
Advancing Network Function Virtualization
Platforms with Programmable NICs

Zhen Ni, Guyue Liu, Dennis Afanasev, Timothy Wood
Department of Computer Science
The George Washington University

Washington D.C., USA
{leonizhen, guyue, dennisafa, timwood}@gwu.edu

Jinho Hwang
IBM T.J. Watson Research Center

New York, USA
jinho@us.ibm.com

Abstract—Network Function Virtualization seeks to run high
performance middleboxes in a flexible, more configurable soft-
ware environment. Even with advances such as kernel bypass and
zero-copy IO, middlebox platforms still struggle to meet stringent
throughput and latency requirements. To achieve line rates as
network bandwidths rise, these platforms often must make trade-
offs such as inefficiently dedicating more CPU cores or weakening
security and isolation properties. In this paper we explore how
advances in programmable “smart NICs” can be leveraged by
software middlebox platforms to improve performance, resource
efficiency, and security. Our evaluation shows several use cases
for smart NICs, which improve performance significantly while
reducing resource consumption and providing strong isolation.

Index Terms—Network Functions Virtualization, Isolation, Of-
floading, Smart NICs

I. INTRODUCTION

Wide area and data center networks are increasingly deploy-
ing middleboxes that provide in-network functionality such
as security monitoring, cellular connection management, and
caching. Prior studies have found that a significant fraction
of the devices deployed in data center networks are there
to provide different forms of middlebox functionality, not
just basic routing and switching. The desire to improve the
efficiency and agility of these network services has led to
the advent of Network Function Virtualization (NFV), which
allows middlebox services to be deployed as software in virtual
machines or containers [8], [9].

Achieving high performance for software-based network
functions (NFs) remains a major challenge [8]. Current ap-
proaches to high performance network functions rely on tech-
niques such as dedicated CPU cores that poll for incoming
packets and zero-copy I/O enabled by pre-allocated shared
memory. While these techniques allow software platforms to
meet line rates of 10Gbps or more, they come at the expense
of high resource consumption and reduced isolation between
functions [3].

SmartNICs, i.e., network interface cards that offer some
form of programmability in the data path, offer a promising
new platform to improve the performance of NFV plat-
forms [5]. Similar to graphics processing units (GPUs), Smart-
NICs contain large numbers of lightweight processing cores

which can perform processing on packets in parallel before
the packets are DMA’d from the NIC into the host’s main
memory to be processed by the CPU. The programming
models for SmartNICs are still being developed due to the
hardware’s nascent state, but several options are currently
available, ranging from network-specific languages like P4 to
fully customizable C functions [1].

In this paper we explore how programmable NICs can be
used to optimize an NFV platform. We demonstrate how they
can be used to offload some aspects of an NFV framework
to higher performance hardware, while still allowing flex-
ible, software-based control. Unlike traditional static NICs,
the SmartNICs are programmable. We are able to keep the
advantage of NFV while executing network workloads on the
SmartNICs. In particular, we evaluate how a SmartNIC can:

• Improve NF security and platform efficiency by routing
to isolated memory pools from the NIC hardware instead
of requiring dedicated CPU cores.

• Offload computation to the NIC to reduce CPU load
and improve latency, in some cases bypassing the host’s
software stack entirely.

We evaluate these approaches using a Netronome Agilio
CX network card, using both its P4 [4] and C-based pro-
grammability [1]. We show how this can be integrated with
the OpenNetVM NFV platform to improve throughput by 2
million packets per second and reduce latency by at most 8
µs compared to a pure-software technique.

II. CHALLENGES AND OPPORTUNITIES

As network speeds rise and network/cloud operators devise
more functionality to embed in the network, high performance
network function virtualization becomes increasingly impor-
tant. However the state-of-art for NFV is still inadequate.
There is no perfect NFV infrastructure that could provide high
performance, rapid development, and strong security guarantee
simultaneously. Many NFV platforms use “zero-copy” packet
processing to achieve line-rate throughputs and low latency
with commercial off-the-shelf (COTS) servers [3], [8], [13],
[17]. However, requiring dedicated cores to poll packets from
the NIC has limited their scalability and using a shared global
memory pool for DMA’d packets has left potential threats for
network eavesdropping from neighboring NFs. In this section,978-1-7281-1434-7/19/$31.00 ©2019 IEEE



Container 1

Shared Memory
(packets, flow tables, service chains, ring buffers)

Packet

NF Manager 
(DPDK)

R TNFlib

NF

RX

Container 2

R T

NF
NFlib 3rd party

library

NIC 2

TX

FT

NIC 1

Fig. 1. OpenNetVM Platform Architecture

we discuss how the recent emergence of SmartNIC can help
address these challenges.

A. High Performance, Secure, Efficient NFV

Ideally, the network data plane should provide the flexibility
and convenience of a cloud infrastructure: operators should be
able to easily deploy functions, scale them on demand, and
ensure their integrity and isolation.

Security: Many current NFV platforms pursue high per-
formance but trade off security concerns [11], [17]. High
performance in network function service chains is commonly
achieved with zero-copy I/O. An example NFV architecture is
shown in Figure 1. OpenNetVM [17] is a high-performance
NFV platform for researchers and developers to easily deploy
network services. Network functions can be deployed as
Docker Containers to run the code along with its dependencies.
The NF Manager handles receiving and sending packets from
the NIC ports, and it uses the Data Plane Development Kit
(DPDK) to efficiently bypass the kernel stack and load packets
into a global shared memory region in user space. This
memory region is also shared among all NFs so that NF
communication can be optimized to just pass along packet
descriptors instead of copying packet data. Although this
approach can achieve high throughput and low latency, it also
brings security risks since all packet data is in one shared
memory pool that can be manipulated by malicious neighbors.

Efficiency: Performance is also achieved at the expense of
resource efficiency. DPDK-based applications typically rely on
threads that use polling to check for the arrival of messages,
i.e., new packets. Polling eliminates the high cost of interrupt
processing, but it keeps CPU cores fully loaded at 100%
regardless of the incoming arrival rate. As the number of NFs
rises or the management layer complexity grows, the required
number of CPU cores continues to grow. For example, in
OpenNetVM, the management layer can act as a mediator be-
tween communicating NFs. This allows the management plane
to redirect packets and ensure only NFs with the appropriate
communication permissions can communicate. While this is a
useful feature, the necessity of polling by management cores
means it comes at a high resource cost.

SmartNIC Processor

Accelerators

60 Flow Processing 
Cores

48 Packet Processing 
Cores

Traffic 
Manager

Packet 
Modifier

StatisticsCryptoHash
Queue

Look-up
Atomic Bulk
CAM …

Fig. 2. Processor of SmartNIC

B. Opportunities

In recent years, cloud datacenters need to serve hundreds
of thousands of users and that number is still increasing fast.
Because of the growth of tenants, VMs, and applications, pro-
grammable, virtual networking has been developed into reality.
Service providers allow users to bring their own network and
security policies, as well as program in custom functionality.
However, the increasing demand for CPU cores and power is
becoming more and more unacceptable as network line rates
rise. Programmable SmartNICs are purpose-built to solve the
performance and scaling challenges.

SmartNIC HW: In this work we consider the Agilio Smart-
NICs, developed by Netronome [1]. A SmartNIC, also called a
programmable NIC, allows engineers to build networking ac-
celerator or dataplane applications into the NIC hardware [15].
Figure 2 shows the high-level structure of Agilio NFP-4000
SmartNIC processor. The processor includes 48 packet pro-
cessing cores and 60 flow processing cores (up to 120 cores
in NFP-6000 SmartNIC processor), which guarantees high
performance while offloading processing-intensive functions
such as virtual switch, load balancing, and security. The packet
processing cores are used for the basic functionality such as
rule matching, packet modifications, and so on, and the flow
processing cores are programmable blocks that can run custom
P4 and microC programs. While traditional network cards have
only basic control plane functionalities, the SmartNICs also
have over 60 hardware accelerators for deep packet inspection
(DPI) which support hash, cryptography, statistics, and more.
These accelerators combine the flexibility of software and
the performance of hardware. The programmable processing
cores are fully assisted by the hardware accelerators for faster
computation.

SmartNIC Programming: FPGA-based NICs have been
available for some time, but they require a difficult program-
ming model not familiar to most network operators. Newer
SmartNICs have expanded high level and low level program-
ming models [1], [2]. The network flow processor (NFP)
can be programmed for the custom packet/flow processing



using P4 and C languages. P4 is a high-level language for
designing packet processing services [7]. Unlike OpenFlow,
which requires protocol headers to be specified in the language
itself, P4 is protocol independent, allowing a wider range
of functionality to be implemented. P4 programs define a
programmable match-action pipeline that allows customizable
programming for each incoming flow [10]. C-based SmartNIC
programs provide even greater flexibility in the functionality
that can be implemented, but require a more detailed under-
standing of the underlying HW API.

NFP-based Agilio SmartNICs support the following pro-
gramming models:

• Host API-based Programming Model
• User Datapath Programming Model
The high level host API-based programming model supports

network I/O configuration, and standard datapath features, but
lacks complete customizability. This programming model is
suitable for users who want to utilize available Agilio software
features and not interested in building their own datapath
applications. The low level user datapath programming model
is designed for users to program and customize the datapath
on the SmartNIC. In this model, user programs can be written
in pure P4, pure C, or a combination of both. For example, the
flow table definition can be a P4 program, while the look-up
actions are defined in a C program. We use the Netronome’s
SDK in our approach, with an integrated development envi-
ronment that supports both P4 and C software development
and debugging environment.

SmartNIC and Host-based NFV: As shown in Figure 3,
packets arriving on the physical SmartNIC port (also called a
physical function or PF) are processed by packet processing
cores running either C or P4 functions. These functions can
then direct packets to one or more Single-root input/output
virtualization (SR-IOV) virtual function (VF) ports, which are
exposed to the host. When combining a SmartNIC with a
traditional NFV platform, packets will first be processed by the
SmartNIC, then DMA’d to the host which will retrieve packets
from the SR-IOV ports, and then the packets will be returned
to the SmartNIC again, potentially for further processing or to
be sent out to the physical port.

III. ADVANCING OPENNETVM WITH SMARTNIC

We advance the OpenNetVM platform by leveraging the
SmartNIC capabilities to improve the security and perfor-
mance aspects.

A. Memory Isolation without SmartNIC

The current OpenNetVM platform has one global memory
pool to keep the DMA’d packets. While this significantly
improves the performance, there are security concerns as the
memory pool can be read by all network functions. As a result,
the trusted computing base (TCB) of the platform must include
not only the manager, but the NFs as well.

We first extend the OpenNetVM platform by dividing the
memory into separate regions based on the idea of NF tenants,

Container 1

Memory Pool A
Packet

NF Manager 
(DPDK)

R TNFlib

NF A1

Container 2

R T

NF A2
NFlib 3rd party

library

Memory Pool B
Copy of Packet

Container 3

R T

NF B
NFlib 3rd party

library

Programmable NIC

VF A VF B VF C

Packet Processing Core

Container 1

Memory Pool A
Packet

NF Manager 
(DPDK)

R TNFlib

NF A1

Container 2

R T

NF A2
NFlib 3rd party

library

Memory Pool B
Copy of Packet

Container 3

R T

NF B
NFlib 3rd party

library

SmartNIC

VF A VF B VF C

Packet Processing Core

Fig. 3. System Architecture - Memory Isolation and SmartNIC

and a service chain defines a set of functions to process
packets across one or more tenants. A tenant might represent
different network operators or virtual network customers. We
assume that service chain classification can be performed by
observing data within the packet header, e.g., based on the
source/destination IP addresses. Instead of sharing the global
memory pool, the NFs owned by a tenant can only access
their own private memory region. While a packet is being
transferred, the NF notifies the manager about the destination
NF. If that is owned by a different tenant, the manager will
copy the packet to another memory pool.

With this extension, the TCB of the OpenNetVM now
excludes the network functions. That is, the tenants are isolated
from each other and cannot eavesdrop on packets not destined
for them. When the NF manager initializes, it creates multiple
memory pools with unique pool IDs. If a service chain is
entirely within a single tenant, then copies are not required.

However, this approach is problematic if packets arriving
at the host are destined for different NFs at the start of their
service chain. Since each tenant has its own memory pool,
packets need to be loaded into the appropriate tenant pool
before processing, but that cannot be determined until after
the packet has already been DMA’d into the host’s memory.
To resolve this, we must use a simple Router function inside
the NF Manager. This is a trusted component that retrieves
incoming packets from the NIC and copies them into the
pool of the appropriate tenant, resolving the trust issue, but
negatively affecting performance since an additional copy is
required for all packets. Further, the router function requires
an additional CPU core that polls for packets, reducing the
efficiency of the overall system.

B. SmartNIC-based Tenant Classification

We next explore how to improve our approach by offloading
the tenant classification from a router NF on the CPU to
the SmartNIC. Determining the service chain and tenant
associated with an incoming packet simply requires matching
a portion of the header to a rule set and then forwarding the
packet appropriately, making this function a good fit for a P4
program. A flow table is preconfigured with the match rules,



NF Manager 
(DPDK)

R T
Payload 
Scanner 

NF

SmartNIC

VF

PF

NF Manager 
(DPDK)

R T

SmartNIC

VF

PF

Payload 
Scanner

R T
L2 

Forward 
NF

L2 Forward NF

Fig. 4. Payload Scans in Smart NIC and CPU

and packets are sent out to different SR-IOV virtual functions
(VFs). On the host, each VF is associated with a different
memory pool, ensuring isolation.

Figure 3 shows an example of how the system works
in a single round. When a packet arrives at the SmartNIC,
it will first get analyzed by a packet processing core. The
program accesses the packet header for essential information,
for example, source/destination IP address, and looks up the
pre-defined flow table. If there is a match on tenant ID ”A”,
the packet will be forwarded to the virtual port A. The VF A is
associated with memory pool A, which can only be accessed
by NF A1 and NF A2. The manager notifies NF A1 to pick
up the packet, process it, and send it to NF A2. Since the
two NFs are from the same tenant, the manager allows the
fast direct transmission. NF A2 processes the packet and tries
to send it to NF B. Because the two NFs belong to different
tenant, the manager copies the packet from pool A to pool B
and notifies NF B. In the last step, the packet is sent out of
the system from VF B, because it is associated with memory
pool B. By leveraging the SmartNIC, the extra initial copy has
been avoided, and for the common case where all NFs in a
service chain are owned by a single tenant, full zero-copy IO
is achieved while retaining tenant isolation with a lower TCB
and more efficient resource utilization.

C. SmartNIC Function Offload

The SmartNIC’s flexibility and programmability means that
it can do more than simple header matching as used in the
prior section. Next we explore how deploying more complex
network functions to the SmartNIC can potentially reduce both
latency and CPU core usage.

While the SmartNIC Network Flow Processor (NFP) sup-
ports P4 programming for network control plane functional-
ities, this can also be combined with C programs to trigger
“primitive actions” based on a match in the flow table. In
Figure 4, we take a payload scan function as an example,
which searches for a target string inside each packet’s contents.
This type of payload analysis is a poor match for P4 programs,
which work best on packets with well defined header struc-
tures.

Offloading this functionality to the SmartNIC instead of an
NF running on the CPU has several benefits. First, the high

Fig. 5. Throughput with different packet forwarding techniques

degree of parallelism in the SmartNIC allows it to perform this
functionality with high throughput. Next, performing the work
on the NIC frees up CPU cores for other purposes. Finally, in
some cases it may be possible to fully process a packet on the
NIC, which can substantially reduce latency by avoiding the
DMA and CPU entirely.

IV. EVALUATION

In this section we evaluate how the SmartNIC can accelerate
the OpenNetVM platform. We evaluate the advances of the
OpenNetVM platform using the SmartNIC with the following
goals:

• Demonstrate how the memory isolation by leveraging the
SmartNIC is achieved without sacrificing performance
(§IV-A),

• Show the function offloading can perform better in the
SmartNIC rather than NF functions in CPU (§IV-B).

In our experimental setup, we configure two HP ProLiant
GL160 G6 servers with two Intel Xeon X5650 CPUs @ 2.67
GHz with Ubuntu 16.04, Linux kernel 4.4.0. Each has an
Agilio CX 2x10GbE SmartNIC. We generate network traffic
with the Intel 82599ES 10 Gigabit Ethernet Controller on one
server, send to the other one, and bounce the packets back to
the sender.

A. Memory Isolation

Different from the global memory pool in OpenNetVM
where packets are DMA’d first, then routed using packet
descriptors, the memory isolation requires a routing function to
steer packets into the right memory region. We compare the
two scenarios when the function is in the CPU as a router
NF vs. when in the SmartNIC. The P4 program first sees
the packet header tuples, and based on the flow table entries
created by SDN or a configuration file, it forwards (DMAs)
the packets into the right memory region. The dedicated flow
processing cores run this P4 program. On the other hand, in
the CPU routing, the router NF receives a packet first, then
forwards (copies) it to the correct memory pool for the next
NF to process. Here we are using a hard-coded service chain
rule for our evaluation. In the real world, either the router



Fig. 6. Latency comparison of payload scanning in Smart NIC and CPU

NF or smart NIC will be able to communicate with the SDN
controller to know the service chain rule, and find the next
pool for the packet transmission.

Figure 5 shows the throughput comparison between P4
based packet routing and CPU based packet routing. For small
packets, P4 routing achieves the line rates (i.e. 10GB), whereas
the CPU routing suffers performance drops because the router
NF running in CPU overloads the CPU cycles and packets
are dropped. For larger packets, the overhead on the CPU is
amortized since there are fewer packets per second, however,
for network rates of of 40Gbps and beyond, we expect to see
even more benefits for the SmartNIC.

B. Function Offloading

Next we demonstrate how the payload scanning function
can perform better in the SmartNIC rather than in the NF
running on CPU. In the SmartNIC Scan approach, the payload
scan is entirely on the NIC before being sent out, with no
CPU intervention. Figure 6 shows the processing latency (i.e.,
not including the base network RTT between the two servers)
for different approaches to payload scanning. The yellow bar
demonstrates the processing latency while the SmartNIC does
the payload scan, and send the packets out directly. The green
and blue bars show how OpenNetVM framework performs
the same workload comparing to offloading the payload scan
function to the SmartNIC. While the SmartNIC offloading
(Smart NIC Scan + ONVM FWD) is able to achieve the full
line rate throughput as well as the non-offloading framework,
it shows up to 8 µs lower processing latency compared to the
pure-software OpenNetVM approach (ONVM Scan + FWD).
This is because the large number of flow processing cores
efficiently processes the packets in parallel. Our evaluation
result shows that the SmartNIC itself has much higher effi-
ciency to process the networking workloads rather than CPU
cores. SmartNIC offloading technique can be integrated into
traditional NFV platforms, and help cloud developers achieve
high performance, low latency, and save the CPU resources.

V. RELATED WORK

Performance vs. Security: Previous NFV platforms [3], [8],
[11], [13], [17] have focused on removing the processing

overheads in the datapath to improve the performance, and use
techniques such as zero-copy I/O and kernel bypass. Although
these platforms can achieve high throughput, they also break
the isolation between NFs and bring security concerns for
the multitenant environment. Netbricks [12] proposed to use
safe languages and runtimes to provide isolation with low
overhead, but it requires rewriting all the NFs. IOVTee [14]
added more control on top of NetVM to safely expose the
host memory to the NFs, but it still suffers the same problem
for the communication between NFs. Our work strengthens
OpenNetVM by replacing the single mempool with multiple
mempools for different tenants, and copying packets for across
pool communication to provide isolation.

Hardware Acceleration: There have been many efforts to use
inexpensive and programmable hardware such as FPGA, GPU,
and Programmable NICs, to boost the performance of network
applications. APUNet [6] demonstrated the effectiveness of
using GPU to accelerate packet processing especially for
compute-intensive network applications. G-Net [16] proposed
a CPU-GPU NFV system to efficiently share GPU among
multiple NFs. ClickNP [9] showed how to achieve both high
performance and programmability on top of FPGA for general
network functions. AccelNet [5] built and deployed FPGA-
based programmable NICs in Azure data centers to offload
host networking stacks to the hardware. Our work effectively
integrates SmartNIC into OpenNetVM to offload partial net-
work processing with the goal to balance the performance and
isolation.

VI. CONCLUSION AND FUTURE WORK

Existing Network Function Virtualization platforms have
achieved high throughput and low latency by using dedi-
cated CPU cores and zero-copy techniques, incurring high
resource consumption and reduced isolation. In this paper,
we have explored how programmable NICs can be used to
reduce CPU load and improve isolation. We have integrated a
programmable NIC into OpenNetVM NFV framework which
can offload the computation from CPU and route packets to
isolated memory regions. The results show it can improve the
throughput by 2 million packets per second and decrease the
latency by at most 8 µs.

Our vision is to offload all NFV platform functionalities and
standard NF functions to the SmartNIC so that the CPU can
only run the application logic. The first issue is to make the
zero-copy to completion. Currently, we use the conditional
packet copy on the cross-pool transmission. Although we
leverage the SmartNIC to improve the packet forwarding, the
overhead from the packet copy is significant as it proportion-
ally increases depending on how many times that cross-pool
transmission requests are made. We plan to offload all the
packet transmissions to SmartNIC to eliminate the packet copy
overhead. That is, all the transmission across different memory
pools will go through the SmartNIC processor via DMA. In
the end, the platform could achieve zero CPU copy I/O to
completion.



Another issue to tackle is the SmartNIC virtualization.
Hyper4 [7] has attempted to virtualize the SmartNIC using
P4 only for the flow management, but it does not virtualize
the function level including microC code. Since SmartNIC
approach allows only one program to be loaded for all SR-
IOV interfaces at the same time, there could be potential
interference between different NFs that might render security
concerns. As the SmartNIC hardware accelerators support
the security of network application development, we plan to
implement isolation programmatically on the hardware level.

Acknowledgements: This work was supported in part by
NSF grants 1525992 and 1814234.

REFERENCES

[1] Netronome - Smart NICs. https://www.netronome.com. [ONLINE].
[2] P4 language consortium. https://p4.org/. [ONLINE].
[3] Data plane development kit. http://dpdk.org/, 2019. [ONLINE].
[4] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M., MCKEOWN,

N., REXFORD, J., SCHLESINGER, C., TALAYCO, D., VAHDAT, A.,
VARGHESE, G., AND WALKER, D. P4: Programming protocol-
independent packet processors. SIGCOMM Comput. Commun. Rev. 44,
3 (July 2014), 87–95.

[5] FIRESTONE, D., PUTNAM, A., MUNDKUR, S., CHIOU, D., DABAGH,
A., ANDREWARTHA, M., ANGEPAT, H., BHANU, V., CAULFIELD,
A. M., CHUNG, E. S., CHANDRAPPA, H. K., CHATURMOHTA, S.,
HUMPHREY, M., LAVIER, J., LAM, N., LIU, F., OVTCHAROV, K.,
PADHYE, J., POPURI, G., RAINDEL, S., SAPRE, T., SHAW, M., SILVA,
G., SIVAKUMAR, M., SRIVASTAVA, N., VERMA, A., ZUHAIR, Q.,
BANSAL, D., BURGER, D., VAID, K., MALTZ, D. A., AND GREEN-
BERG, A. G. Azure accelerated networking: Smartnics in the public
cloud. In 15th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2018, Renton, WA, USA, April 9-11, 2018 (2018),
pp. 51–66.

[6] GO, Y., JAMSHED, M., MOON, Y., HWANG, C., AND PARK, K. Apunet:
Revitalizing gpu as packet processing accelerator. In Proceedings of the
14th USENIX Conference on Networked Systems Design and Imple-
mentation (Berkeley, CA, USA, 2017), NSDI’17, USENIX Association,
pp. 83–96.

[7] HANCOCK, D., AND VAN DER MERWE, J. Hyper4: Using p4 to
virtualize the programmable data plane. In Proceedings of the 12th
International on Conference on Emerging Networking EXperiments and
Technologies (New York, NY, USA, 2016), CoNEXT ’16, ACM, pp. 35–
49.

[8] HWANG, J., RAMAKRISHNAN, K. K., AND WOOD, T. Netvm: High
performance and flexible networking using virtualization on commodity
platforms. In 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14) (Seattle, WA, 2014), USENIX Associa-
tion, pp. 445–458.

[9] LI, B., TAN, K., LUO, L. L., PENG, Y., LUO, R., XU, N., XIONG,
Y., CHENG, P., AND CHEN, E. Clicknp: Highly flexible and high
performance network processing with reconfigurable hardware. In
Proceedings of the 2016 ACM SIGCOMM Conference (New York, NY,
USA, 2016), SIGCOMM ’16, ACM, pp. 1–14.

[10] LIU, J., HALLAHAN, W., SCHLESINGER, C., SHARIF, M., LEE, J.,
SOULÉ, R., WANG, H., CAŞCAVAL, C., MCKEOWN, N., AND FOSTER,
N. P4v: Practical verification for programmable data planes. In
Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication (New York, NY, USA, 2018), SIGCOMM ’18,
ACM, pp. 490–503.

[11] PALKAR, S., LAN, C., HAN, S., JANG, K., PANDA, A., RATNASAMY,
S., RIZZO, L., AND SHENKER, S. E2: A framework for nfv applications.
In Proceedings of the 25th Symposium on Operating Systems Principles
(New York, NY, USA, 2015), SOSP ’15, ACM, pp. 121–136.

[12] PANDA, A., HAN, S., JANG, K., WALLS, M., RATNASAMY, S., AND
SHENKER, S. Netbricks: Taking the v out of nfv. In Proceedings of
the 12th USENIX Conference on Operating Systems Design and Imple-
mentation (Berkeley, CA, USA, 2016), OSDI’16, USENIX Association,
pp. 203–216.

[13] RIZZO, L. netmap: A Novel Framework for Fast Packet I/O. In USENIX
Annual Technical Conference (Berkeley, CA, 2012), USENIX.

[14] RYOTA KAWASHIMA, H. M. Iovtee: A fast and pragmatic software-
based zero-copy/pass-through mechanism for nfv-nodes. In 2018 IEEE
Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), Verona, Italy, November 27-29, 2018 (2018).

[15] STEPHENS, B., AKELLA, A., AND SWIFT, M. M. Your programmable
nic should be a programmable switch. In Proceedings of the 17th ACM
Workshop on Hot Topics in Networks (New York, NY, USA, 2018),
HotNets ’18, ACM, pp. 36–42.

[16] ZHANG, K., HE, B., HU, J., WANG, Z., HUA, B., MENG, J., AND
YANG, L. G-NET: effective GPU sharing in NFV systems. In 15th
USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2018, Renton, WA, USA, April 9-11, 2018 (2018), pp. 187–200.

[17] ZHANG, W., LIU, G., ZHANG, W., SHAH, N., LOPREIATO, P., TODE-
SCHI, G., RAMAKRISHNAN, K., AND WOOD, T. OpenNetVM: A
platform for high performance network service chains. In HotMiddlebox
(2016), ACM.


