
Hardware-assisted Isolation in a Multi-tenant
Function-based Dataplane

Wei Zhang⋆, Abhigyan Sharma†, Kaustubh Joshi†, Timothy Wood⋆
⋆George Washington University, †AT&T Labs Research

ABSTRACT
Existing software dataplanes that run network functions in-
side VMs or containers can provide either performance (by
dedicating CPU cores) ormultiplexing (by context switching),
but not both at once. Function-based dataplane architectures
by replacing VMs and containers with function calls promise
to achieve multiplexing and performance at the same time.
However, they compromise memory isolation between ten-
ants by forcing them to use a shared memory address space.

In this paper, we show that an operating system-like man-
agement layer for modules in a function-based data plane can
offer OS-like constructs such as performance and memory
isolation. To provide memory isolation, we leverage new In-
tel CPU extensions (MPX) to create coarse-grained heap and
stack protection even for legacy code written in unsafe na-
tive languages such as C. In addition, we use programmable
NIC offloads to distribute load across cores as well as to pre-
vent batch fragmentation when processing complex service
graphs. Our preliminary evaluation shows the limitations
of existing techniques that require heavy weight memory
isolation or incur cross-core overheads.

CCS CONCEPTS
• Networks → In-network processing; Network man-
agement;

KEYWORDS
Network Function, Memory Isolation, Performance Isolation
1 INTRODUCTION
Large tier-1 network providers are moving the dataplane of
their network functions (NFs) to software running on cloud

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5664-0/18/03. . . $15.00
https://doi.org/10.1145/3185467.3185493

platforms [5]. Despite advances in software dataplanes [4],
their performance drops significantly when sharing a single
core among multiple NF processes or when processing a
packet through a service chain of NFs across multiple cores.
Due to these overheads of context switching and cross core
operation, NF deployments in VMs and containers fall short
of the performance promised by the underlying hardware.
Function-based dataplanes such as NetBricks[15], Fd.io

VPP [6] and VMWare NSX [18] signficantly reduce these
overheads. These architectures implement NFs as modules
and invoke them via function calls. They avoid cross-core
overheads by processing a packet through a service chain in
a single thread on the same core. Due to nominal overheads
of switching among NFs on a core, they can multiplex a core
in a fine-grained manner among NFs of multiple tenants.

As a use case for a multi-tenant function-based dataplane,
consider a provider edge (PE) router for MPLS services. A
physical PE router has ports to connect to a few hundred
customers. A recent software-based PE router proposal, Edge-
plex [2], runs each customer’s router in a separate VM and
could consume up to a few hundred cores to replace a physi-
cal router. In comparison, a function-based data plane would
only consume cores proportional to the aggregate traffic at
the router, making it cost-effective for a network provider.

A function-based dataplane, despite its advantages, faces
two key challenges in supporting multi-tenancy:
• Memory isolation: The contents of memory for each NF
and each tenant must be protected from others. Memory
isolation is critical to ensure correctness of NFs and the
security of tenants’ traffic.

• Performance isolation: Flexible scheduling policies should
determine the share of CPU resources a tenant’s traffic
receives on a multi-core server. These policies are criti-
cal to achieving resource fairness among tenants while
optimizing global metrics such as aggregate throughput.
Our proposal FastPaas (FastPath-as-a-service) is, to our

knowledge, the first software dataplane to adopt a hardware-
based technique (Intel MPX) for memory isolation. In princi-
ple, MPX can protect modules written in any language by
instrumenting the compiler toolchain. We demonstrate its
capabilities by protecting modules written in a dominant

https://doi.org/10.1145/3185467.3185493

SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA W. Zhang et al.

and non-memory safe C language. In our preliminary work
towards building FastPaas we:
• Outline the challenges in processing a packet entirely in
a run to completion manner on a single core, particularly
when the packet must traverse a service chain or when
traffic must be split between NFs of many tenants.

• Evaluate the overhead of isolating NF modules using fine-
grained MPX instrumentation done by compilers today.

• Propose a coarse-grained hardware-based memory isola-
tion approach for NFmodules written in C and show that it
significantly lowers the overhead over existing compilers.

Our preliminary FastPaas prototype reveals that the run to
completion model can double throughput while using fewer
resources, and that our coarse grained approach lowers the
cost of memory isolation from over 64% to 24% or less.

2 WHY RUN-TO-COMPLETION IS HARD
We refer to a run-to-completion model in which a packet is
processed entirely in a single thread on the same CPU core.
Here we highlight the overheads of context-switching among
processes and cross core communication, while also recog-
nizing the challenge of achieving good performance when
run-to-completion is used in a multi-tenant environment.
Cross-core processing costs:We first compare the single
process, run-to-completion model to a more modular ap-
proach that deploys NFs as separate processes across cores.
We evaluate chains of one to four NFs, all running a Longest
Prefix Match (LPM) function. We consider two setups: in the
run-to-completion case, the NIC uses RSS to assign packets
to a core, where a single thread processes the full service
chain. In the across-cores case, packets first arrive at a man-
agement thread which acts as a software switch that delivers
the packets to the first NF in the chain running as a separate
process on a different core; that NF gives packets to the next
process on a different core, etc. In both cases, each CPU core
runs a single thread to prevent context switch overheads and
shared memory is used for zero copy packet movement.
Figures 1(a) and 1(b) show that as the chain length rises,

the performance gap between the run-to-completion and
across cores rises. This is due to the high cost of moving
packets between NFs on different cores—even with zero-copy
packet transfer, a performance gap still arises because the
management thread moving packets between NFs becomes
a bottleneck. Resolving this issue would require dedicating
more CPU cores than the run-to-completion approach.

A run-to-completion, function-based NF architecture elim-
inates context switches and allows more NFs to be put on the
same core, avoiding cross-core processing overheads. How-
ever, function-based NFs are in the same process space and
lack memory isolation, meaning one NF can easily access
another NF’s data. In multi-tenant environments this will

 0
 2
 4
 6
 8

 10
 12
 14

 1 2 3 4

T
h
ro

u
g

h
p

u
t

(M
p

p
s)

Chain Length

Across cores
Run to completion

(a) Throughput

 0
 2
 4
 6
 8

 10
 12
 14

 1 2 3 4

La
te

n
cy

 (
u
s)

Chain Length

Across cores
Run to completion

(b) Latency

Figure 1: Run to completion eliminates the need to
move packet pointers across cores.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

C
D

F

of Unique AS Per Batch

wo/RSS-srcAS
w/RSS-srcAS

wo/RSS-dstAS
w/RSS-dstAS

(a) AS per Batch

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128

C
D

F

of Packets (log scale)

wo/RSS-srcAS
w/RSS-srcAS

wo/RSS-dstAS
w/RSS-dstAS

(b) Packets per AS

Figure 2: Trace analysis illustrates the difficulty of
batching packets when each AS has a different chain.

bring serious security concerns. In FastPaas, we are design-
ing coarse-grained isolation techniques that leverage new
CPU hardware extensions to provide fast memory isolation.
Multi-Tenant Batching: Run-to-completion frameworks
such as Fd.io’s Vector Packet Processing (VPP) tool achieve
extremely high performance by maximizing data and in-
struction cache hit rates through careful batching. These ap-
proaches assume that all packets in a batch will be processed
with the same function pipeline, allowing various optimiza-
tions such as vector operations. However, in multi-tenant
environments an incoming packet stream may need to be
demultiplexed by tenant, producing inefficient, fragmented
batches that each require a unique set of functions.
To evaluate how much fragmentation might occur in a

realistic scenario, we consider a packet trace from the CAIDA
Equinix-Chicago collection monitor [1]. We analyze a one
hour trace from 01/21/16 and determine the source and des-
tination Autonomous System (AS) for each packet. We use
each AS number to represent a different tenant in the NFV
platform, mimicking the case where a network operator
might have different NFV service chains being applied based
on either the source or destination ISP of each traffic flow.
Figure 2(a) shows a CDF of the number of unique source
or destination AS observed in each 128 packet batch in the
trace. There is a greater diversity of source AS. However, in
either case there is a relatively large number of unique AS,
meaning that each chain only receives a small number of
packets per batch read from the NIC as shown in Figure 2(b).
One simple approach commonly used to help group packets

Hardware-assisted Isolation in a Function-based Dataplane SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

from the same flow is Receive Side Scaling. But as shown
in the “w/RSS” lines, which mimics dividing packets into 8
RSS queues by 5-tuple hash, this has minimal impact on the
number of packets per AS in each batch, since splitting by
flow does not directly correlate to splitting by AS.
This observation further reinforces the efficiency bene-

fits gained from running a large number of NFs within a
single process—since batch sizes will typically be small, pay-
ing a high context switch cost (if using multiple processes)
or a data copying cost (if spread over multiple cores) on
each batch will result in unacceptable overhead. However,
it also suggests that a multi-tenant platform would benefit
from carefully demultiplexing and batching packets prior to
sending them through a service chain. We will explore how
new features in programmable NICs can allow for efficient,
customizable demultiplexing in hardware [11]. We believe
this will help increase cache hit rates without requiring a
software demultiplexer before each tenant’s pipeline.

3 FASTPAAS ARCHITECTURE
Our goal is to provide two types of isolation to tenants.

First is performance isolation. The function-based dat-
aplane must be able to control the scheduling of NFs to meet
the performance goals of each tenant. Fortunately, the run-
to-completion model can help with this problem since the
management framework in the process can carefully select
which NF function to call next based on tenant defined SLAs.
In contrast, approaches that employ multiple processes run-
ning on each core (e.g., running one process per tenant), are
more difficult to manage since scheduling is done by the OS
kernel, which is not NF-aware. In this section, we describe
the FastPaas architecture and how its structure facilitates
scheduling NFs to meet performance goals.

Second ismemory isolation. Run-to-completion implies
that processing occurs as a series of function calls within
one process’ address space, so if done naively, different NFs
can trivially observe or corrupt the memory state of other
NFs. This applies to both packets, which may hold sensitive
data, and to each NF’s internal data structures. In Section 4,
we describe a memory protection scheme leveraging Intel
MPX hardware instructions to provide data integrity (pro-
tecting against rogue NF writes) or confidentiality (protect-
ing against both reads and writes). This allows trade-offs in
performance and isolation requirements.

3.1 Multi-tenant performance isolation
Figure 3 presents the FastPaas architecture. The FastPaas
system being developed consists of a single process running
on a physical machine, with multiple worker threads on
dedicated cores. Network functions are composed as directed
acyclic graphs (DAGs). The FastPaas controller configures

Overlay
node

Scheduler

Fa
st

Pa
as

 C
on

tro
lle

r
Co

re
 L

oa
d

Ba
la

nc
er

M
PX

in

st
ru

m
en

t
Te

na
nt

 s

pe
cs

Ne
w

 N
F

m
od

ul
e

Scheduler

Overlay
node

(immutable)

Tenant B

Tenant A

Kernel Space

HW: NICs

User Space

DM
A

Bypass Processor + Bound Table

Worker Thread

Bo
un

d
Ch

ec
k

Worker Thread

NF

NF NF

NF

NF

NF

NF

NF

NF

DM
A

NIC
Controller

 T
ra
ffi

c
st

at
s

Up
da

te

gr
ap

h Tenant C

Fa
st

Pa
as

 P
ro

ce
ss

Tenant A (0.5),
Tenant B

Tenant A (0.5),
Tenant C

NF NF
Tenant A

Figure 3: FastPaas Architecture

the NICs on the machine to filter incoming traffic to separate
hardware queues based on the service graph they belong to.
Each thread polls one or more NIC queues for packets, and
the thread’s batch scheduler decides which queue to process
next. The batch of packets read from the selected queue is
processed in a run-to-completion manner.

FastPaas’s controller makes coarse grained resource man-
agement decisions, e.g., how many cores to allocate for pro-
cessing traffic from different tenants, and its batch scheduler
makes fine grained scheduling decisions, e.g., which batch of
packets should be processed next on a given core. Most prior
work in this area has focused on simple packet schedulers,
where there may be different packet queues to decide from,
but the processing cost of any packet is roughly identical [17].
In FastPaas, processing costs may vary depending on the
nature and length of the processing graph a packet needs to
traverse. Thus, FastPaas must provide fairness for tenants
(weighted by priority) accounting for both packet arrival
rates and the computation cost of tenants’ service chains.
FastPaas also needs to implement signaling mechanisms to
detect and pre-empt modules to deal with buggy/unfriendly
modules hogging CPU cycles.
Our design will alleviate the problem of batch fragmen-

tation by leveraging NIC support for mapping incoming
packets to queues. The branches in the FastPaas DAG are an-
notated with the filtering criteria that determine which path
will be taken for a given packet. While sometimes this crite-
ria requires complex module-specific processing to decide, it
is often a simple rule based on header information like the
destination IP or port. Current generation NICs support fil-
tering packets into queues based on this type of information,
and future NICs are likely to have growing support for pro-
grammable filtering criteria [11]. Thus FastPaas will parse
the DAG to determine a set of filters that can be installed
in HW to preemptively separate packets into queues that
correspond to the paths they are likely to take through the
graph, reducing the need to split batches at branch points.
FastPaas’s controller assigns to each thread one or more

NIC queues to poll for packets; the next NIC queue to read
packets from is determined by a thread’s batch scheduler. To

SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA W. Zhang et al.

ensure fair scheduling, FastPaas tracks the CPU consumption
of each tenant. Function-based data planes such as BESS [7]
provide primitives to instrument the processing pipeline for
collecting the processing cost of individual modules as well
as for a service chain. Our current implementation uses a
simple weighted-round robin scheduling among queues. The
weight of a queue is statically defined based on the priority
of a tenant. Further study of scheduling strategies (including
strict priority classes) is ongoing.

4 MEMORY PROTECTION
FastPaas is the first dataplane architecture to enable support
for memory protection of modules written in a native lan-
guage. It achieves this through a coarse-grained, hardware-
assisted approach that achieves low overhead. In this section,
we describe the threat model, explain the limitations of exist-
ing protection approaches, describe our memory protection
approach, and present some preliminary evaluation based
on a manual instrumentation of network function modules.
Threat Model:We assume an honest but curious environ-
ment where tenants running NFs want the overall system
to operate correctly (i.e., will not attack its availability), but
may attempt to snoop on or manipulate the traffic or state of
other tenants. Thus we focus on providing both secrecy and
integrity to a tenant’s NFs, including NF code and functions,
packets, NF internal data, and flow state.

4.1 Protection techniques & limitations
We classify existing approaches to memory protection into
three categories as described below.
Writing modules in a memory safe language such as

Go or Rust, which disallows pointer arithmetic and automat-
ically manages memory, is a known protection approach. Re-
cently, NetBricks [15] has proposed the use of such languages
in implementing a network dataplane. However, many NFs
have been developed in C/C++ and have a large code base
(e.g., Bro: 398,796 and Snort: 409,065 lines of C code). Rewrit-
ing them from scratch with Rust will take lots of effort. If we
can provide memory isolation that is transparent to legacy
NFs, it will benefit both NFV providers and NF developers.

Memory protection for native languages (C/C++) has
seen a lot of work in the programming languages commu-
nity [3, 13]. These techniques commonly use static analysis
and code instrumentation to detect unsafe memory access at
compile time or at runtime. These techniques either do not
provide complete protection [3] and/or incur a high compu-
tation and memory overhead. For example, the SoftBound
approach slows SPEC benchmark applications by 67% on
average, and by over 150% in the worst case [13].

Hardware-basedmemoryprotection has recently been
introduced in Intel Skylake processors [9]. In essence, MPX

Default
MPX

Remove
load/store

Remove
comparison

Execution Time 1.59 1.06 1.54
Memory Usage 1.54 1.01 1.53

Table 1: Performance and memory overhead of Intel
MPX relative to no memory protection.

implements an optimized form of SoftBound [13], that takes
advantage of additional registers and bound checking in-
structions to improve performance [14]. Each process has
a bound directory and a bound table that stores the lower
and upper bound of valid memory addresses for each pointer.
A process registers a signal handler with a configuration
register at startup. Upon a memory access by a pointer, the
address being accessed is compared against the lower and
upper bounds retrieved from the bound table. If the address
falls outside these bounds, the CPU traps into kernel mode
and sends a SIGSEGV signal to trigger the signal handler
function, to notify of the invalid memory access.

In typical usage, an MPX-enabled compiler automatically
sets narrow bounds around each pointer access. However,
this fine-grained protection causes both performance and
correctness issues. First, frequently loading and checking
bounds can add high overhead as we discuss in the next
section. Second, some common C idioms leave compiler am-
biguity that prevent correct MPX bounds from being set.
For example, the compiler cannot correctly set bounds for
dynamically sized arrays, nor does it properly handle inter-
nal pointers in structs [14]. Both of these are common in
NFV software, since packet buffer arrays may be dynami-
cally sized and packet meta data structs may contain internal
pointers. This motivates us to adapt MPX so it uses coarser
grained bounds which will be both quicker to validate any
will avoid bounds being incorrectly set in idiomatic code.

We evaluate the overhead of protection using Intel MPX
using compilers that support the necessary code instrumen-
tation. We measure the overhead of MPX by running a rep-
resentative application, HashSet, that we compile with GCC.
We find that the use of MPX inflates execution time by 2.6×
and the memory use by 3.13× over the baseline, non-MPX
version of the application. To further understand this cost we
consider a simple memory allocation microbenchmark and
analyze the impact of the different MPX operations. Table 1
shows that removing the MPX instructions that load/store
pointer address bounds in registers from/to the bounds table
stored in DRAM eliminates almost all overheads. In contrast,
the instructions for comparing memory addresses against
bounds stored in registers are inexpensive since they involve
simple arithmetic operations.

This result gives us a key insight: most of the overhead of
MPX comes from loading/storing bounds for every pointer,
so we propose a new approach that achieves low overhead
by applying memory protection at coarser granularity.

Hardware-assisted Isolation in a Function-based Dataplane SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

…
Heap j

…
Heap 1

Memory
MPX

Bounds
Table

UB

LB

MPX Bound Registers

UB

LB

UB

LB

MemoryMPX
Bounds
Table Heap Packets Thread Stack

… UB

LB

MPX Bound Registers

UB

LB

UB

LB

Heap jHeap 1
… …

Packets Thread Stack

…

Traditional MPX - Fine Grained Protection

FastPaas MPX - Coarse Grained Protection

Figure 4: FastPaas results in a significantly smaller
bounds table and fewer memory accesses.
4.2 Coarse-grained hardware protection
The key idea behind coarse-grained protection is to define a
small number of contiguous memory regions that a module
is allowed to access during its execution as shown in Figure 4.
These regions include a per-module heap, a per-thread stack,
and the boundary for the packet being processed. Using a
small number of protection boundaries significantly reduces
the size of the bounds table and the number of memory
accesses to the bounds table, thereby reducing memory and
computation overhead. Our approach ensures the goal of
protecting the memory of a NF and the traffic of a tenant.
It achieves efficiency by ignoring pointer bounds violations
as long as the memory accessed by a pointer is within the
coarse-grained boundary that the pointer belongs to.

Usage: NF modules are submitted to FastPaas in source
code formwritten in C, which are compiled and instrumented
with Intel MPX instructions for implementing our coarse-
grained protection. FastPaas assumes that only the NF mod-
ule is untrusted and hence instruments only its code. It can
protect both read and writes or just memory writes depend-
ing on the protection needed for a module. As expected,
read/write protection has a higher overhead than write-only
protection. The compiled module is linked using a modified
version of glibc which disables some system calls, e.g., fork
and exit, that a module is not allowed to make.

Instrumentation technique:We provide a sketch of the
technique for instrumenting modules for coarse-grained pro-
tection. The instrumentation requires a compiler to make
three main decisions: (1) classifying a pointer into one of
three types: heap, stack, or packet, (2) calculating address
bounds for each pointer type and (3) determining locations
for inserting instructions for storing and checking bounds.
Pointer type classification: A stack pointer is created by

taking the address of a local variable. A heap pointer is cre-
ated as a result of a malloc call. Global and static variable
declarations are re-written as malloc operations so that they
are allocated within the per-module heap. A packet pointer
is created by taking the address of any packet (or its fields)
in the current batch being processed. Pointers created by
pointer arithmetic or pointer assignment are treated as the
same type as the original pointer, e.g., array accesses and

structure field accesses. Pointer type information is propa-
gated with function calls made during a module’s execution
to infer pointer types inside the called function [13].

Pointer bounds calculation: Bounds must be calculated for
each type of pointer, not each object that is pointed at. A
heap pointer’s lower and upper bounds are obtained from
the current memory slab allocated to this module by the
per-module memory allocator. A packet’s lower bound is its
starting address in thememory and its upper bound is the end
address of the packet’s slot in the memory pool for packets,
e.g., DPDK creates a slot of constant size 2KB per packet.
Stack upper bound (assuming decreasing stack addresses) is
the top of the stack prior to calling anNFmodule. To compute
a lower bound, we assume that a stack of constant size is
allocated to a module. The stack lower bound is obtained by
subtracting the constant from the stack upper bound.

Instrumentation location: Bounds checking instructions are
inserted before a pointer dereference of any type. The instru-
mentation for storing bounds in bounds registers depends
on the type of the pointer. Before a module is scheduled for
execution, its bounds for stack and heap are saved in two of
the bounds registers. Modules typically process packets one
by one, so a packet’s bounds are computed and stored before
the first memory access. A straightforward optimization is
to not store the bounds of a pointer type at all if no memory
accesses by pointers of that type are found. If a given pointer
cannot be fully disambiguated, i.e., it could point to either the
stack or heap depending on run-time behavior, then multiple
bounds checks can be inserted to ensure the pointer is within
one of those regions. Our current implementation requires
manual addition of the above code, but we are investigating
ways to automate this analysis in LLVM.

4.3 Performance comparison
Our experiments evaluate FastPaas’s protection by manually
instrumenting the NF module code as described above.

Schemes:Weevaluate FastPaas/RW, which protects both
read andwritememory accesses and FastPaas/WOnly, which
protects just the writes. Wo/Prot does not protect invalid
memory access.Def/MPX protectsmemory using fine-grained
MPX instrumentation done by GCC (v5.4). Rust implements
modules in the memory safe language Rust. We also eval-
uated Safecode, which uses static analysis and runtime
checks to protect C programs [3].

Experiment setup: Our test server is a desktop with In-
tel Skylake processor (Intel(R) Core(TM) i7-6700) that sup-
ports MPX instructions, an Intel X710 10GbE SFP+ NIC, and
Ubuntu 16.04. We use MoonGen as the packet generator.

We first test the performance with a pool of preallocated
packets on the test machine, which ensures that processing at
the NIC does not become a bottleneck. We evaluate two NFs

SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA W. Zhang et al.

 0

 100

 200

 300

 400

 500

Wo/Prot

Def/MPX

FastPaas/RW

FastPaas/WOnly

Rust
Safecode

T
h
ro

u
g

h
p

u
t

(M
p

p
s)

Figure 5:Macswap Preallocated Pkts

 0

 20

 40

 60

 80

Wo/Prot

Def/MPX

FastPass/RW

FastPaas/WOnly

Safecode

T
h
ro

u
g

h
p

u
t

(M
p

p
s)

Figure 6: Policer Preallocated Pkts

 0

 2

 4

 6

 8

 10

 12

Wo/Prot
Def/MPX

FastPaas/RW
FastPaas/WOnly

T
h
ro

u
g

h
p

u
t

(M
p

p
s)

Figure 7: Policer Real Pkts

with different processing costs per packet: macswap (less
costly) and traffic policer (more costly). Figure 5 shows that
default MPX protection reduces macswap’s throughput to
only 32% of the throughput achieved by the unprotectedmod-
ule. For the policer module (Figure 6), the throughput drops
to 46% of the original. FastPaas’s coarse grained protection
achieves better throughput since it eliminates most of the in-
structions for loading/storing bounds. FastPaas/RW achieve
a throughput of 86% for macswap and 82% for the traffic po-
licer compared to the unprotected module. FastPaas/WOnly
acheves an even higher throughput of 96% and 98% of the
unprotected module. FastPaas/RW has similar throughput
with Rust’s version of macswap, suggesting that protecting
modules using a memory safe language does not provide
additional performance benefits over protecting modules in
a native language with FastPaas. Comparing Rust with Fast-
Paas for policer and other modules is a topic of our ongoing
work. Although Safecode [3] has comparable performance
to FastPaas/RW, it does not protect packet data as it declared
by an external memory allocator (DPDK).
Next, we send traffic (64 byte packets) from a separate

client machine to the test machine to also include the cost
of processing at the NIC. For macswap, every scheme (even
the MPX/def) is able to saturate the 10 Gbps link. The impli-
cation is that if packet processing is inexpensive, memory
protection may be achieved with almost no overhead. For
traffic policer (Figure 7), the performance follows the same
trend as the above experiment. FastPaas/RW achieves 76% of
the throughput of an unprotected module. FastPaas/WOnly
gets almost the same performance as an unprotected module.
This is because most of the pointer accesses in this module
are read-only. Unfortunately, we could not test Safecode’s
performance with real traffic, since the DPDK library re-
ported exceptions in running modules compiled with Safe-
code. While these experiments run only a single NF at a time,
we expect similar performance when running NF chains or
NFs from different tenants. Our implementation is not op-
timized for the single NF case, e.g., we still reload the MPX
bound registers at every iteration even though we only con-
sider one tenant. Overall, our preliminary results show that
coarse-grained protection reduces overhead compared to the
standard fine-grained MPX protection.

5 RELATEDWORK
Memory isolation: AddressSanitizer [16] only seeks to detect
invalid addresses for a process, and does not isolate valid
addresses on a per-tenant or a per-module basis inside a
process. SoftFlow [10] is a OpenFlow-based dataplane that
supports a run-to-completionmodel, however it does not pro-
vide any memory isolation for multi tenancy. NetBricks [15]
leverages memory safe language for isolation, for which it
needs to rewrite an existing NF developed in C language.
Light-Weight Contexts [12] take microseconds for context
switches, while a core needs to process a packet in as few as
tens of nanoseconds to support line-rate performance.

Scheduling: Deficit round-robin (DRR) [17] only equalizes
bytes per flow, it does not balance the CPU usage in pro-
cessing those flows. While FlexNIC provides mechanisms
to perform application-specific load balancing across cores
[11], FastPaas seeks to automatically define load balancing
policies based on packet processing graph specifications and
traffic measurements. DPDK QoS [4] and BESS [8] rely on
hierarchical schedulers to limit the resource usage but do re-
quire manual configuration of these schedulers. Our ongoing
work will study automated scheduling and packet batching
strategies to improve throughput.

6 CONCLUSION
A multi-tenant function-based data plane must strike a care-
ful balance between isolation and efficiency. Instead of heavy-
weight techniques like virtualization to separate tenants,
FastPaas leverages new memory protection CPU instruc-
tions to provide security at an appropriate granularity with
minimal impact on performance. It proposes the use of ad-
vanced packet filtering in NICs to support batching and core
load balancing. FastPaas allows multiple tenants to be safely
deployed within a shared address space, with performance
and memory isolation provided by the framework instead
of the underlying OS. We are continuing to develop Fast-
Paas and explore how it can provide prioritized resource
allocations, and enforce appropriate security policies.

Acknowledgments: This work was supported in part by
NSF grants CNS-1422362 and CNS-1525992. We would like
to thank the anonymous reviewers and our shepherd, Michio
Honda, for their comments and feedback.

Hardware-assisted Isolation in a Function-based Dataplane SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

REFERENCES
[1] 2017. CAIDA Passive Monitor: equinix-chicago. (2017). http://www.

caida.org/data/monitors/ http://www.caida.org/data/monitors/.
[2] Angela Chiu, Vijay Gopalakrishnan, Bo Han, Murad Kablan, Oliver

Spatscheck, Chengwei Wang, and Yang Xu. 2015. EdgePlex: Decom-
posing the Provider Edge for Flexibilty and Reliability. In SOSR.

[3] D. Dhurjati, S. Kowshik, and V. Adve. 2006. SAFECode: enforcing alias
analysis for weakly typed languages. In PLDI.

[4] DPDK. 2018. DPDK: Data Plane Development Kit. (2018).
[5] ETSI. 2016. NFV. (2016). http://www.etsi.org/.
[6] FD.io. 2016. VPP. https://fd.io/technology. (2016).
[7] S. Han and et al. 2017. BESS: Berkeley Extensible Software Switch.

https://github.com/NetSys/bess. (2017).
[8] S. Han, K. Jang, A. Panda, S. Palkarand D. Han, and S. Ratnasamy. 2015.

SoftNIC: A Software NIC to Augment Hardware. Technical Report. http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html

[9] Dave Hansen. 2016. Intel MPX for Linux. https://01.org/blogs/2016/
intel-mpx-linux. (2016).

[10] Ethan J. Jackson, Melvin Walls, Aurojit Panda, Justin Pettit, Ben Pfaff,
Jarno Rajahalme, Teemu Koponen, and Scott Shenker. 2016. SoftFlow:
A Middlebox Architecture for Open vSwitch. In USENIX ATC.

[11] Antoine Kaufmann and et al. 2016. High Performance Packet Process-
ing with FlexNIC. In ASPLOS.

[12] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak
Garg, Bobby Bhattacharjee, and Peter Druschel. 2016. Light-Weight
Contexts: An OS Abstraction for Safety and Performance.. In OSDI.

[13] S. Nagarakatte, J. Zhao, M. Martin, and S. Zdancewic. 2009. SoftBound:
Highly compatible and complete spatial memory safety for C. ACM
Sigplan Notices (2009).

[14] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Fel-
ber, and Christof Fetzer. 2017. Intel MPX Explained: An Empirical
Study of Intel MPX and Software-based Bounds Checking Approaches.
CoRR abs/1702.00719 (2017). arXiv:1702.00719 http://arxiv.org/abs/
1702.00719

[15] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker. 2016.
NetBricks: Taking the V out of NFV. In OSDI.

[16] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. 2012. Ad-
dressSanitizer: a fast address sanity checker. In USENIX ATC.

[17] M. Shreedhar and G. Varghese. 1996. Efficient fair queuing using deficit
round-robin. IEEE/ACM TON (1996).

[18] VMWare. 2017. VMware NSX. https://code.vmware.com/
nsx-for-vsphere/nsx-components. (2017).

http://www.caida.org/data/monitors/
http://www.caida.org/data/monitors/
https://fd.io/technology
https://github.com/NetSys/bess
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
https://01.org/blogs/2016/intel-mpx-linux
https://01.org/blogs/2016/intel-mpx-linux
http://arxiv.org/abs/1702.00719
http://arxiv.org/abs/1702.00719
http://arxiv.org/abs/1702.00719
https://code.vmware.com/nsx-for-vsphere/nsx-components
https://code.vmware.com/nsx-for-vsphere/nsx-components

	Abstract
	1 Introduction
	2 Why Run-to-completion is hard
	3 FastPaas architecture
	3.1 Multi-tenant performance isolation

	4 Memory protection
	4.1 Protection techniques & limitations
	4.2 Coarse-grained hardware protection
	4.3 Performance comparison

	5 Related Work
	6 Conclusion
	References

