, and
Containment in the Potemkin Virtual Honeyfarm. In Proceedings of the Twentieth
ACM Symposium on Operating Systems Principles (SOSP "05). ACM, New York,
NY, USA, 148-162. https://doi.org/10.1145/1095810.1095825

[38] Long Wang, Zbigniew Kalbarczyk, Ravishankar K Iyer, and Arun Iyengar. 2010.

Checkpointing virtual machines against transient errors. In On-Line Testing

Symposium (IOLTS), 2010 IEEE 16th International. IEEE, 97-102.

Xiongwei Xie and Weichao Wang. 2013. Rootkit detection on virtual ma-

chines through deep information extraction at hypervisor-level. In 2013 IEEE

Conference on Communications and Network Security (CNS). 498-503. https:

//doi.org/10.1109/CNS.2013.6682767

[30

[31

o
A

[39

Middleware ’18, December 10-14, 2018, Rennes, France

