
Forecasting a Storm: Divining Optimal
Configurations using Genetic Algorithms and

Supervised Learning
Michael Trotter, Timothy Wood

The George Washington University
Washington D.C., USA

{trotsky, timwood}@gwu.edu

Jinho Hwang
IBM T.J. Watson Research Center

New York, USA
jinho@us.ibm.com

Abstract—With the advent of Big Data platforms like Apache
Storm, computations once deemed infeasible locally become
possible at scale. However, doing so entails orchestrating powerful
yet expensive clusters. With its focus on stream processing,
Storm optimizes for low-latency and high throughput. However,
to realize this goal and thereby maximize the utility of these
clusters’ resources, operators must execute these tasks under
their optimal configurations. Yet, the search space for finding
such configurations is so vast and time-consuming to explore so
as to be effectively intractable due to issues like the temporal
overhead of testing new candidate configurations, the sheer
number of permutations of parameters within each configuration
and their interdependence among each other.

In order to efficiently cover the search space, we automate
the process with genetic algorithms. Moreover, we fuse this
technique not only with additional cluster information gleaned
from JMX profiling and Storm performance data but also with
classifiers constructed from training data from past executions of
a plethora of Storm topologies. Utilizing a diverse set of Storm
benchmark topologies as evaluation data, we show that the fully
enhanced genetic algorithms can efficiently find configurations
that perform on average 4.67x better than “rules of thumb”-
derived manual baselines. Moreover, we demonstrate that our
fully refined classifiers enhance the GA throughput on average
across the topologies by 22% while reducing search time by a
factor of 6.47x.

Keywords-Apache Storm; Genetic Algorithm; Supervised
Learning; Autonomic Performance Tuning

I. INTRODUCTION

Within the realm of Big Data, computations can occur on
batches or streams of inputs [1]. A popular framework for
handling the latter case is Apache Storm which is capable
of “doing for realtime processing what Hadoop did for batch
processing” in a scalable, fault-tolerant way, and with ease
in terms of both administration and programming [2]. How-
ever, optimizing the configurations for Storm applications or
topologies is far from easy.

Indeed, there are many parameters within a Storm configu-
ration with which to experiment, chief among them being the
number of worker processes and individual threads of paral-
lelism within a given process [3]. Setting these parameters too
low risks leaving the cluster’s resources idle while handicap-
ping the performance of the topology [1]. Meanwhile, setting
them too high invites the various components of the topology

to compete with one another for resources, causing problems
like thrashing and page faults [3]. As these components of
a Storm topology share the same cluster resources, they
are interdependent on one another and consequently produce
shifting bottlenecks when their associated parameters change
[3]. Given that this task of finding an optimal configuration
is an NP-Hard problem, an automated solution would have
significant utility [4].

Here we describe Forecaster, an integrated, online tuner
utilizing one of several possible methods for exploring this
search space: genetic algorithms. We show that it does well
even unmodified compared to the “rules-of-thumb” baseline
commonly used by system administrators today. Forecaster
yields configurations whose throughput is a factor of 4.59x on
average greater than the baseline using our testing topologies.
We refine this tuner by guiding its evolution by incorporating
heuristics and additional information from the Java Metrics
Extension (JMX) and Storm Nimbus service, achieving a
throughput improvement of 1.23x to 19.5x compared to the
baseline. Nevertheless, the time required to reconfigure a
Storm topology and gauge the impact on performance naively
necessitates running the tuner for over a day in some cases.
Thus, we seek to further refine this process using supervised
learning to further reduce the search space. Finally, we demon-
strate the portability of this enhanced tuner not only in regards
to different types of clusters but also to a variety of Storm
topologies running on said clusters. In particular, we make
the following contributions:

• We design a genetic algorithm-based approach to effi-
ciently search through Storm topology parameter sets.

• We optimize the search process with classification models
that predict configuration performance and filter out can-
didate configurations deemed unlikely to produce good
performance results.

• We describe a method to map an arbitrary topology’s
structure to that of the training topologies so as to enable
evaluation by the regressors and classifiers.

• We propose a retraining scheme to enable portability of
the models between clusters with different architectures.



II. BACKGROUND

A. Apache Storm

Originally developed to perform top-n analysis for the trend-
ing topics of tweets, Apache Storm is a popular framework for
processing real-time streams of data rather than the traditional
batch processing approach of MapReduce [5]. The equivalent
of a batch job in MapReduce is a topology which represents a
directed acyclic graph (DAG) of control flow wherein data in
the form of tuples originates from the root nodes or spouts
and flows through one or multiple nodes or bolts [6]. A
single stream of execution thus flows from a source spout
through a series of bolts before terminating, and a topology
has one or more of these streams [7]. A cluster can run
one or more topologies concurrently as long as all of the
worker processes assigned to the topologies does not exceed
the worker processes available to the cluster [6]. Figure 1
demonstrates a topology with many such streams feeding into
a singular sink node. To implement this logical representation
of computation flow, Storm orchestrates a variety of system
processes.

Spout 1

Spout 2

Bolt 1

Bolt 2

Bolt 3

Bolt 4

Bolt 5

Bolt 6

Legend
Task 
Executor 
Thread

Fig. 1: An example Storm topology.

Of note are the Storm Nimbus, Supervisor and Worker
processes whose relationships are shown in Figure 2. The
Nimbus process schedules work to be done throughout the
cluster and maintains application metrics for a given topology
and its components [1]. Nimbus broadcasts these assignments
via Apache ZooKeeper [7]. With their assignments in hand,
the Supervisor processes forward them onto the Worker pro-
cesses while ensuring these processes remain alive via regular
heartbeat checks [5]. Within each Worker process, one or more
executor threads perform the actual task logic as specified by
the application code [2]. Application operators are responsible
for specifying the topology’s number of Worker processes as
well as the number of executor threads for each logical spout
or bolt at run time (i.e., the spout or bolt parallelism), although
they can later update these parameters in real-time using the
Storm cluster utilities [8]. Operators can thus manually tune
topologies, a feat easier said than done due to the complex
interactions between components and large search space [4].

To illustrate this quandary, we present the issue of tuning
one of our training topologies: WordCount. The following
components comprise its structure: a spout which continuously
emits a random sentence from a predefined corpus, an inter-
mediary bolt which splits that sentence into the words which
comprise that sentence, and a sink bolt which aggregates the

Parameter Meaning
Workers Number of processes distributed across the

entire cluster assigned to processing a topol-
ogy within its executor threads

Sentence Spout paral-
lelism

Number of executor threads assigned to
emitting sentences into the rest of the topol-
ogy

Sentence Splitter bolt
parallelism

Number of executor threads assigned to the
execution of bolts which take in sentence and
split them on whitespace

Counter bolt paral-
lelism

Number of executor threads assigned to the
execution of the terminal bolts which calcu-
late the frequencies of individual words

Acker parallelism Number of executor threads assigned to the
acker (Required for all Storm topologies)

TABLE I: : Tunable parameters of the WordCount Topology

words into their counts as seen by the topology as a whole.
Table I lists out the tunable parameters of the WordCount
topology. With any given topology, the operator must specify
not only the number of processes from the entire cluster to
assign to the topology but also the number of threads within
those processes for the components that comprise a topology,
i.e. the spouts and bolts individually. Finally, some topology-
agnostic parameters must be set, such as the number of “acker”
threads used to implement Storm’s at-least once processing
guarantees by having the spout resend a given tuple into the
stream of descendent components in the event of failure.

In a given cluster composed of 48 total cores across four
worker machines running a single WordCount topology bound
by the limitations of the Storm API and keeping with Storm
best practices for topology parameter tuning, there are a
total of 48 permutations for the number of workers and
255 possible configurations each for the parallelism values
for the sentence spout, intermediary sentence splitter bolt,
counter sink bolt and acker, yielding a total of 202,956,030,000
possible permutations [6], [9]. A programmer could easily
extend WordCount to count the letter frequencies instead of the
word frequencies by adding another bolt between the sentence
splitter and counter bolts to split the words into individual
letters and thus increase the number of permutations by a
factor of 255. Given that Storm allows for arbitrary number
of spouts and bolts in a topology so long as they form a
DAG, the number of configuration permutations can quickly
become intractable as the number of configurable parameters
grows. Accordingly, the issue of exploring the search space is
an instance of the NP-Hard Knapsack optimization problem,
prohibiting finding a quick and accurate solution in all but the
simplest of configurations [4].

Worker Process

Task
Executor 1

Task

Task
Executor n

Task

Supervisor 1

Supervisor N

Nimbus

Fig. 2: System Architecture of Storm.



B. Rules of Thumb Baseline

There are several “rule of thumb” heuristics for preparing
Storm configurations [6]. Due to the overhead involved with
context switching especially with time sensitive applications
like Storm, an executor should not execute more than one
task at a time [3]. For the same reason, the sum of the
number of threads for CPU-bound bolts and spouts should
also not exceed the total number of cores across the cluster
[6]. However, IO-bound bolts and spouts need not obey this
rule since they would most likely perform a context switch
while waiting on IO [3]. As it consumes very few resources,
the acker thread needs only one thread per Worker process
to send its acknowledgment or “ACK” tuples backwards from
the sink nodes to the spouts as part of Storm’s implementation
of at-least once processing guarantees [8]. Without further
refinement, our results show that these rules can provide
subpar performance compared to a carefully tuned setup.

C. Bayesian Optimization

A common method to attain such refinement in an auto-
mated manner is Bayesian optimization, a probabilistic ap-
proach to finding optimal solutions of a problem [3]. Bayesian
optimization models the search problem as a Gaussian process
defined by a joint probability distribution of random variables
representing each of the configuration parameters [10]. By
sampling the current performance of a possible candidate con-
figuration and combining that information with the history of
past candidate configurations and their respective performance
values, Bayesian optimization is able to iteratively update a
posterior probability model of the performance values given
the configuration values [11].

Existing Bayesian optimization frameworks like Spearmint
use kernel density estimators and the posterior probability
model to find promising new candidate configurations to test
[10]. Ideally, these generated configurations should balance the
trade-off between exploration of the global search space and
refinement of the current candidate configuration values [3].
However, our preliminary exploration of the popular Bayesian
framework Spearmint demonstrated that Bayesian optimiza-
tion is a poor fit for tuning Storm’s parameter values [12].
Our results in Section V show that Spearmint’s search follows
a path more akin to a random walk.

Bayesian optimization relies on two assumptions to work:
a lack of covariance among the parameters of a configuration,
and those parameters are each of a continuous range of values
to set [3]. Unfortunately, those assumptions do not hold for this
task. The configurable parameters are far from independent of
one another. Given that the resources assigned to the topology
are finite, there is a constant risk of resource competition
among the components to use for processing, including CPU
time, memory and I/O. Moreover, Storm’s default round-robin
scheduler naively ignores the resources a given a bolt or spout
needs to implement its processing logic. Instead, it simply tries
to ensure that the executor threads assigned to the topology
are running roughly the same total number of spout and bolt

instances. Lastly, the operator can only set each of the param-
eters to discrete positive integer values, prohibiting additional
automatic refinement by Spearmint. Thus, Spearmint is never
able to find a configuration around which to converge and
refine. Consequently, we must explore alternative approaches
to the parameter search problem.

D. Genetic Algorithms

A more comprehensive approach to discovering optimal
configurations is to use genetic algorithms (GAs). Inspired by
natural selection, GAs arrive at a such configuration via cy-
cles consisting of individual population generation, selection,
crossover and mutation phases [13]. During the first phase, the
current population of candidates originates from a combination
of the offspring and survivors of the previous generation or
a randomly generated configuration set [14]. The population
then faces two selection phases which first decide which
candidates do not survive into the next generation and then
decide which candidates may produce child candidates [15].
This filtering uses a fitness function evaluation metric tied to
the configuration itself in addition to some evaluation strategy
such as allowing only the top-n fittest members within sub-
batch of candidates to survive or randomly selecting survivors
in proportion to their fitness [13]. With the parents chosen,
they can combine their own configurations to produce new
child configurations in the third phase using one of several
strategies such as the uniform crossover’s random selection
of parent configuration elements or a single point crossover’s
swapping of parent configuration elements around a single
pivot [15].

To ensure that the GA does not stall at a local maximum,
mutations randomly alter configurations within the population
so as to encourage additional exploration of the search space
[14]. These four phases loop continuously until it meets
a termination condition like total run time or convergence
threshold for average fitness [15]. Since this exploration of
the search space can require a significant amount of time,
filtering out bad configurations without actually evaluating
them as part of a candidate population is vital to achieving
good performance.

E. Support Vector Machines

Our approach uses classification algorithms to implement
this filtering optimization. Although we consider a plethora
of supervised learning techniques over the course of our
research including decision trees, neural networks and nearest
neighbors algorithms, we ultimately settle on Support Vector
Machines (SVM) as our means of classification. SVMs remap
the original input into higher dimension space and attempt
to find the optimal hyperplane which best separates these
translated data points [16]. Using this hyperplane, they can
then partition the points into the groups defined with supplied
dataset labels [17]. To prevent overfitting, the hyperplane
is typically subject to a regularization constraint or ”alpha“
value [17]. Since the translation into the higher dimension
space is non-linear, SVMs support broad, general relationships



In
te

l P
la

tfo
rm

Pe
r T

op
ol

og
y

Topology
Structure

JMX
Profiling

Platform-
specific 

Classifier

GA Search Online 
Learning

Train Test
Topologies
(Large corpus)

AR
M

 P
la

tfo
rm

Retrained 
Classifier

Train Test
Topologies
(Small corpus)

Optimized 
configuration

Fig. 3: Forecaster usage on two clusters.

that need not be linear themselves. This flexibility enables
SVM to outperform other techniques like decision trees and
neural networks in cases such as classifying digits from USPS
mail data [16]. Furthermore, the complexity of the hyperplane
calculation is a function of the number of iterations it runs and
the number of feature vectors, making SVM relatively cheap
compared to those methods especially the latter [16]. Given
the broad applicability, speed and the ability to retrain SVMs,
we choose it as the classifier in our ultimate implementation.

III. DESIGN

As shown in Figure 3, Forecaster combines our process
into an overarching system that: 1) uses GAs to search
through each new topology’s parameter space represented by
the number of worker processes and the individual thread
parallelism values of its spouts and bolts as single config-
uration to test, 2) optimizes the search process by avoiding
configurations classified as unlikely to be effective, and 3)
facilitates transitioning between physical clusters by allowing
the models to be retrained on new hardware.

A. GA Parameter Search

As described previously, GAs provide a convenient way to
intelligently search through a large search space given the
means to quickly reduce its size and to benefit from the
history of the search thus far. Otherwise, GAs have difficulty
converging to an optimal configuration. Therefore, we enhance
the standard GA in the following ways.
Initial Population: We generate a random population of
configurations to begin the GA search process. To avoid
obviously poor choices, we constrain the population generation
to adhere to the “rules of thumb” like limiting the number of
worker processes to the number of CPU cores and setting the
number of “acker” threads to the number of worker processes.
We use an initial population size of 50 since our tests show
it provides a good balance of result quality and convergence
time.
Execution Monitoring: Forecaster deploys each configuration
on the Storm cluster and observes it for a period of five
minutes to evaluate its effectiveness. We find that shorter
time periods lead to inaccurate results due to Storm’s unsta-
ble warm-up period. During each trial, Forecaster monitors
the test environment by utilizing the internal Storm metrics

maintained by the Nimbus process and the JMX interfaces
running on the Storm worker processes. The Nimbus data
includes information about the throughput at both the cluster-
wide topology level and at each individual worker process
running in that cluster. It also provides information about the
topology’s logical structure. With the JMX information, we
are able to enrich this view with data about the CPU load,
memory usage and other associated profiling data.

Fitness, Crossover, and Mutation: The measured throughput
of the Storm topology is used as the fitness metric for selecting
parameter sets which “breed” and produce the next population
generation. We use a custom single point crossover whose
implementation details are described in the next section. Its
ability to persist good parameter subsets across generations
enables the GA to converge at a high fitness. Due to Jenetics
requiring that configurations be represented as a numerical
array, we represent the entire parameter set for a configuration
as a singular yet consistently ordered integer array. This array
structure in turn enables pivoting at a given index for mixing
and matching the parent configurations.

Selection: We enhance the standard GA scheme to filter out
configurations that are unlikely to be effective so as to limit the
amount of actual live testing needed. Using the monitor data
derived from the JMX interface, Forecaster characterizes each
of the Storm components as CPU-bound, IO-bound, memory-
bound or not bound based on computations from a given
component’s system load averages per processor, utilization
of any of Java’s core IO-bound APIs and committed memory
compared to total memory usage. Then, utilizing our Storm
“rules of thumb” for each of these, the system applies a series
of heuristics which invalidates proposed members of the pop-
ulation known to cause performance issues like exceeding the
number of processing elements for the entire cluster for CPU-
bound workloads or overallocating too many acker threads.
We further enhance the selection process by employing a
trained classifier for additional filtering as described in the
next section.

Convergence: After filtering the topology, we allow the GA
to run normally by deploying and monitoring each of the
more promising candidate configurations in the population.
Depending on the supplied configuration, this process con-
tinues until the population fitness, i.e. throughput, converges
to some predefined threshold or the total execution exceeds
the supplied timeout value.

B. Classifying Bad Parameters

Testing a Storm configuration is an expensive process,
requiring several minutes for the deployment of a new con-
figuration and its state to stabilize before measurement. Any
means of avoiding testing fruitless configurations are therefore
desirable. The filtering stage of our GA helps avoid obviously
bad parameter sets, but it is only based on “rules of thumb”
which do not always produce the best results.

Ideally, a model would estimate the performance of a
configuration without necessitating its deployment. Then, we



could utilize efficient algorithms like Best-First Search and
backtracking which rely on a heuristic to organize their
searches effectively. However, we have found that predicting
the throughput of different Storm parameter sets with regres-
sion models has poor precision and recall statistics due to
the high variance in the measurements for a given topology
and among different topologies. In short, regression models
are particularly prone to overfitting. Addressing this limitation
would require a fair amount of operator-level knowledge to
successfully preprocess the raw features for a given topology
to serve as input to the regressors. However, doing so runs
counter to our goal of building a portable and generic tuner
for Storm topologies. Instead, we opt for single-class clas-
sification: a more general model that only predicts whether
a parameter set is “good” or “bad” but better handles the
aforementioned issues.

The classifier poses a new trade-off: training a representative
classification model takes time, but it can afterwards quickly
predict the behavior for any new Storm application being
deployed to the system. Given that the typical use case is of a
cluster with relatively static hardware executing a diverse set
of applications, we believe such a trade-off can yield benefits
in many scenarios.

Training Corpus: To build the classifier, Forecaster first must
gather training data for a range of Storm applications and pa-
rameter sets. We pick three representative Storm applications
to illustrate that even a simple model can provide value for
other application types: SOL, WordCount, and RollingCount.
We select these applications because they stress the I/O,
CPU, and memory aspects of the system respectively. For
each training application, we construct a corpus from two
sources. First, we randomly generate parameter sets from the
search space, avoiding ones which violate our rule of thumb
bounds as described above, logging the configurations and
their resultant throughput. Second, we include similar log
data from the configurations and throughputs observed from
previous runs of our GA tuner.

Classification Models: We bifurcate the training configura-
tions into “good” and “bad” with the classifiers with “good”
being defined as being 80 percent or greater of the maximum
throughput discovered in each topology training set. This
threshold allows for ruling out a large number of configura-
tions while also providing for a relatively balanced division of
the training set, preventing one classification from dominating
the other during training. We first tune the hyperparameters of
the individual classifier using both the training data and the
frameworks’ built-in optimizers before selecting the classifiers
which scored the best on both the test and unseen validation
sets.

Forecaster automatically gathers and labels the training data
set before feeding it to a supervised learning framework. This
enables us to build a plethora of classifiers with little additional
effort. The resulting classifiers take a parameter set for a new
application as input and return a binary classification and a
confidence score.

We exploit ensemble techniques for our classification, which
allow multiple classification algorithms and models to be
combined to build a better overall model, bolstering the f-
scores, i.e. classification accuracy, as a result. We explore
a plethora of classifiers trained our three training topologies
utilizing a variety frameworks and algorithms to include in
our final ensemble. With a diverse collection of classifiers in
our ensemble, we further augment our ultimate classification
by considering each classifier’s classification (C) weighted in
proportion to its confidence score of the decision (pc):

classification =

0, if

∑
c∈C|c=0 pc∑

c∈C pc
≥

∑
c∈C|c=1 pc∑

c∈C pc
1, otherwise

By immediately discarding bad configurations without fully
evaluating them, we are thus able to save time for the ex-
ploration of the search space and provide negative feedback
to the GA with which to steer it away from similarly bad
configurations.
Mapping Parameter Sets: Before a classifier built from the
corpus of training application data can be applied to a new
test application, the parameters need to be normalized and
mapped together. This transformation is necessary because
each Storm topology’s configuration defines not only the
number of worker processes it has but also each spout and
bolt’s own number of thread executors. Since Storm allows for
an arbitrary number of spouts and bolts to form a topology’s
DAG, the complexity of a given configuration thus varies.
We handle this dimensionality problem via the following
categorization technique.

Forecaster translates the parameters of the configurations
of an arbitrary topology to those of the training corpus by
examining its structure. Each topology’s components falls
into one of three categories: a terminal sink, an intermediary
processor, or a originating spout. A spout element has no
input streams and emits tuples to one or more output streams.
Conversely, a sink element has no output streams and receives
tuples from one or more input streams. Finally, a processor
element has both input and output streams of tuples. A stream
of processing thus flows from a given spout through zero or
more intermediary processor bolts before ending at one or
more sink bolts.

Each of the training corpus topologies consists of a singular
flow of execution from a spout through a processor bolt
to a sink bolt. Thus, our generic Storm configuration used
for tuning assumes that all topologies match this flow. We
use this configuration as the input to the objective function
for evaluating the impact of a configuration on the overall
throughput of the topology. Yet, even the test topologies do not
all match this structure, forcing us to devise a simple scheme
for mapping a test topology’s structure to that of the training
topologies.

Our strategy is an admittedly simple one and the subject for
future potential research. For test topologies lacking a proces-
sor bolt, we merely assign zero for its value in our generic



configuration. For example, one of our training topologies,
CSNBT, consists of a spout and a sink (NullBolt) without
an intermediary bolt in between the two. We therefore apply
zero for the intermediary bolt throughput for its mapping.
For topologies with more than one spouts, processor bolts
or sink bolts, we compute the respective average parallelism
of each of these elements’ thread counts. We then use these
averages as the values as the respective values of the sink,
processor and spout elements of a configuration to evaluate.
For the letter counting topology example from the background
section composed of a sentence spout, an intermediary sen-
tence splitter bolt, another intermediary word splitter bolt
and a counter sink, we would use the average of the two
intermediary bolts’ randomly generated parallelism values as
the value of our generic configuration’s intermediary bolt
parallelism. This algorithm enables us to utilize our training
corpus to accurately classify many test topologies while also
binding the search space for quicker results. Our exploration
of more advanced techniques like regularization and deeper
classification of individual components based on profiling and
performance characteristics yields thus far middling results
and remains a topic of future work.

C. Transitioning to New Clusters and Topologies

We train each classification model on a specific hardware
cluster that may differ significantly from other clusters. Simi-
larly, each model incorporates the characteristics of our three
training topologies which may not be fully representative of all
Storm applications. To augment the generality of the models,
we utilize classifiers that support partial fitting so as to enable
retraining (for portability to new clusters) and online learning
(for adapting to new topologies).

When Forecaster executes on a new physical cluster, it first
reruns the three training topologies. Instead of gathering a
full training set, Forecaster collects a much smaller amount
of additional data to retrain the original classifier. Indeed, our
evaluation shows that even with this smaller training corpus,
retraining allows the original models to adapt to substantially
different hardware architectures, e.g. from a high powered Intel
cluster to a low power ARM-based one.

Second, Forecaster can use the results of a test topology to
improve the classifier in an online manner. As the GA executes
the test topology, the results of each parameter set can be
fed back to the classifier as new training samples, improving
accuracy over time on a wide range of topologies and cluster
architectures.

IV. IMPLEMENTATION

We deploy Clients on each machine in the cluster to gather
data from the Storm Nimbus process and the JVM processes
of the Storm workers. A Tuner component resides on a
separate node and runs the genetic algorithm and classification
functions. When the Tuner issues a reconfiguration command
to the clients, they will update the running topology with
a new configuration. Unfortunately, measuring the fitness of
a new configuration is far from instantaneous, slowing the

progression of the genetic algorithm. This bottleneck exists be-
cause the reconfiguration command causes enormous variance
in the topology’s performance measurements as the topology
adjusts to the new configuration before ultimately settling on
a more consistent throughput statistic after about five minutes
of execution.

As the GA may test hundreds of configurations, this high
measurement cost per configuration emphasizes the need to
avoid testing configurations that seem fruitless. Forecaster’s
Classifier service is composed of a series of models built in
scikit-learn, Tensorflow and Keras. We utilize these frame-
works since they share similar APIs and are ubiquitous in
the data science community. Furthermore, the frameworks’
classification and regression APIs are very similar to each
other and thus enable a speedy evaluation of the regression
and classification approaches with minimal effort to switch
from one versus the other.

ClassifierTopology Tuner

HTTP Client Python
Web ServiceClassifiers, Configuration

Evaluate Models
(scikit-learn, Tensorflow, Keras)

[Classification, Confidence]Spout

Spout

Bolt

Bolt

Bolt
Bolt

Bolt
Bolt

Reconfigure
Validation

Evaluation

Info from 
sensors

Fig. 4: Forecaster Implementation.

Due to Python being the language of choice for these
frameworks, along with their limited support for Java, we
utilize the Flask library’s simple API to compose a web
service in Python and use the Apache HTTP client in Java to
enable interoperability between the Tuner and the Classifier
web service. Figure 4 illustrates Forecaster’s implementation.
The Java client lists the classifiers to use in the ensemble
classification along with the configuration in the integer array
format used by the GA to evaluate in its HTTP POST
payload to the web service. The service then loads the models
organized into separate file system directories and performs
the prediction, returning the classifications and their associated
confidences back to the Tuner via HTTP. The Tuner then
computes a weighted average of these classifications using
their confidences for the ultimate classification evaluation as
part of the selection phase of the genetic algorithm.

We utilize the Jenetics [15] library for our implementation
of genetic algorithm search. The selection phase is modified
to include our classification component to discard bad con-
figurations during validation. The evaluation phase is where
the Tuner deploys the actual configuration and calculates its
fitness, i.e. throughput, based on the information provided
by the sensors. To quickly eliminate poor configurations, we
use a tournament selector which divides the population into
subgroups and selects the fittest members of each to survive.
We use three subgroups in our implementation. To ensure
diversity in the resulting child generations, we use a roulette
wheel selector to choose parents from the current population,
utilizing a single point crossover. To do so necessitates repre-
senting the configurations as an integer array with a consistent



one-to-one mapping of each of the configuration parameters.
Jenetics models each element of the array or parameter as
a “gene” and an entire configuration set of parameters as a
“chromosome.” Thus, the crossover can consistently split the
parent chromosomes and generate the children chromosomes
from the splits. The mutation phase also uses this structure
when randomly choosing a gene and altering the integer stored
there. The GA runs until its average fitness stabilizes within ten
percent of itself for five iterations. Due to only having a single
cluster with which to evaluate configurations and consequently
being limited to only testing a single configuration at any given
time, we run Jenetics serially despite its parallel optimizations.

V. EVALUATION

Our evaluation of Forecaster demonstrates not only can the
system yield significantly better configurations than the “rules
of thumb” control and a Bayesian optimization-based tuner
but can do so in a timely and portable manner. To assess both
the quality and timeliness of the derived configurations, we
compare the control against our Spearmint implementation,
our heuristic-based guided GA, our GA guided by the offline-
only trained classifiers, and our GA algorithm guided by the
offline classifier retrained with online data. To evaluate the
quality of the individual classifiers and the impact of the
training corpus’ size on them, we train the classifiers with
subsets of varying sizes from the same corpus and compare the
resultant F1 scores. Finally, we evaluate the effect of retraining
the classifier to a new cluster so as to analyze the portability
of the system and ultimately demonstrate the full utility of our
system. We make use of the following two clusters:
Intel Cluster: five machines each with an Intel(R) Xeon(R) six
core E5-2420 CPU running at 1.90GHz, 16GB of memory run-
ning Ubuntu Linux 14.04 LTS with Storm 1.1.0, ZooKeeper
3.4.8, and Oracle JDK 1.8 Update 111.
ARM Cluster: five machines each with a low power 64-
bit ARMv8 (Atlas/A57) eight core CPU at 2.4 GHz, 64GB
of memory running Ubuntu 18.04 LTS with Storm 1.1.0,
ZooKeeper 3.4.10 and Oracle JDK 1.8 Update 171.

A. Comparison with Spearmint Bayesian Optimizer

With multiple avenues for the direction of Forecaster in
mind, we initially construct two competing approaches, a
Spearmint-derived tuner and heuristic GA tuner with no clas-
sifiers, inspired by the approaches taken in state of the art
applications [3], [11]. Thus, we originally pit the tuners against
each other to see which is worthy of additional refinement and
research. In particular, we utilize the Intel Cluster running each
of the training topologies one at a time. We run the heuristic-
GA tuner until the population’s average fitness converges
within one percent of itself and Spearmint for a hard limit of
twelve hours since the latter lacks the terminating semantics of
the former. The heuristic GA tuner is able to consistently albeit
slowly find a good configuration around which to converge
as shown in Figure 5 with the SOL topology. In contrast,
Figure 6 shows that Spearmint is unable to account for the
dependencies of the configuration parameters, leading to a

random exploration of the search space that does not produce
as high quality a result.

Although both the heuristic GA and the Spearmint tuner
outperform the baseline as shown in Figure 7, the heuristic GA
consistently outperforms the Spearmint tuner in each case. The
GA approach provides between a 1.1x to 2.2x improvement
in throughput compared to Spearmint.

Given that the heuristic GA produced higher quality results
than the Spearmint implementation consistently, we thus focus
Forecaster solely around the GA and utilize machine learning
techniques to mitigate its major drawback: the long evaluation
time required to converge around a good configuration.

B. Comparison of the Classifiers

Although our system supports classifiers built with scikit-
learn, Tensorflow and Keras, we ultimately focus our anal-
ysis on the scikit-learn classifiers due to the high resource
cost of training and retraining the latter two frameworks, in
addition to the their additional hardware, library dependency
installation and cumbersome API concerns. The scikit-learn
classifiers capable of retraining include the Bernoulli Naive-
Bayes, Stochastic Gradient Descent boosted (SGD)-optimized
SVM, Perceptron, Passive Aggressive and Multi-Layer Per-
ceptron (MLP) classifiers from scikit-learn. We refine the
hyperparameters of each of these classifiers using scikit-learn’s
GridSearchCV tuner before training them on a separate offline
corpus derived from the training topologies: RollingCount,
SOL and WordCount.

In brief, our results show that the majority classifiers need
a corpus of fewer than 500 training examples before their F1-
scores converge. The SGD-boosted SVM and MLP classifiers
are the most useful classifiers, converging around an average
F1 score of 0.85 with a corpus size of 500 or greater as shown
in Figure 8. An F1 score of 1 represents perfect accuracy in
terms of both precision and recall. As noted in our discussion
of Spearmint’s poor performance, the Bayesian assumption of
feature independence does not hold with this application due
to the interdependencies of the Storm components and their
configurations. Thus, the Naive-Bayes classifier has difficulty
tuning Storm, with an F1 score consistently lower than the
others at 0.75 as shown in Figure 8. Likewise, the throughput
of a topology in relation to the parallelism of its threads and
processes does not follow a linear equation. Consequently, the
Passive Aggressive and Perceptron classifiers are poor fits for
this task, achieving average F1 scores as low as 0.5 as shown
in Figure 8. Since the SVM classifier is simpler and quicker to
tune than the MLP classifier while also achieving comparable
results, we ultimately comprise our ensemble classifier of
SGD-optimized SVM classifiers individually built on each of
our training topologies using an alpha value or regularization
constant of 0.1 as informed from our hyperparameter tuning.

C. Comparison of the Tuners on the Intel Cluster

To begin our evaluation, we first use a manual configuration
adhering to the Storm “rules of thumb” in its operators’ guide
to establish a baseline. Next, we run our standard GA until



0 50 100 150 200 250 300 350
Iteration

0

200000

400000

600000

800000

1000000

Th
ro

ug
hp

ut
 (t

up
le

s/
se

co
nd

)

Throughput (tuples/second) by Iteration

Fig. 5: SOL Exploration by the Convergence-Limited GA.

0 50 100 150 200
Iteration

0

200000

400000

600000

800000

1000000

Th
ro

ug
hp

ut
 (t

up
le

s/
se

co
nd

)

Throughput (tuples/second) by Iteration

Fig. 6: SOL Exploration by Bayesian Optimizer.

Fig. 7: Throughput Normalized by Baseline.

10 10
0

10
00

30
00

Corpus Size

0.0

0.2

0.4

0.6

0.8

F1
 S

co
re

Classifier
Bernoulli Naive Bayes
MLP
Passive Aggressive
Perceptron
SGD

Fig. 8: Classifier F1 Scores vs Corpus Size for WordCount.

convergence as described beforehand. Afterwards, we combine
the GA with our classifiers built with a large set of config-
urations from our three training topologies. To build these
classifiers, we first assemble a set of training corpora of our
three main topologies (WordCount, SOL and RollingCount).
Henceforth, we refer to these topologies as WC, SOL and
RC respectively. For each of these training topologies, we
generate between 5000 and 7500 test configurations to train
each classifier.

Finally, we run the GA again with classifiers retrained with
a small data set consisting of fewer than 500 examples of
each of the training topologies. They include ConstSpoutId-
BoltNullBoltTopo, ConstSpoutNullBoltTopo, ResourceAware-
WordCount and SlidingTupleTimestamps, in addition to our
training topologies. For brevity’s sake, we refer to those

topologies hereafter as CSIBNBT, CSNBT, RAWC and STT
respectively. We use online learning with the test topologies,
thereby utilizing transfer learning to refine the classifiers built
on WC, SOL, and RC for each of our test topologies.

The results are shown in Figures 9 and 10 in terms of
throughput and execution time respectively. For throughput,
Forecaster’s tuners significantly outperform the “rules of
thumb” control for most topologies. In the worst case, the
GA-guided CSIBNBT outperforms the control configuration
by only a factor of 1.1x, but RAWC improves upon it by 19.5x
when employing the retrained classifier. In some cases, the
GA alone outperforms the classifier-based approaches because
it explores a wider search space although at a steep cost in
search time.

Due to WC’s much larger corpus size of circa 8500 samples
versus the sizes of SOL and RC’s corpora of roughly 4600 and
5600 respectively, the classifier for WC is better tuned than the
others in the ensemble. Furthermore, the test topologies most
like original training topologies benefit more from transfer
learning since said classifier undergoes comparatively smaller
changes during its refinement training. RAWC is a variation of
WC while CSIBNBT shares some structural similarities with
SOL, resulting in their good performance. Moreover, given
the relative dearth of training examples especially for transfer
learning and the dissimilarity of test topologies like CSNBT
and STT compared with the training set of topologies, they
do not see the immediate benefit in throughput that others
like CSIBNBT see. Indeed, they suffer from underfitting. Al-
though more training examples would alleviate that problem,
they come with the price of additional data collection time.
Nevertheless, there are still considerable time savings in using
the classifiers compared to the default GA.

As shown in Figure 10, the classifiers yield a significant
reduction in the time required for the GA to converge. Topolo-
gies like SOL and CSIBNBT take over 300 hours with the
standard GA and see an improvement of greater than 40x in
execution time for convergence compared with their default
GA implementations. All of the GA + Classifier runs take
less than 10 hours to complete, while achieving comparable
throughput to the much slower GA. This improvement is also
visible in how the evolution proceeds during the GA search.
Figure 11 demonstrates the impact of the classifier by plotting



CSIBNBT CSNBT RAWC RC SOL STT WC
Topology

0

5

10

15

20
N

or
m

al
iz

ed
 T

hr
ou

gh
pu

t
Rules of Thumb
GA
GA + Trained Classifier
GA + Retrained Classifier

Fig. 9: Throughput for Tuners on the Intel Cluster.

CSIBNBT CSNBT RAWC RC SOL STT WC
Topology

0

20

40

60

80

100

E
xe

cu
tio

n 
Ti

m
e 

(h
) Rules of Thumb

GA
GA + Trained Classifier
GA + Retrained Classifier

Fig. 10: Execution Time for Tuners on the Intel Cluster.

0

0.5

1

1.5

2

2.5

0 100 200 300

Th
ro

ug
hp

ut
 x1

00
0 

Iteration

Classifier

No Classifier

Fig. 11: GA Exploration with or without a classifier.

the throughput achieved in each iteration of the search process.
With the classifier enabled, Forecaster finds a desirable region
of the parameter space in fewer than fifty iterations in stark
comparison to the two hundred iterations without it.

Unfortunately, underfitting likewise affects the refined clas-
sifiers resulting in higher execution times particularly for the
most dissimilar topologies in the test set. Regardless, they too
almost always achieve quicker execution times while providing
comparable throughput to the GA. Indeed, Forecaster is able
to improve throughput of the seven topologies on average
by 1.02x and 1.22x with the unrefined classifiers and refined
classifiers enabled respectively and likewise reduce search time
by 15.08x and 6.47x.

D. Porting the Tuners to the ARM Cluster

We next consider how utilizing transfer learning on our orig-
inal classifiers can allow Forecaster to be applied to completely
different cluster architectures. Our experiments thus consist of
running two new variations on our low-power ARM cluster
as opposed to our Intel-based Nimbus cluster: the GA with
classifiers retrained on our three training topologies running on
this new cluster and finally the GA with the classifiers refined
with simulated online learning. We focus on the STT topology
as the subject of our case study, as it is relatively dissimilar to
our training topology set yet still derives a noticeable benefit
from utilizing the classifiers.

Compared with the control tuner, the standard GA tuner
achieves an improvement in throughput of roughly 2x on
this new cluster. Although the same GA tuner achieves a
much greater improvement of nearly 6.78x on the training
cluster, the training cluster has additional and more robust
CPU cores. The GA using our original classifiers derived
from the training cluster improves upon the throughput of

STT
Topology

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Rules of Thumb
GA
GA + Intel Classifier
GA + ARM Classifier
GA + Online Classifier

Fig. 12: Throughput of Tuners on the ARM Cluster.

WC
-ST

T

WC
-SO

L

WC
-RC

SO
L-S

TT

SO
L-W

C

SO
L-R

C

RC
-ST

T

RC
-W

C

RC
-SO

L

Train-Test

0.5

0.6

0.7

0.8

0.9

1.0

F1
-Sc

ore

SGD
Retrain-SGD

Fig. 13: Training from Scratch vs Transfer Learning.

the GA by a factor of 1.05x. Using the classifiers refined
using the three training topologies on the new cluster yields
an improvement versus the original GA of a factor of nearly
1.07x. Unfortunately, the further training via simulated online
training fails to improve upon the original GA’s throughput and
instead yields a throughput roughly .91x of the original GA’s.
Figure 12 summarizes these observations with the throughputs
normalized to that of the “rules of thumb” tuner.

Underfitting is particularly to blame for the last classifier’s
inability to improve upon the original GA performance. This
issue is of particular concern especially given the considerably
smaller size of the online training set for further refinement
tuning versus the sizes of the other corpora.

Although a larger corpus would alleviate this problem, the
time to generate the hundreds of examples required would
negate much of the utility of online training. Nevertheless,
as shown in Figure 13, transfer learning yields a better F1-
score than simply training a new set of classifiers from scratch
especially given the limited size of the corpus. Similarly, we
see benefit in using these refined classifiers with the execution
time of the tuners.

Compared with the original GA tuner, the Intel-derived



Fig. 14: STT Evolution with Nimbus and Retrained Classifiers.

classifier achieves an improvement of more than 1.02x in exe-
cution time while the refined ARM-derived classifier achieves
an improvement of more than 1.08x. Unfortunately, the online-
tuned classifier fails to improve upon the original GA tuner,
yielding a 1.03x slowdown in execution time.

However, execution time is not the entire story. Indeed, ex-
amining the evolution of analysis for both the original trained
classifier and the retrained classifier yields a surprising result
as show in Figure 14. The evolution oscillates between two
local maxima for the former before ultimately terminating. In
contrast, the retrained classifier has a much smoother evolution
before achieving a higher throughput. Thus, the quality of the
analysis for the retrained classifier is better than the Nimbus
classifier despite the slower run time.

VI. RELATED WORK

Much of the research in this area originates from work done
for auto-tuning the parameters of Apache Hadoop, MapRe-
duce and streaming processing frameworks. Evolutionary al-
gorithms such as genetic algorithms, hill climbers, simulated
annealing and particle swarms prove themselves useful in
this endeavor [14]. An alternative is Gaussian optimization
which minimizes the objective function comprised of each
parameter represented as a blackbox function [11]. Moreover,
machine learning provides a plethora of solutions ranging from
supervised learning like support vector machines, multiple
linear regressions and random forests to unsupervised learning
like K-Means [8], [13]. Finally, network queuing theory can
yield optimal configurations given enough information about
a topology’s current and ideal flows at each subcomponent
within it. With such a diverse base of research from which to
draw, operators have many options for tuning Storm and other
similar stream processing frameworks.

Of note are several techniques which are similar to the
techniques utilized in this paper. Van der Veen et al. [8]
describe using JMX information to detect overallocation and
underallocation of cluster resources and dynamically scale
the cluster as needed. Bayesian optimization auto-tuning of
Storm is the subject of a paper by Jamshidi and Casale [11]
and another by Fisher, Gao and Bernstein [3] who both see
significant increases in throughput in Storm topologies as a
result of their auto-tuning. However, both make no use of
JMX profiling information but rather just raw performance
numbers in their fitness functions. Instead, both focused on

optimizing their respective Bayesian optimization framework’s
internal search techniques. Jamshidi and Casale [11] build
a customized Bayesian optimization system using the gpml
Bayesian optimization library as a base and then incorporate
optimizations like Latin Hypercube Design for bootstrapping,
Lower Confidence Bound for selecting the next configuration
and multi-started quasi-Newton hill-climbers for maximizing
marginal likelihood. Furthermore, when comparing their sys-
tem to other search techniques like simulated annealing and
genetic algorithms, the authors do not perform any optimiza-
tions like they did for Bayesian optimization, resulting in
better overall performance of their system versus the other
search techniques. Conversely, Fisher, Gao and Bernstein [3]
use an older version of Spearmint which they then customize
to incorporate pre-processed topological structural information
and to quickly halt fruitless searches altogether rather than
simply discard or alter poor configurations. As a result, both
previous works make use of heavy optimizations to Bayesian
optimization libraries to attain their performance numbers in
contrast to the relatively stock usage of Spearmint presented
in this paper.

Although not explored herein, network queuing optimiza-
tion theory remains an alternative approach to the aforemen-
tioned optimization techniques. Like us, Beard and Cham-
berlain [18] first measure the throughput at the edges of
network, though they later assume that their topology follows
a Jackson network flow for their model which is subject to
a variety of constraints like network does not throttle flow,
resource contention not occurring and that the network is
always in equilibrium. We do make any of these assumptions
about the topology and instead utilize the information gleaned
from our JMX and Nimbus monitors which indicate when
such events occur. De Matteis and Mencagli [19] similarly
use queuing theory for their optimizations of SpinStreams,
a FastFlow-derived distributed processing framework bearing
many similarities to Storm, and a singular target application
similar to the STT topology we described earlier. However,
rather than focus on optimizing long term throughput as we do,
they instead focus on optimizing for quality of service, latency,
stability and resource utilization in response to short-term data-
stream flows by minimizing a receding horizon Kingman’s
formula-derived cost model taking these factors into account.
Gulisano et al. [20] take a sliding window application that
consists of many joins of data streams and similarly focus on
optimizing for latency by building a latency model taking into
account the periodicity of the inputs, the preceding latencies
of the pipeline and the latency cost to perform the windowing
operation itself. To optimize for throughput instead, Mencagli
et al. [21] apply operator fusion and fission to statically
optimize topologies in another instance of SpinStreams based
on Akka instead of FastFlow. However, their optimizations rely
upon knowing vital information about the topology beforehand
like the ideal throughput of a given component in the graph,
its probability of outputting to a downstream component and
that the mechanism of backpressure is to block the sender
until the recipient has capacity to process the sender’s output.



We do not make these assumptions nor have this information
readily at hand. Instead, we optimize instead using a gray box
method.

VII. CONCLUSION

In this paper, we explore using a genetic algorithm-based
approach to automatically tune Storm and using classifiers to
further refine its search of the configuration space. With our
training topologies, the stock GA is able to improve upon the
standard “rules of thumb” tuning strategy’s throughput by an
average of 4.6x, with between 1.1x and 2.2x improvement over
Spearmint, a state of the art Bayesian optimization-based tuner.
Employing classifiers to optimize the search process reduces
the execution time of our GA tuner by over 40x in certain
cases. We further demonstrate that the tuner is portable across
clusters of different CPU, memory and even architectures
while still being capable of vastly improving the performance
of topologies executing in Storm compared with the standard
approach to tuning.

Acknowledgments: This work was supported in part by NSF
grant CNS-1253575.

REFERENCES

[1] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter heron: Stream
processing at scale,” in Proceedings of the 2015 ACM SIGMOD In-
ternational Conference on Management of Data, 2015.

[2] Apache Software Foundation. (2018) Apache storm. [Online]. Available:
http://storm.apache.org/

[3] L. Fischer, S. Gao, and A. Bernstein, “Machines tuning machines:
Configuring distributed stream processors with bayesian optimization,”
in Cluster Computing (CLUSTER), 2015 IEEE International Conference
on, 2015.

[4] Y. Zhu, J. Liu, M. Guo, Y. Bao, W. Ma, Z. Liu, K. Song, and Y. Yang,
“Bestconfig: Tapping the performance potential of systems via automatic
configuration tuning,” CoRR, vol. abs/1710.03439, 2017.

[5] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulka-
rni, J. Jackson, K. Gade, M. Fu, J. Donham et al., “Storm@twitter,” in
Proceedings of the 2014 ACM SIGMOD international conference on
Management of data, 2014.

[6] S. T. Allen, M. Jankowski, and P. Pathirana, Storm Applied: Strategies
for real-time event processing. Manning Publications Co., 2015.

[7] P. Córdova, “Analysis of real time stream processing systems considering
latency,” University of Toronto patricio@cs.toronto.edu, 2015.

[8] J. S. van der Veen, B. van der Waaij, E. Lazovik, W. Wijbrandi,
and R. J. Meijer, “Dynamically scaling apache storm for the analysis
of streaming data,” in Big Data Computing Service and Applications
(BigDataService), 2015 IEEE First International Conference on, 2015.

[9] M. Bilal and M. Canini, “Towards automatic parameter tuning of stream
processing systems,” in Proceedings of the 2017 Symposium on Cloud
Computing, ser. SoCC ’17, 2017.

[10] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” in Advances in neural information
processing systems, 2012, pp. 2951–2959.

[11] P. Jamshidi and G. Casale, “An uncertainty-aware approach to optimal
configuration of stream processing systems,” in Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS),
2016 IEEE 24th International Symposium on, 2016.

[12] M. Trotter, G. Liu, and T. Wood, “Into the storm: Descrying optimal
configurations using genetic algorithms and bayesian optimization,” in
2017 IEEE 2nd International Workshops on Foundations and Applica-
tions of Self* Systems (FAS*W), 2017.

[13] D. Cheng, J. Rao, Y. Guo, and X. Zhou, “Improving mapreduce
performance in heterogeneous environments with adaptive task tuning,”
in Proceedings of the 15th International Middleware Conference, 2014.

[14] G. Liao, K. Datta, and T. L. Willke, “Gunther: Search-based auto-tuning
of mapreduce,” in European Conference on Parallel Processing, 2013.

[15] F. Wilhelmstötter. (2016) Jenetics library user manual. [Online].
Available: http://jenetics.io/manual/manual-3.7.0.pdf

[16] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[17] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector
machines,” ACM transactions on intelligent systems and technology
(TIST), vol. 2, no. 3, p. 27, 2011.

[18] J. C. Beard and R. D. Chamberlain, “Analysis of a simple approach to
modeling performance for streaming data applications,” in 2013 IEEE
21st International Symposium on Modelling, Analysis and Simulation of
Computer and Telecommunication Systems. IEEE, 2013, pp. 345–349.

[19] T. De Matteis and G. Mencagli, “Elastic scaling for distributed latency-
sensitive data stream operators,” in 2017 25th Euromicro International
Conference on Parallel, Distributed and Network-based Processing
(PDP). IEEE, 2017, pp. 61–68.

[20] V. Gulisano, A. V. Papadopoulos, Y. Nikolakopoulos, M. Papatri-
antafilou, and P. Tsigas, “Performance modeling of stream joins,” in
Proceedings of the 11th ACM International Conference on Distributed
and Event-based Systems. ACM, 2017, pp. 191–202.

[21] G. Mencagli, P. Dazzi, and N. Tonci, “Spinstreams: a static optimization
tool for data stream processing applications,” in Proceedings of the 19th
International Middleware Conference. ACM, 2018, pp. 66–79.


