
Mu: An Efficient, Fair and Responsive Serverless
Framework for Resource-Constrained Edge Clouds

Viyom Mittal
∗
, Shixiong Qi

∗
, Ratnadeep Bhattacharya

+
, Xiaosu Lyu

+
, Junfeng Li

§
, Sameer G

Kulkarni
#
, Dan Li

§
, Jinho Hwang

★
, K. K. Ramakrishnan

∗
, Timothy Wood

+
∗
University of California, Riverside,

+
George Washington University,

§
Tsinghua University,

#
Indian Institute of Technology, Gandhinagar,

★
Facebook Inc.

Abstract
Serverless computing platforms simplify development, de-

ployment, and automated management of modular software

functions. However, existing serverless platforms typically

assume an over-provisioned cloud, making them a poor fit for

Edge Computing environments where resources are scarce.

In this paper we propose a redesigned serverless platform

that comprehensively tackles the key challenges for server-

less functions in a resource constrained Edge Cloud.

Our Mu platform cleanly integrates the core resource man-

agement components of a serverless platform: autoscaling,

load balancing, and placement. Each worker node in Mu trans-
parently propagates metrics such as service rate and queue

length in response headers, feeding this information to the

load balancing system so that it can better route requests,

and to our autoscaler to anticipate workload fluctuations

and proactively meet SLOs. Data from the Autoscaler is then

used by the placement engine to account for heterogeneity

and fairness across competing functions, ensuring overall

resource efficiency, and minimizing resource fragmentation.

We implement our design as a set of extensions to the Kna-

tive serverless platform and demonstrate its improvements

in terms of resource efficiency, fairness, and response time.

Evaluating Mu, shows that it improves fairness by more

than 2× over the default Kubernetes placement engine, im-

proves 99th percentile response times by 62% through better

load balancing, reduces SLO violations and resource con-

sumption by pro-active and precise autoscaling. Mu reduces

the average number of pods required by more than ∼15% for

a set of real Azure workloads.

SoCC ’21, November 1–4, 2021, Seattle, WA, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8638-8/21/11.
https://doi.org/10.1145/3472883.3487014

CCS Concepts
• Computer systems organization → Cloud comput-
ing; • Networks→ Network resources allocation.

Keywords
Edge clouds, serverless, resource management

ACM Reference Format:
V. Mittal, S. Qi, R. Bhattacharya, X. Lyu, J. Li, S. G Kulkarni, D. Li, J.

Hwang, K.K. Ramakrishnan, T. Wood. 2021. Mu: An Efficient, Fair

and Responsive Serverless Framework for Resource-Constrained

Edge Clouds . In ACM Symposium on Cloud Computing (SoCC ’21),
November 1–4, 2021, Seattle, WA, USA. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3472883.3487014

1 Introduction
Serverless platforms have gained popularity because they

allow easy deployment of services in a highly scalable and

cost-effective manner [26]. This should make serverless a

perfect fit for Edge Computing, where tiny data centers are

distributed throughout a geographic area, allowing users

to access low latency services rather than relying on a dis-

tant, centralized cloud. Each edge data center will be highly

resource-constrained. Thus, the autoscaling “from zero” ca-

pabilities that allow serverless platforms to use no resources

if there are no requests arriving, are highly desirable. Simi-

larly, the fast instantiation of new functions ought to be a

boon for Edge deployments with high user movement in and

out of the area, as in a mobile edge cloud.

Unfortunately, current serverless platforms assume access

to a more-or-less infinitely scalable cloud and pay little at-

tention to resource wastage. When deployed at the edge,

these characteristics lead to unacceptable performance such

as high tail latency and unfair resource allocations under

multi-tenancy because of the limited resources. As a result,

current designs of serverless platforms are not yet a viable

option for Edge environments.

In this work, we propose Mu, a resource management

framework for serverless at the Edge that extends the open-

source Knative platform. Mu is composed of the following

components which tackle a number of key challenges:

168

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3472883.3487014
https://doi.org/10.1145/3472883.3487014
https://creativecommons.org/licenses/by/4.0/

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Mittal et. al.

Autoscaler (§3.3): Mu leverages machine learning mod-

els to forecast incoming workloads and proactively allocate

function containers based on the combination of demand

and service level objectives (SLO). Our evaluation shows that

by closely tracking the requirements of each function, Mu
reduces resource use by more than 15% and better avoids

underprovisioning and high response times compared to

existing autoscaling algorithms.

LoadBalancer (§3.4): Mu’s load balancer carefully assigns
requests based on up-to-date statistics of backend load. This

information is efficiently propagated through the system

using ‘piggybacking’ of key measures to reduce monitoring

overheads. We demonstrate that Mu’s precise load balancing

improves the 99th percentile response time by up to 62%,

when nodes are heterogeneous or workloads are bursty—

both common occurrences at the Edge.

Placement Engine (§3.5): Mu carefully decides where to

place each function container to avoid fragmentation and

ensure fairness in a multi-tenant environment. Unlike cen-

tralized clouds where resources are seemingly endless, Edge

clouds may frequently run at close to capacity. We show our

placement heuristic achieves comparable performance to op-

timization techniques at a much lower computation cost and

provides up to a 2× improvement in fairness among tenants.

2 Background and Related Work
Edge Clouds: The rise of 5G has led to a network provider-

centric Edge vision where cellular base stations or central

offices provide a (relatively) small number of servers or racks

of servers which can provide services for nearby users [27].

In this work, we consider an Edge cloud environment where

limited compute resources–likely on the scale of a single

rack or less–are being made available to service requests for

function execution from nearby network users. In this sce-

nario, the Edge cloud needs to support a variety of different

functions (since different users may have different needs),

and it must manage its resources efficiently and fairly to

simultaneously support all users.

Serverless Platforms: Cloud platforms provide compute

and storage services at large scale and low cost through

economies of scale and effective multiplexing. Serverless

computing takes this multiplexing and scalability to the

next level by allowing providers to commit just the required

amount of resources to a particular application (as many

instances as necessary, but only when needed) and utilize

the resources for just the time needed to execute an invoked

function [25].

In this work, we focus on Knative[4] and how it can be

deployed in an Edge environment. In a Knative cluster, de-

velopers can write functions in a variety of languages, which

are then deployed into backend worker pods. Each worker

pod consists of two containers namely the ‘queue proxy’

and the ‘function’ itself. The ‘queue proxy’ is responsible

for queuing incoming requests and forwarding them to the

‘function’ container for execution. Requests enter the system

via an ‘Ingress Gateway’ that maintains metrics about active

backend pods and routes requests to them. The platform

is managed by an Autoscaler that dynamically adjusts the

number of worker pods, a placement engine that places new

pods, and a load balancer in the gateway that directs requests.

In this work, we comprehensively consider all three of these

aspects to enhance Knative’s architecture and better adapt it

to an Edge cloud environment.

Serverless Autoscaling: Knative enables auto-scaling by

using the Knative Pod Autoscaler (KPA) [5]. The Autoscaler

monitors the traffic flow to the function, and scales repli-

cas up or down based on user-configured targets for metrics,

such as concurrency and request per second (RPS). For Kuber-

netes, the Horizontal Pod Autoscaler (HPA) [3] periodically

adjusts the number of replicas to match the observed average

resource (i.e., CPU, memory) utilization to the user-specified

target. However, this dependency on user inputs severely

limits these autoscaling methods since: i) the user is unaware

of actual resource usage and other runtime features of func-

tions: it is hard for the user to choose the proper autoscaling

metric and set the right target to meet their demands, which

makes it prone to misconfiguration; ii) the single metric-

based autoscaling approaches by themselves are insufficient

and not comprehensive enough to properly satisfy SLOs and

reduce the cloud usage cost. The number of instances pro-

visioned is often either too large and wastes resources or is

too small and violates the SLO.

Load-balancing: There is a wide range of work on load bal-

ancing for web [11] and cloud applications [15]. Our load

balancing algorithm is inspired by the “join the shortest

queue” (JSQ) approach [13], which has been shown to be

nearly optimal, but only in an environment with homoge-

neous servers and workloads. JSQ also requires accurate

information on queue length, and we show how we can effi-

ciently acquire this through piggybacked metrics. We also

draw inspiration from HALO [9], which focuses on hetero-

geneous environments, and we further show that serverless

load balancers need to take special care when new pods are

frequently added or removed.

Placement and Scheduling: Borg [2] and Kubernetes [6]

typically employ some form of heuristic-driven bin packing

for scheduling pods in a data center. It first prioritizes all the

eligible nodes by using several alternate scoring policies. One

is to score the nodes by the amount of remaining resources,

thus favoring the least loaded node. Another is to balance the

allocation of CPU and memory resources, by looking at the

difference between the available CPU and memory capacity

fractions available and placing the pod in a server that has

the best balance. Their primary focus is on reducing stranded

169

Mu: An Efficient, Fair and Responsive Serverless Framework for Resource-Constrained Edge Clouds SoCC ’21, November 1–4, 2021, Seattle, WA, USA

resources (i.e., fragmentation), but do not explore the issues

of fairness among multiple contending functions demanding

resources in a resource-constrained environment.

When considering fairness, max-min fairness [7] seeks

to provide allocations fairly among contending sources of

demand (functions in this context), and is relevant when

the demand exceeds capacity. However, max-min fairness

focuses on a single dimension for the resource demand (e.g.,

CPU requirement). When considering multiple dimensions

(CPU, memory, network), approaches such as Dominant Re-

source Fairness (DRF) [10] help in fairly allocating resources,

considering max-min allocations for each resource. We seek

to adapt this approach in the serverless context. DRF per-

forms its resource allocation based on the aggregated re-

source capacity in the cluster, but does not take into account

resource fragmentation on nodes. The consequence is poten-

tial inefficiencies in using the resources available in the Edge

cloud. Our placement engine seeks to improve the allocation

beyond that achieved by DRF, balancing fairness, efficiency,

and resource fragmentation.

Measurement of Serverless Platforms: There have been
a number of measurement-driven efforts to understand the

behavior of serverless platforms. Measurements on com-

mercial serverless cloud platforms (AWS Lambda, Microsoft

Azure and Google Cloud) [18, 28] while others [17, 29] show

that it is important to consider throughput, scalability, mem-

ory footprint, etc. There have also been a number of measure-

ment-based evaluations of open-source serverless frame-

works such as Knative, OpenFaaS, OpenWhisk, Kubeless,

etc. [16, 20, 21], which provide some preliminary under-

standing of the performance characteristics and sensitivity

to configuration parameters of these platforms. We use these

efforts to enhance our understanding of these open-source

serverless frameworks, as we develop Mu.

3 System Design

Fig. 1 shows the architecture of Mu, which builds on the Kna-

tive, Kubernetes, and Istio tools. Mu extends the Istio Ingress

Gateway to efficiently collect metrics that are “piggybacked”

onto response headers by the Queue Proxy containers (§3.1)

for timely feedback of critical information without resorting

to periodic sampling. Mu’s Autoscaler predicts upcoming load

changes (§3.2) and scales function replicas up or down to

meet the service level agreement (SLA) of users (§3.3). All

incoming traffic goes through the Ingress Gateway’s Load

Balancer, which factors in the gathered metrics to evenly

load the function containers (§3.4). The Placement Engine

must pack pods to suitable nodes to reduce resource fragmen-

tation, improve the efficiency and ensure fairness between

functions when Edge resources are constrained (§3.5).

Table 1: Summary of main notations

Notations Definitions

𝑇𝑐 time interval of capacity estimation

𝐶𝑑 response count during 𝑇𝑐 in pod

𝐶𝑑𝑐 count of responses whose confidence

flag is 1 during 𝑇𝑐 in pod

𝐶𝑟 ongoing request count in user container

𝐶𝑐𝑢𝑟 current request count in cluster

𝐶𝑛𝑒𝑤 new request count during scaling epoch

𝐶𝑝𝑟𝑜 processed request count during scaling epoch

𝑄𝑢𝑒𝑢𝑒 queue size of the queue proxy

𝐼𝑅𝑐𝑢𝑟 current incoming rate

𝐼𝑅𝑝𝑟𝑒 predicted incoming rate

𝑁𝑐𝑢𝑟 current pod number

𝑁𝑑𝑒𝑠 desired pod number to meet SLO

𝑅𝑑 departure rate of pod

𝑅𝑠𝑑 Smoothed departure rate of pod

𝐶𝑎𝑝𝑒 estimated pod capacity

𝑅𝑎𝑡𝑖𝑜𝑐 confidence ratio

𝑅𝑇𝑎𝑣𝑔 average responding time

𝑄𝑇𝑎𝑣𝑔 average queuing time

𝐸𝑇𝑎𝑣𝑔 average execution time

3.1 Metrics
A serverless platform relies on metrics such as the load on

function containers to guide resource management. Some of

these metrics, such as the load on each User Container are

maintained by Knative in the Queue Proxy containers. The

queue proxy is a sidecar container allocated for each user

function container that buffers incoming requests. The queue

proxy maintains a queue to throttle requests to the function

container based on the container concurrency configuration

parameter set by the administrator. To avoid high overhead

when the number of function pods is large, Knative’s Au-

toscaler periodically samples a subset of queue proxies to

gather metrics, but we have found that this can lead to having

an inaccurate view of important data.

To accurately monitor the status of function pods with

low overhead, Mu extends the queue proxy at each pod to col-

lect metrics about function processing and ‘piggyback’ those

metrics in the response header to the ingress gateway to

provide timely information. This allows the ingress gateway

to maintain detailed per-pod statistics to guide its load bal-

ancing algorithm, while exporting aggregated information

to the Autoscaler via its Internal Metric Server. The queue

proxy gathers the following metrics:

Queue Length: The queue length metric shows the in-

stantaneous size of the queue in the queue proxy, measured

when the request is removed from the head of the queue

to be executed. The load balancer uses this metric to deter-

mine the relative load across a group of worker pods and

the Autoscaler uses aggregated queue length information to

170

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Mittal et. al.

Deployment

Metric
Server

Ingress Gateway

Placement
Engine

Create/
Recycle

Placement
Decision

Distribute
Requests

Load
Balancer

Kubelet
Auto-scaler

Metric/Control Flow
Data Flow

Custom Component
Istio Component

Kubernetes Component

User Component

API
Server

Function Pods

Clients

Resource
Metrics

Resource Metrics,
New Pod Demands

Internal Metric
Server Metrics

Responses with
Piggybacked Metrics

Auto-scaling
Decision

Knative ComponentQueue Proxy
Container

User
Container

Figure 1: Mu Overview.

modulate the scaling decision and avoid potential Service

Level Objective (SLO) misses.

Average Execution Time: The queue proxy measures

the execution time of each request, which is the time between

forwarding the request to the user container and receiving

its response back. The average execution time 𝐸𝑇𝑎𝑣𝑔 is the

Exponentially Weighted Moving Average (EWMA) of the

measured execution time. The function pod piggybacks this

metric to the ingress gateway, which passes on the average

execution time across all function pods to the Autoscaler.

DepartureRate andConfidenceRatio: Ideally, the queue
proxy would report the pod’s maximum service capacity, but

this metric can be difficult to estimate, particularly if the in-

coming rate is low. Instead, Mu has the queue proxy report its
departure rate as well as a “confidence ratio” that indicates

how fully loaded the server is. The calculation of these met-

rics is detailed in Algorithm 1. The queue proxy maintains a

confidence flag for each request, revealing whether the user

container is fully utilized (i.e., continuously has a queue of

waiting requests) when processing this request. The default

value of the confidence flag is 0. When a request arrives at

the queue proxy, it sets the confidence flag to 1 if the queue

size is larger than 0 (line 1-6). During the processing of a

particular request in the user container, the queue proxy

resets the confidence flag of that request to 0 if the queue

size drops to 0 (line 12-16), implying that the user container

is underloaded (departure rate is smaller than capacity).

Rather than choosing a fixed time interval for measuring

estimated capacity, we adapt it based on the time scale of

the request execution. The time interval for updating the

estimated capacity is 𝑇𝑐 . If the average execution time 𝐸𝑇𝑎𝑣𝑔
increases, the time interval 𝑇𝑐 increases accordingly (line

17-19), so as to collect sufficient responses in 𝑇𝑐 for a more

accurate departure rate estimate. When the average execu-

tion time 𝐸𝑇𝑎𝑣𝑔 reduces, the time interval𝑇𝑐 drops (line 20-22),

so as to update the departure rate quickly. When there are

no requests in time interval 𝑇𝑐 , then 𝑇𝑐 will be reduced by

half to react quickly for future requests, until 𝑇𝑐 is back to

its default value of 1 sec. (line 24-28).

Every time interval 𝑇𝑐 , the queue proxy computes the

departure rate and confidence ratio. The departure rate is

then smoothed using EWMA (line 30-35). The confidence

ratio is the ratio of the requests whose confidence flag is 1

to the total requests in the time interval 𝑇𝑐 (line 36-40). If

the user container is fully utilized in 𝑇𝑐 , the confidence ratio

is 1 and the actual capacity will be close to the departure

rate. Both of these values are propagated to the load balancer,

enabling it to make an estimate of a pod’s maximum service

capacity, i.e., 𝐶𝑎𝑝𝑒 and share with the Autoscaler.

3.2 Incoming Rate Prediction
Serverless platforms based on the Kubernetes architecture

can take ~2-5 seconds to instantiate a pod. To avoid queuing

and potentially missing the SLO for a request while waiting

for a pod to startup, it is desirable to predict the incoming

rate of requests. Thus, the Autoscaler can make proactive

pod provisioning decisions. However, the prediction mecha-

nism must be efficient and robust, since there may be a wide

range of functions being deployed. Moreover, with many

workloads having vastly different request rates, model pa-

rameters cannot be hand-tuned.

In Mu, we propose a lightweight regression-based incre-

mental learning mechanism (Algorithm 2). The model uses

linear regression to train and predict the workload in an

online manner, eliminating the need to profile each function

in advance. For incremental or online training of the models,

we use Stochastic Gradient Descent. We propose a best-fit

search prediction algorithm, where we simultaneously run

many lightweight instances of the regression model with

different hyperparameters, and dynamically select the model

with minimum running error. Two hyperparameters are cru-

cial in determining model performance:

Input window size: Each model takes a window of the pre-

vious n incoming rates as input and predicts the incoming

rate for the next epoch. Different values of n are required to

171

Mu: An Efficient, Fair and Responsive Serverless Framework for Resource-Constrained Edge Clouds SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Algorithm 1 Capacity Estimation

1: On receiving a request in queue proxy:
2: if 𝑄𝑢𝑒𝑢𝑒 > 0 then
3: 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 .𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 = 1 ⊲ 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 .𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 is the

confidence flag of this request

4: else
5: 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 .𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 = 0

6: On arrival of a response from user container:
7: 𝐶𝑑 = 𝐶𝑑 + 1 ⊲ update the response count

8: if 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 .𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 == 1 then
9: 𝐶𝑑𝑐 = 𝐶𝑑𝑐 + 1
10: if 𝑄𝑢𝑒𝑢𝑒 == 0 then
11: for every request in the user container do
12: 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 .𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 = 0

13: if 10 · 𝐸𝑇𝑎𝑣𝑔 > 2 ·𝑇𝑐 then ⊲ increase the time interval

14: 𝑇𝑐 =𝑚𝑎𝑥{10 · 𝐸𝑇𝑎𝑣𝑔, 10}
15: if 10 · 𝐸𝑇𝑎𝑣𝑔 < 𝑇𝑐/2 then ⊲ decrease the time interval

16: 𝑇𝑐 =𝑚𝑖𝑛{10 · 𝐸𝑇𝑎𝑣𝑔, 0.1}

17: At every time interval 𝑇𝑐 :
18: if 𝐶𝑑 == 0 and 𝐶𝑟 == 0 then ⊲ the pod is idle

19: 𝑅𝑠𝑑 = 0, 𝐸𝑇𝑎𝑣𝑔 = 0

20: if 𝑇𝑐 > 1 then
21: 𝑇𝑐 =𝑚𝑎𝑥{𝑇𝑐/2, 1} ⊲ decrease the time interval

22: else
23: 𝑅𝑑 = 𝐶𝑑/𝑇𝑐 ⊲ the departure rate of this time interval

24: if 𝑅𝑠𝑑 == 0 then ⊲ update smoothed departure rate

25: 𝑅𝑠𝑑 = 𝑅𝑑
26: else
27: 𝑅𝑠𝑑 = 𝛼 · 𝑅𝑠𝑑 + (1 − 𝛼) · 𝑅𝑑 ⊲ EWMA

28: if 𝐶𝑑 > 0 then ⊲ update the confidence ratio

29: 𝑅𝑎𝑡𝑖𝑜𝑐 = 𝐶𝑑𝑐/𝐶𝑑
30: else
31: 𝑅𝑎𝑡𝑖𝑜𝑐 = 0

32: 𝐶𝑑 = 0, 𝐶𝑑𝑐 = 0 ⊲ reset the counters

capture the invocation pattern of heterogeneous workloads.

Learning rate: In the gradient descent approach, the learn-

ing rate determines the magnitude by which the weights of

the model are changed on each update. Again, this can be

different for different workloads.

To select the best window size and learning rate, the pre-

dictor runs different instances of the regression model while

varying their values. We maintain an EWMA of the error

for each model. On each invocation, Mu chooses the model

with the least running error for recent predictions. But, the

best model may still not provide a good prediction due to

random incoming rates with a new pattern not seen in the

recent past. For this, we include a naive predictor that as-

sumes the predicted value of the incoming rate is the same

as the current value. If its error is less than the best-selected

model, we use the current incoming rate.

Algorithm 2 Prediction logic

1: On every autoscaling algorithm invocation:
2: 𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙 = 𝑛𝑎𝑖𝑣𝑒

3: 𝑚𝑖𝑛_𝑒𝑟𝑟𝑜𝑟𝑟𝑢𝑛𝑛𝑖𝑛𝑔 = 𝑛𝑎𝑖𝑣𝑒.𝑒𝑟𝑟𝑜𝑟𝑟𝑢𝑛𝑛𝑖𝑛𝑔
4: for m in models do
5: 𝑚.𝑒𝑟𝑟𝑜𝑟𝑟𝑢𝑛𝑛𝑖𝑛𝑔 = 𝛼 ∗ 𝑚.𝑒𝑟𝑟𝑜𝑟𝑟𝑢𝑛𝑛𝑖𝑛𝑔 + (1 − 𝛼) ∗
(𝐼𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑅𝑎𝑡𝑒 −𝑚.𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐼𝑅)

6: UpdateWeights(m.weights)

7: if 𝑚.𝑒𝑟𝑟𝑜𝑟𝑟𝑢𝑛𝑛𝑖𝑛𝑔 < 𝑚𝑖𝑛_𝑒𝑟𝑟𝑜𝑟𝑟𝑢𝑛𝑛𝑖𝑛𝑔 then
8: 𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙 =𝑚

9: 𝑚𝑖𝑛_𝑒𝑟𝑟𝑜𝑟𝑟𝑢𝑛𝑛𝑖𝑛𝑔 =𝑚.𝑒𝑟𝑟𝑜𝑟𝑟𝑢𝑛𝑛𝑖𝑛𝑔

10: return 𝑏𝑒𝑠𝑡_𝑚𝑜𝑑𝑒𝑙 .𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝐼𝑅

Predictor Accuracy: For validating the predictor we se-
lect all the workloads with more than 100K invocations for

the first day, from the Azure Functions dataset [26]. The

traces in the Azure dataset contained invocations per minute

for each function. We select the top 555 workloads with

at least 100K total invocations, and predict the number of

invocations for the next minute. We took 50 prediction mod-

els with a combination of 5 different window sizes (10, 50,

100, 500, 1000) and 10 different learning rates (10
−1

to 10
−10

)

for each function. Based on experiments across these func-

tions, the value of EWMA coefficient was selected as 0.99

as it yielded better results than other values ranging from

0.5 to 0.999. For each workload, the average absolute error

was calculated for the predictor and for the naive approach

(which takes the current requests per minute as the predic-

tion, like the default Knative which includes no prediction

logic). The %age reduction in error for all the workloads is

shown in Fig. 2. For 64 out of 555 workloads, the predictor

performs slightly worse (-1.53% average degradation) than

the naive approach, due to the random invocation pattern.

Similarly, for 22 workloads, we see no improvement. For

the remaining 469 workloads, the incoming rate is predicted

fairly accurately, with the absolute error reduced 19.01% on

average. The predictor executes ∼15.6K instructions for each

prediction, taking ∼100 𝜇 secs. For 200 workload streams,

the predictor takes ∼20 ms every 2 seconds, an acceptably

small 1% overhead.

0 100 200 300 400 500
workloads

−25
0

25
50
75

100

%
ag

e
re

du
ct

io
n

Figure 2: %age Reduction in absolute error for work-
loads with > 100K invocations

172

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Mittal et. al.

3.3 Autoscaler
A critical aspect in managing overall resources is to have

an efficient autoscaling component to allocate and deallo-

cate resources for functions on demand in a timely manner.

Knative provides two Autoscalers: RPS, where the scaling
is based on incoming request rate; and Concurrency, where
the Autoscaler decides based on the number of simultaneous

requests being processed. The existing Knative approaches

are agnostic of the SLO for the function and require hand-

tuning parameters for best results. Further, we have found

that resources need to be provisioned as a function of both

the incoming request rate and the queue length to ensure

that SLOs are met by factoring in the average request execu-

tion time. In addition to these, the Autoscaler we design for

Mu seeks to proactively scale up or down function pods based

on the upcoming arrival rate of requests, to accommodate

the delay involved in instantiating a function pod.

SLO Aware Autoscaling: The Mu Autoscaler computes

the desired pod number for a function based on the request

arrival rate, the execution time, and the current queue of

requests, while ensuring we meet the SLO. This number i.e.,
𝑁𝑑𝑒𝑠 , is determined every epoch. We choose an epoch size of

2 seconds, matching the typical period in between Knative

autoscaling decisions. We first calculate the number of pods

based on the incoming rate:

𝑁𝐼𝑅 = ⌈𝑀𝑎𝑥{𝐼𝑅𝐶𝑢𝑟 , 𝐼𝑅𝑃𝑟𝑒𝑑 }/𝐶𝑎𝑝𝑒⌉ (1)

The maximum of 𝐼𝑅𝐶𝑢𝑟 and 𝐼𝑅𝑃𝑟𝑒𝑑 ensures that we provision

pods according to the predicted arrival rate only if its value is

higher than the current incoming rate. Otherwise, we use the

actual incoming rate to ensure that the system is not under-

provisioned. We then factor the existing queue of requests

built up in the queue proxy, ensuring they are served within

the SLO as:

𝑁𝑄𝑢𝑒𝑢𝑒 = ⌈𝑄𝑇𝑎𝑣𝑔/(𝐶𝑎𝑝𝑒 ∗ (𝑆𝐿𝑂 − 𝐸𝑇𝑎𝑣𝑔))⌉ (2)

Combining Eq. 1 and 2, the desired pod count is:

𝑁𝑑𝑒𝑠 = 𝑁𝐼𝑅 + 𝑁𝑄𝑢𝑒𝑢𝑒 (3)

To ensure system stability, we set limits on the number of

pods provisioned in a single epoch, so as to minimize over-

correction during transients. For 𝑁𝑑𝑒𝑠 > 𝑁𝑐𝑢𝑟 , we provision

at most twice the current 𝑁𝑐𝑢𝑟 :

𝑁𝑑𝑒𝑠 = 𝑀𝑖𝑛{𝑁𝑑𝑒𝑠 , 2 ∗ 𝑁𝑐𝑢𝑟 } (4)

When 𝑁𝑑𝑒𝑠 < 𝑁𝑐𝑢𝑟 , i.e., for scaling down the number of

pods, we introduce a hold-down time (i.e., Grace flag) for
the autoscaler to scale down the requested pods to smooth

the scaling operation. The Grace flag specifies the number

of 2-second epochs for which 𝑁𝑑𝑒𝑠 should be less than 𝑁𝑐𝑢𝑟

before Mu implements the downscaling. When the Knative

autoscaler, i.e., Concurrency or RPS, operates normally (in its

“stable mode”), there is no smoothing. But, under overload

(load is twice what the currently active pods can handle), the

Knative autoscaler switches to “panic mode”, under which

the downscaling is not performed. The panic mode is meant

to avoid rapid changes by the autoscaler under overload, and

lasts for 6 seconds by default, as long as a request for a larger

number of pods is made during this 6 second interval.

Table 2: Autoscaling system configuration
Parameter/ System Configuration Values

Number of nodes 2 (1 Master, 1 Worker)

CPU

Two Intel E5-2660 v3

10-core CPUs at 2.60 GHz

Memory 160GB ECC Memory

Container Concurrency 10

Average Function Execution Time 100 milliseconds

Target SLO (for Mu Autoscaler) 1 second

Autoscaler Evaluation: We compare Mu’s custom au-

toscaling algorithm against the Concurrency and RPS based

algorithms provided by Knative. For all the autoscaling ex-

periments, we use Azure function traces [26]. To select a

representative workload, we pick the function with the me-

dian value of the %age reduction in absolute prediction error

from Figure 2 ensuring that we do not select workloads favor-

able to our predictor. The median value also helps to obtain

an estimate of the performance improvement to be expected

on an average by using our predictor. To emphasize system

dynamics, we scaled the workload to a second time scale

(i.e., each minute from the original trace lasts 1 second). The

average request rate is 339 requests per second. The system

configuration and parameter values used for the experiment

are given in Table 2. We set the container concurrency value

to 10 (10 requests can be simultaneously handled by a single

container), and the average request execution time is 100

ms. Each function pod’s average service capacity is then 100

responses/sec. The maximum size of the queue at the Queue

Proxy is set to 100.

Table 3 shows the results comparing Knative’s existing

autoscaling algorithms with that of Mu with and without

the use of the arrival rate predictor. The number of requests

completed within the SLO of 1 sec for Mu’s Autoscaler is bet-
ter than Concurrency-based autoscaling but slightly worse

than RPS (2%). However, Mu’s autoscaling uses fewer pods on
average and dramatically fewer maximum number of pods

(less than 10 compared to 30 to 70 with Knative’s default au-

toscaling algorithms). The maximum number of pods to be

provisioned is a concern because that eventually will limit a

Table 3: Comparison of autoscaling algorithms
RPS Concurrency Mu w/o

predictor Mu

Total requests 488,602 488,602 488,602 488,602

Request completed
within SLO 475,884 453,867 463,367 466,885

Average pod count 5.77 6.83 4.01 4.18

Max pod count 30 73 8 9

173

Mu: An Efficient, Fair and Responsive Serverless Framework for Resource-Constrained Edge Clouds SoCC ’21, November 1–4, 2021, Seattle, WA, USA

530 535 540 545 550 555 560 565 570
epoch

4

6

8

10

Po
d

co
un

t RPS Concurrency Ideal

(a) RPS vs. Concurrency vs. Ideal

530 535 540 545 550 555 560 565 570
epoch

4

6

8

10

Po
d

co
un

t Mu w/o predictor Mu w/ predictor Ideal

(b) Mu w/ predictor vs. Mu w/o predictor vs. Ideal

Figure 3: Pod count, different Autoscaling algorithms

cloud site’s overall utility. We see further improvement in the

number of requests completed within SLO Mu when helped

by the predictor, as it helps in anticipating the arrival rate,

enabling the Autoscaler to provision the pods in advance, to

meet the incoming load. Nonetheless, the maximum number

of pods still remains less than 10.

In Fig. 3, we show the actual pod count for the different

autoscaling algorithms and compare it against the ideal pod

count, observed for a representative period of the experi-

ment (from epoch 530 to 570, each epoch is 2-seconds). We

calculate the ideal pod count based on the known incoming

and serving rates. For RPS and Concurrency-based scaling,

the system is always over-provisioned. The pod count for

Mu’s Autoscaler remains close to the ideal pod count, and is

helped by the predictor to anticipate the incoming requests

and provision pods earlier when there is an increase in the

request rate, thereby reducing the SLO misses. The predictor

helps Mu provision additional pods, but still is significantly

lower than the overprovisioning of the default Autoscalers.

3.4 Load Balancer
The load balancer resides in the ingress gateway and routes

client requests across all pods to maximize utilization and en-

sure that no pod is overloaded. Load balancing requests in an

Edge cloud serverless platform faces two primary challenges:

resource heterogeneity and system dynamics. Unfortunately,

the load balancers employed in existing serverless platforms

fail to accurately account for either of these issues.

The first issue arises because an Edge cloud may be com-

posed of a variety of hardware types, especially in “fog com-

puting" environments where the cloud is composed of a mix

of infrastructure nodes and resources pooled from mobile

devices [8, 24]. Even if an Edge cloud is located in amore stan-

dardized environment such as a 5G base station, it is increas-

ingly common for resource-constrained environments to use

heterogeneity (e.g., ARM’s big.LITTLE architecture which

combines high and low performance CPU cores on a sin-

gle chip or accelerators like programmable NICs, GPUs, etc)

to provide flexible trade-offs between performance, power

utilization, and overall cost. Further, even if all hardware

is identical, the dense consolidation of an Edge cloud may

result in interference and resource contention which may

cause some pods to execute functions more slowly than oth-

ers, especially in the face of diverse workloads (IoT, ML,

CDN, cellular functions, etc.). This heterogeneity can impact

Knative’s “Least Connection” load balancer, which attempts

to track the queue length at each backend pod by compar-

ing the number of requests sent versus responses received.

When deciding which pod to select for a new request, it only

considers the queue length estimate, which we show can

lead to poor decisions when backends have varying service

capacities. Further, if the serverless platform runs multiple

load balancer gateways, this queue length estimate may be

inaccurate as it ignores queueing caused by other gateways.

The dynamic nature of Mu’s autoscaling capabilities fur-

ther complicates load balancing. The load balancer must be

aware of newly added pods, and it should direct the appropri-

ate amount of load to them – avoiding “herding” problems

where too much load is shifted to a newly started pod, but

also avoiding underloading it. In effect, a newly started pod

represents a different type of heterogeneity since it will be-

gin with an empty queue of requests, while other nodes may

already have nearly full queues if scaling occurred due to ap-

proaching overload. The Knative Least Connection load bal-

ancer employs a power of two random choices algorithm [19]

which means that it randomly selects two backends and then

picks whichever has the smaller number of active connec-

tions. While this provides greater scalability as the cluster

size increases, it comes at the expense of lower accuracy,

which may not be the appropriate trade-off for a resource-

constrained Edge cloud. As a result, a new pod in Knative

has at most a 2/𝑁 chance of being selected in a cluster of

𝑁 servers. Our evaluation shows that this limits Knative’s

ability to quickly shift load to new pods, leaving the system

in an overloaded state despite idle resources.

3.4.1 Load Balancer Algorithm A smart load balancer should

recognize both differences in service capacity and pod queue

length to appropriately route requests across new and ex-

isting pods. In Mu, we implement a new load balancer that

leverages the metrics gathered by function pods to make

better decisions based on up-to-date information.

Estimating Pod Metrics: Most prior work on load balancing

assumes access to service rate information for each backend;

174

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Mittal et. al.

(a) 99%ile latency & mean latency (b) Response time CDF with 40 RPS (c) Response time CDF with 80 RPS

Figure 4: Mu’s load balancer vs. Least Connection load balancer: Mu reduces tail latency across all load levels.

further, such rates are assumed to be static. In a serverless en-

vironment, the large number of different functions makes it

impractical to assume all functions have been previously pro-

filed to determine service rates, particularly for an edge cloud

with hardware heterogeneity. A backend’s capacity may also

change over time, particularly in a densely packed Edge en-

vironment where resource contention can occur. Thus Mu
must be able to accurately and dynamically determine both

the service capacity of each pod, and its current load level.

As described previously, Mu’s Queue Proxies piggyback key

metrics as part of each response header, providing the load

balancer up-to-date information about each pod. However,

further processing is required in order to produce accurate

estimates of pod capacity and load.

When a function is deployed for the very first time, Mu
has no information about its execution cost. However, once

requests start to be processed, it quickly builds a model of

each pod’s service capacity as follows. On each response

from backend pod 𝑖 , we compare the piggybacked confi-

dence, 𝑝𝑖𝑔𝑅𝑎𝑡𝑖𝑜𝑖 , and departure rate, 𝑝𝑖𝑔𝑅𝑖 , against previ-

ously saved values for the pod, 𝑠𝑎𝑣𝑒𝑑𝑅𝑎𝑡𝑖𝑜𝑖 and 𝑠𝑎𝑣𝑒𝑑𝑅𝑖 . If

𝑝𝑖𝑔𝑅𝑎𝑡𝑖𝑜𝑖 ≥ 𝑠𝑎𝑣𝑒𝑑𝑅𝑎𝑡𝑖𝑜𝑖 or 𝑝𝑖𝑔𝑅𝑖 ≥ 𝑠𝑎𝑣𝑒𝑑𝑅𝑖 , then we update

pod 𝑖’s capacity estimate 𝐶𝑎𝑝𝑖 = 𝑝𝑖𝑔𝑅/𝑝𝑖𝑔𝑅𝑎𝑡𝑖𝑜 and update

the saved confidence ratio and departure rate values to be

equal to the piggybacked values. If the prior conditions are

not met, then the saved values are not updated. A newly

started pod with no data uses the maximum values seen by

another pod of the same function type as a default.

The intuition behind this algorithm is that if the Confi-

dence Ratio reported by the queue proxy is low, that indicates

that the backend has had a low or empty queue, and thus it

is safe to aggressively predict that the real service capacity is

much higher than the departure rate. When the Confidence

becomes 1, it means that the backend is consistently seeing

a queue, which means its departure rate will be close to the

actual maximum service capacity of the pod (otherwise the

queue would have drained). Tracking a saved Confidence Ra-

tio and Departure Rate ensures that the Load Balancer does

not lose information over time, assuming that the service

capacity drops simply because the arrival rate falls.

To track the load on each pod, the load balancer can use

the piggybacked queue length values. Using the piggybacked

Figure 5: Mu takes advantage of a newly added pod
more quickly: shifting load, improving both mean
(horizontal lines) and variance in response time more

value instead of a local counter at the load balancer ensures

that the metrics are accurate even if there are multiple load

balancers in the cluster. These metrics are aggregated and

exposed to the Autoscaler, which uses them to determine

when to scale up as described in the prior section. Further, we

use the service capacity information to guide downscaling,

causing the system to prefer to shut down slower pods when

they are no longer needed. This not only helps ensure the

downscaling won’t cause unexpected overload, but also nat-

urally makes the algorithm pick a pod with fewer requests

in its queue, allowing its resources to be freed sooner.

Selecting Pods: Using the above information about pod

capacity and queue length, the Mu Load Balancer calculates

the estimated response time, 𝑅𝑖 , that a new request would

see on each pod 𝑖 in the cluster:

𝑅𝑖 =
𝑄𝑖 + 1
𝐶𝑎𝑝𝑖

(5)

where 𝐶𝑎𝑝𝑖 is the estimated service capacity and 𝑄𝑖 is the

estimated queue length–we add one to account for the cost

of processing the new request. The load balancer then se-

lects the pod with the minimum 𝑅𝑖 . This algorithm attempts

to minimize the response times seen by all requests, and

will naturally forward more requests to pods with higher

service capacities or lower queue lengths (such as a newly

started pod). It should be noted that since some functions

may support concurrent processing of requests, this may be

an inaccurate estimate of the request’s actual response time;

nevertheless, it represents both the service capacity and load

on a function well, so we find it gives a good signal about

what pod will be the best choice for the request.

175

Mu: An Efficient, Fair and Responsive Serverless Framework for Resource-Constrained Edge Clouds SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Load Balancer Performance: To demonstrate the impor-

tance of using both queue length and service capacity to

guide decision making, we run an experiment with two “fast”

and two “slow” pods. To get a sense of what a reasonable

level of heterogeneity is, we compared the service time of

a CPU bound prime number calculating function on a high-

performance AMD EPYC Rome 64 core Processor (3 GHz)

and an Intel Xeon CPU X5650 running in a low power mode

at 1.6GHz. The AMD system is roughly two times faster than

the Intel one depending on the prime function parameter.

Thus, in our experiments we set faster pods to be twice as

fast as the slower ones; we use a function with a service

time of about 100ms on a fast pod. We measure the response

time when adjusting the client send rate. Fig. 4(a) shows how

the mean and 99%ile latency change with a rising workload.

We observe that Mu can support a higher request rate with

lower response times, and that it particularly improves tail

latency due to better accounting for the relative speeds of

the different pods: at 80RPS, the 99%ile decreases from 618ms

to 230ms, leading to a much narrower response time distri-

bution as shown in Fig. 4(b) and 4(c). To understand why Mu
provides such a benefit, we examine the queue lengths of

different pod types in each algorithm. Despite attempting

to pick servers that have fewer active connections, Least

Connection still tends to cause a higher queue build up on

slow pods compared to fast pods. In contrast, Mu correctly

recognizes it can safely queue more load on the faster pods,

while still maintaining a low overall execution time.

Load Balancer Agility: We next demonstrate Mu’s ability to
more quickly adapt by leveraging its detailed pod informa-

tion. We consider a scenario where four pods (two fast, two

slow) are on the verge of overload. Fig. 5 shows the response

time for requests immediately before and after a new fast pod

begins (marked by the vertical line and color change). While

the pod addition does help reduce the mean response time

of Least Connection, it still shows a wide spread of response

times due to the poor balancing of the load. In contrast, Mu
provides a much tighter distribution of response times, and

shows a clear downward trend as new requests are directed

away from the heavily loaded pods and towards the new

pod. Note that in order to cause Mu to hit the same overload

point as Least Connection in this experiment we need to

send it a higher workload (80RPS vs 65RPS), so Mu is not

only handling a larger volume of requests, but it is able to do

so while significantly reducing both tail and mean latency

(horizontal lines).

3.5 Placement Engine
When functions have to be instantiated, the typical approach

in Kubernetes and Knative is to use a bin-packing algorithm

to schedule (place) the function pods on available servers. We

develop an efficient and fair algorithm for a placement engine

to pack function pods to suitable nodes while reducing re-

source fragmentation. Since an edge cloud may have limited

resources, it is important to fairly allocate resources among

contending functions, while considering their demand for

resources across multiple dimensions (CPU, memory, etc).
We adapt the notion of dominant resource fairness (DRF) to

arrive at a fair placement strategy [10].

3.5.1 Optimization Model and Metrics We first model the

function placement task as an Integer Linear Program (ILP)

formulation. Let 𝑁 be a set of nodes; Let 𝐽 be a set of re-

sources; each resource 𝑗 ∈ 𝐽 has its capacity 𝑐𝑛,𝑗 on node

𝑛. Let 𝐹 be a set of functions, each function 𝑓 ∈ 𝐹 has its

desired pod count 𝑝 𝑓 . Each function’s pods demand 𝑑𝑓 , 𝑗 ≥ 0

on resource 𝑗 , and𝑤 𝑓 ,𝑛 denotes the number of function 𝑓 ’s

pods placed at node 𝑛. We define two objective functions for

two alternate models, ILP0 and ILP1, both of which have

the same constraints, as below:

ILP0:max

∑
𝑛∈𝑁

∑
𝑓 ∈𝐹 𝑤 𝑓 ,𝑛

ILP1:max

∑
𝑛∈𝑁

∑
𝑓 ∈𝐹

1

𝐷𝑓
×∑𝑤𝑓 ,𝑛

𝑖=1
1

𝑖

s. t.

∑
𝑓 ∈𝐹 𝑑𝑓 , 𝑗 ·𝑤 𝑓 ,𝑛 ≤ 𝑐𝑛,𝑗 ,∀𝑛 ∈ 𝑁,∀𝑗 ∈ 𝐽

0 ≤ ∑
𝑛∈𝑁 𝑤 𝑓 ,𝑛 ≤ 𝑝 𝑓 ,∀𝑛 ∈ 𝑁,∀𝑓 ∈ 𝐹

(6)

The goal of ILP0 is to maximize the total number of pods

and thus the overall resource efficiency among a given set

of nodes, while ILP1 maximizes both the resource efficiency

and fairness across different functions. ILP1 assigns a weight
𝑤 𝑓 ,𝑛 by decreasing the reward for placing a function’s as the

number of pods increases for that function. Thus, the re-

ward for placing more pods for a single function is less than

the reward of evenly placing the pods of several different

functions. In addition, to ensure the function with a small re-

source demand will not be starved by functions with a large

resource demand, ILP1 weights the 𝑤 𝑓 ,𝑛 by the dominant

resource share of function 𝑓 (𝐷 𝑓 = max𝑗 ∈𝐽
𝑑𝑓 ,𝑗×𝑝𝑓∑
𝑛∈𝑁 𝑐𝑛,𝑗

). Placing

a large function pod receives a smaller reward, which guar-

antees fairness between large functions and small functions.

Both ILP0 and ILP1 are constrained by the node’s resource

capacity and each function’s requested pod count.

Quantifying Fairness & Efficiency: We quantify fairness of

the allocation of resources to each function by the placement

engine based on the principle of Max-Min fairness [7]. With

Figure 6: An example on integrating the degree ofCPU
unfairness over 30 intervals

176

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Mittal et. al.

Algorithm 3 Placement Algorithm

1: while 𝐹 ≠ ∅ do
2: 𝐷 𝑓 ←− {max𝑗 ∈𝐽 (𝑅𝑓 , 𝑗/

∑
𝑛∈𝑁 𝑐𝑛,𝑗) |∀𝑓 ∈ 𝐹 }

3: Pick the function 𝑓 ′ ∈ 𝐹 with minimum 𝐷 𝑓

4: 𝑆𝑛 ←− {𝑠𝑐𝑜𝑟𝑒𝑛,𝑓 ′ |∀𝑛 ∈ 𝑁,𝑑𝑓 ′, 𝑗 fits in 𝑎𝑛,𝑗 }
5: if ∀𝑛 ∈ 𝑁, 𝑆𝑛 = 𝜙 then
6: 𝐹 ←− 𝐹 − 𝑓 ′

7: else
8: Place 𝑓 ′ to node 𝑘 ←− max𝑛∈𝑁 𝑆𝑛
9: 𝑅𝑓 ′, 𝑗←− 𝑅𝑓 ′, 𝑗 + 𝑑𝑓 ′, 𝑗 ; 𝑎𝑘,𝑗←− 𝑎𝑘,𝑗 − 𝑑𝑓 ′, 𝑗 ; 𝑝 𝑓 ′←− 𝑝 𝑓 ′ − 1
10: if 𝑝 𝑓 ′ = 0 then
11: 𝐹 ←− 𝐹 − 𝑓 ′

varying demand from contending functions, it is important to

evaluate fairness also as a function of time. Similarly, we eval-

uate the efficiency of the placement engine, by comparing

its allocation with an allocation that maximizes the resource

efficiency, as specified by the greedy algorithm ILP0 above.
We evaluate the degree of unfairness 𝑈 𝑗 and the inefficiency

𝐼 𝑗 of a placement algorithm on resource 𝑗 integrated over a

period of time, 𝑇 , in Eq 7.

𝑈 𝑗 =

∑
𝑓 ∈𝐹𝑡

∑
𝑡 ∈𝑇 |𝑅𝑓 , 𝑗,𝑡 −𝑀𝑓 , 𝑗,𝑡 |∑

𝑡 ∈𝑇 |𝐹𝑡 |

𝐼 𝑗 =

∑
𝑡 ∈𝑇 |

∑
𝑓 ∈𝐹𝑡 𝑑𝑓 , 𝑗,𝑡 −

∑
𝑓 ∈𝐹𝑡 𝑅𝑓 , 𝑗,𝑡 |∑

𝑡 ∈𝑇 |𝐹𝑡 |

(7)

where𝑀𝑓 , 𝑗,𝑡 indicates the max-min allocation on resource 𝑗

to function 𝑓 at time instant 𝑡 , and 𝑅𝑓 , 𝑗,𝑡 is the the amount

of resource 𝑗 allocated to each function 𝑓 by the placement

algorithm at time 𝑡 . Ideally, a placement algorithm could

directly meet the max-min allocation, but in practice this is

not possible because it only considers a single resource and

assumes resources can be allocated without any fragmenta-

tion. Fig. 6 shows an example on quantifying the degree of

unfairness, by comparing the allocations to two functions

over time with regard to their ideal max-min allocation. We

integrate the absolute difference between 𝑅𝑓 , 𝑗,𝑡 and 𝑀𝑓 , 𝑗,𝑡

over a period of time 𝑇 , (
∑

𝑡 ∈𝑇 |𝑅𝑓 , 𝑗,𝑡 −𝑀𝑓 , 𝑗,𝑡 |). The degree
of unfairness can then be calculated by averaging the cumu-

lative area of all the functions over the entire time period

𝑇 . Since the max-min allocation achieves the optimal fair-

ness for each resource [7], a larger𝑈 𝑗 indicates more unfair

allocation on resource 𝑗 . We do the same for the degree of

inefficiency, integrated over time to get the overall degree of

inefficiency, 𝐼 𝑗 , of the placement algorithm compared to the

placement with the greedy algorithm ILP0.

3.5.2 Heuristic algorithms As the ILP model is NP-Hard, we

also design a heuristic algorithm to solve the pod placement.

We break the placement algorithm into two modules: (i)
the pod selection module considering Dominant Resource

Fairness (DRF), to decide which function pod is selected to be

placed next; (ii) the node selection, which chooses the node

cpu memory
0

2

4

6

8

Un
fa

irn
es

s (
CP

U)

0

10

20

30

40

50

Un
fa

irn
es

s (
M

em
)

(a) Unfairness

cpu memory
0
2
4
6
8

10
12
14

Av
er

ag
e

un
m

et
 C

PU

0

25

50

75

100

125

150

Av
er

ag
e

un
m

et
 M

em

(b) Inefficiency

Figure 7: Fairness and efficiency comparison

to place the function pod at, based on a scoring function, so

as to reduce the resource fragmentation, while minimizing

unfairness. For a given scaling decision from Autoscaler, the

placement engine invokes these twomodules iteratively until

function set 𝐹 is empty (Algorithm 3).

Module 1: Pod selection.We calculate dominant share (𝐷 𝑓)

of every function and pick the function 𝑓 ′ with the minimum

𝐷 𝑓 . If multiple functions have the same minimum 𝐷 𝑓 , the

function with the minimum sum of the resource demands

(i.e.,𝑀𝐼𝑁 (∑𝑗 ∈𝐽 𝑑𝑓 , 𝑗)) is selected.
Module 2: Node selection. We evaluate a number of exist-

ing scoring functions for selecting the node, e.g. Alignment [12],
WorstFit [22], and BestFit [22].

Alignment uses 𝑠𝑐𝑜𝑟𝑒𝑛,𝑓 =
∑

𝑗 ∈𝐽
𝑎𝑛,𝑗

𝑐𝑛,𝑗
×𝑑𝑓 ,𝑗

𝑐𝑛,𝑗
to score the node𝑛

for the selected function 𝑓 , 𝑎𝑛,𝑗 is the remaining resources on

node 𝑛. Alignment picks the node with the highest amount

of remaining resources. WorstFit chooses the node with

the highest value of:

∑
𝑗 ∈𝐽

𝑎𝑛,𝑗−𝑑𝑓 ,𝑗

𝑐𝑛,𝑗
. Thus, WorstFit seeks to

pack the function into the node with the least amount of

resources available that can accommodate this function’s de-

mand. BestFit chooses the node that has the highest value

of:

∑
𝑗 ∈𝐽

𝑎𝑛,𝑗−𝑑𝑓 ,𝑗

𝑎𝑛,𝑗
. BestFit seeks to pack the function into

the node with the most amount of resources left after ac-

commodating this function’s demand. All nodes 𝑛 ∈ 𝑁 that

have enough resources to fit the selected function 𝑓 ′, are
then scored using a scoring function. If 𝑓 ′ has no node with

a valid score, it is removed from 𝐹 . Else, the node with maxi-

mum score is picked for 𝑓 ′. After placing 𝑓 ′, we update the
resource allocation and capacity. If the total pods demanded

for function 𝑓 ′ is met, it is removed from the set 𝐹 .

3.5.3 Placement engine evaluation We simulate and compare

our different DRF-based heuristic approaches (WorstFit,
BestFit, and Alignment), the default Kubernetes schedul-
ing heuristic (Default), and the two ILP models, by setting

up 500 randomly generated placement test cases. We con-

sider a simulated cluster of 40 nodes and 300 functions. A

workload generator is used to randomize functions and nodes

in each test. In the configuration used, 90% of the functions

177

Mu: An Efficient, Fair and Responsive Serverless Framework for Resource-Constrained Edge Clouds SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Table 4: Experiment configuration
Parameter/Specification Values

Invocation Range W-1 41-230 rps

W-2 69-182 rps

Average invocations W-1 154 rps

W-2 146 rps

Container Concurrency 4

Grace Flag (Mu only) 16

Execution time 500ms

Maximum pod capacity 48

CPU and Mem. per pod 7 cores, 30GB

Target RPS 8

CC 40

SLO 5 seconds

0 5k 10k 15k 20k
response time (ms)

0

20

40

60

80

100

%
 o

f r
eq

ue
st

s

Concurrency
RPS
Mu

0 5k 10k 15k 20k
response time (ms)

0

20

40

60

80

100

%
 o

f r
eq

ue
st

s

Concurrency
RPS
Mu

Figure 8: Response time CDF for 3 frameworks for Workload 1 (left);
Workload 2 (right; only partial CDF for Concurrency)

require less than 400MB memory while 10% of functions re-

quire 500∼2000MB memory. The CPU demand of functions

ranges from 1∼8 cores. Each function requests 1∼16 pods.
To ensure demand exceeds the resources in the cluster, the

total CPU capacity of the cluster is set to 80% of the total

CPU demand and the total memory capacity is set to 60% of

the total memory demand. We use Gurobi [14] to solve the

ILP models, adjusting the accuracy and termination criterion

to keep computation time manageable.

Fig. 7(a) shows the fairness (as defined in Eq. 7) of the

allocation decisions for the CPU and memory. The 3 DRF

heuristic-based algorithms (which are all close to each other)

achieve 2× better fairness than the ILP0, which does not

consider fairness in its optimization. ILP1 considers the fair-

ness in the formulation, and achieves better fairness than the

ILP0. However, with the accuracy and termination criteria

we used with the solver, ILP1 achieves better efficiency but

poorer fairness than the DRF heuristic algorithms. The worst

algorithm in terms of fairness is the Kubernetes Default ap-
proach. Comparing CPU efficiency (Fig. 7(b)), the DRF heuris-

tics have an unmet CPU demand of ∼10 cores on average,

which is slightly worse than the ILP models. The Kubernetes

Default is also better, with an average unmet CPU demand

of ∼8 cores. All the alternatives have similar memory effi-

ciency, resulting in an average of ∼ 130𝑀𝐵 unmet memory

demand. Thus, the DRF heuristic approaches strike a good

balance of having very good fairness, and are close to the

best case efficiency of the Kubernetes Default algorithm

(which however ignores fairness).

In Mu’s deployment, the placement engine is executed once

every epoch (2 seconds, driven by the autoscaler). In terms of

computation time, the Default Kubernetes approach takes

∼200 ms. The DRF heuristics are also fast, taking ∼500 ms to

determine the placement of 300 functions among 40 nodes.

However, the ILP models, depending on the accuracy desired,

take much more time (> 2 seconds on a server-class machine)

and are impractical for real-time placement use. The DRF

approaches, on the other hand, are feasible for deployment.

4 Overall Mu Implementation & Evaluation
We now integrate all the components of Mu, and evaluate

it for a few large scale workloads. We compare Mu with the

Knative default approaches.

Implementation Details and Testbed Setup: Mu’s implementa-

tion extends multiple components in the Knative ecosystem,

including the Knative Queue-Proxy, Istio Gateway, Knative

Autoscaler, and Kubernetes Scheduler (placement engine).

We base our code on Kubernetes v1.17.0, Istio’s Envoy Proxy

v1.16.0, and Knative v0.13.0. Our extensions comprise ∼1,000
lines of code added for the Autoscaler, ∼500 lines for the load
balancer and metrics server, ∼200 lines for the queue-proxy,
and ∼800 lines for the placement engine. We evaluate the

serverless platforms on the Cloudlab testbed [23] consisting

of one master and ten worker nodes, each of them equipped

with Two Intel E5-2660 v3 10-core CPUs at 2.60 GHz (40

hyperthreads per host) and 160 GB ECC memory running

Ubuntu 18.04.1 LTS. We do not add any extra pod hetero-

geneity in this experiment other than the natural fluctuations

found on CloudLab.

4.1 Overall Mu Performance
To comprehensively evaluate Mu, we use the workloads re-
ceived by functions in the Azure dataset [26]. We select 2

workloads with variable invocation patterns from the top

10 workloads sorted by maximum number of invocations

for the first day in the dataset. We scale down these work-

loads by dividing the number of invocations by 100 for the

experiment, treating each minute of the original trace as one

second to add dynamics. The scaled down workload and the

configuration of the serverless environment are in Table. 4.

With the combined Autoscaler, Load Balancer, and Placement

Engine, Mu achieves better overall performance for requests

to serverless functions, even if the system is subject to a sig-

nificantly heavy load, and more fairly allocates the limited

edge cloud resources among the competing functions.

Latency and Fairness: The CDF of the response times for

each workload and approach is shown in Fig. 8. Mu has good

control over the response times and limits the tail latency that

178

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Mittal et. al.

Table 5: Comparing Mu with the standard Knative build
Average response 99% response # 503 errors Requests served Requested Pods Active Pods

time (ms) time (ms) /total requests within SLO Max Avg. Max Avg.

Mu Workload-1 952 3805 6779 / 221026 213437 (96.5%) 33 20.5 24 20.0

Workload-2 1020 4073 5211 / 209905 203622 (97.0%) 26 19.4 24 18.9

RPS Workload-1 880 11757 0 / 221026 213089 (96.4%) 38 29.3 26 25.1

Workload-2 2605 8808 0 / 209905 158511 (75.5%) 32 27.9 22 20.9

Concurrency Workload-1 588 2141 0 / 221026 220144 (99.6%) 141 41.4 40 24.5

Workload-2 7765 49526 0 / 209905 142774 (68.0%) 136 62.3 24 21.2

Figure 9: Time series of Response Time for Mu, RPS, and Concurrency (Top: Workload 1; Bottom: Workload 2)

exceeds the specified SLO of 5 seconds for both workloads.

For Workload 2, Mu provides a substantially tighter response

time distribution than RPS or Concurrency. As shown in

Table 5, the 99% response time for the twoworkloads are both

below the 5 second SLO for Mu. Examining the response time

distribution (Fig. 8), and the average and 99%iles (Table 5)

and the time series of the response times (Fig. 9(a), 9(b)), we

see that Mu maintains fairness between the workloads for

the entire length of the experiment.

In contrast, the standard Knative approaches result in

much larger response time tails, and both unfairly treat one

of the workloads. ForWorkload 1, both RPS and Concurrency

(CC) achieve a lower average response time (except RPS has a

relatively large number of requests experiencing high delays

at the start of the workload, resulting in its 99%ile being

higher). However, for Workload 2, both RPS and CC behave

quite poorly at different periods of theworkload execution, as

seen from the time series (Fig. 9(b)), with 25-32% of requests

violating the SLO.Workload 2 sees an unacceptably large 99%

latency with CC as seen in Table 5. Since Mu is conservative

in its pod allocation for both Workload 1 and 2, it sees a

slightly higher average response time for Workload 1 than

RPS and CC, but better for Workload 2 than RPS and CC.

The 99%ile for Mu is clearly better than the two alternatives.

Pod Allocations: We use the term “requested pod count”

for all alternatives. It comes directly from the autoscalers for

RPS/CC. For Mu, the placement engine uses the pod count

determined by the autoscaler and accounts for fairness and

overall system capacity to determine Mu’s “requested pod

count”. On average RPS and Concurrency use 18% and 17%

more pods than Mu. Mu tends to request fewer pods since

its goal is proactively provision enough pods to meet SLOs,

with the predictor helping to anticipate the future workload.

In Fig. 10(a), Mu is aware of both the workloads and fairly

determines the requested pod count. RPS and concurrency

on the other hand (Fig. 10(b) and 10(c)), run an autoscaler for

each workload, without coordination between decisions for

each workload. Thus, the requested pod counts may not only

be unattainable, but can also be unfair. This is most evident

for concurrency based autoscaling in Fig. 10(c) where the

pod requests for individual workloads exceed 100, whereas

the system capacity only allows provisioning 48 pods totally.

179

Mu: An Efficient, Fair and Responsive Serverless Framework for Resource-Constrained Edge Clouds SoCC ’21, November 1–4, 2021, Seattle, WA, USA

0 250 500 750 1000 1250
Timestamp (seconds)

0

10

20

30

of

 p
od

s

W1 Requested
W2 Requested
W1 Active
W2 Active

0 250 500 750 1000 1250
Timestamp (seconds)

0

25

50

75

100

125

of

 p
od

s

W1 Requested
W2 Requested
W1 Active
W2 Active

Figure 10: Time series of Pod counts for Mu (left), RPS (middle), and Concurrency (right)

SLO Performance: Overall, Mu provides a significant in-

crease in the total number of requests served within the SLO

(96.8%) compared to the RPS scaling policy (86.2%) and Con-

currency scaling policy (84.2%), as shown in Table 5. Mu uses

SLO-aware admission control and returns 503 errors [1] for

requests which it will not be able to serve within the SLO

based on current queue lengths. This avoids the build up of

a large queue with the arrival of a burst of requests. RPS and

concurrency do not factor SLO into account, so when bursts

occur, requests are buffered in the activator, and the queue-

ing results in a large number of SLO misses. Throughout

the experiment, Mu has relatively uniform response times,

increasing only during bursts, when the system is under-

provisioned (e.g., first 200 seconds of the experiment when

we have to scale up from zero to a large number (∼ 20) of

pods). On the other hand, Concurrency and RPS see per-

sistent queuing for long periods (> 400 seconds) and the

response time grows substantially more than the desired

target SLO of 5 seconds. There is also significant unfairness

for Workload 1 vs. Workload 2 as seen in Fig. 9(a), 9(b).

As shown in Fig. 9, Mu returns 503 errors (indicated by

red dots). Our view is that by having these failures (and po-

tentially having those requests be retransmitted) impacts a

relatively small number (<5%) of requests, which is better

than building up a large queue resulting in very long laten-

cies for a large number of requests (25-30%, as seen for RPS

and Concurrency) and likely to more seriously impact user

Quality of Experience (QoE). These 503 errors are well corre-

lated with the occurrence of bursts when resources are not

yet provisioned by Kubernetes. This is mitigated somewhat

by the predictor and proactive autoscaling. In fact, most of

the 503 errors occur when the burst arrives at the beginning

when the predictor has not yet learned the characteristics of

the workload. Additionally, even though Mu’s autoscaler re-
quests allocation of a larger number of pods, Kubernetes can

take a large amount of time to provision these pods, starting

from an initial zero-scale system (as seen in the difference

between pods being requested and active in the first 200

seconds for Mu (see Fig. 10(a)).

5 Conclusion
Existing platforms such as Knative suffer from their ad-hoc

design that leverages existing frameworks such as Kuber-

netes without substantial customization for serverless use

cases (e.g. reuse the Kubernetes scheduling algorithm and

metrics subsystems). Further, today’s serverless platforms

are designed for large scale cloud environments with abun-

dant resources, without meeting the strict requirements of

agility and efficiency needed for Edge cloud environments.

Our work on Mu demonstrates the importance of carefully

integrating the key resource management components that

comprise a serverless platform: autoscaling, load balancing,

and placement engine. Without the careful communication

of key metrics and the predictive capabilities that Mu pro-

vides, a serverless platform lacks the information needed

to make timely and accurate decisions. By accounting for

SLOs, execution cost, and up-to-date load metrics across

both the load balancer and Autoscaler, Mu can improve per-

formance while making judicious use of scarce resources.

When resources become overcommitted, Mu’s placement en-

gine ensures greedy functions cannot unfairly starve others.

We have demonstrated that by coordinating these compo-

nents and customizing them for Edge environments, Mu 1)

uses resources more efficiently, reducing the average number

of pods required by more than 15% for a set of real Azure

workloads; 2) provides a tighter response time distribution

with a 2× or more reduction in tail latency; and 3) improves

fairness. Our evaluation results show that Mu uses SLOs and

the placement engine to guide resource allocation, leading to

more consistent performance and fairness across functions,

while avoiding long tails for the response time.

Acknowledgements: We sincerely thank the US NSF for

their generous support through grants CNS-1763929, CRI-

1823270, CNS-1815690, CPS-1837382, and SRC Task 3046.001.

We also thank our shepherd, Prof. Ramesh Govindan, and

the anonymous reviewers for their valuable suggestions and

comments.We thankVivek Jain for his extraordinary support

and contribution throughout the project.

180

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Mittal et. al.

References

[1] 2021. 503 Service Unavailable. https://developer.mozilla.org/en-US/

docs/Web/HTTP/Status/503. [online].

[2] 2021. Borg: The Predecessor to Kubernetes. https://kubernetes.io/

blog/2015/04/borg-predecessor-to-kubernetes/ [online].

[3] 2021. Horizontal Pod Autoscaler (HPA). https://knative.dev/

docs/serving/autoscaling/autoscaling-concepts/#horizontal-pod-

autoscaler-hpa [online].

[4] 2021. Knative. https://knative.dev/ [online].

[5] 2021. Knative Pod Autoscaler (KPA). https://knative.dev/docs/serving/

autoscaling/autoscaling-concepts/#knative-pod-autoscaler-kpa [on-

line].

[6] 2021. Kubernetes. https://kubernetes.io/ [online].

[7] Dimitri P Bertsekas, Robert G Gallager, and Pierre Humblet. 1992. Data
networks. Vol. 2. Prentice-Hall International New Jersey.

[8] Flavio Bonomi, Rodolfo A. Milito, Jiang Zhu, and Sateesh Adde-

palli. 2012. Fog computing and its role in the internet of things.

In Proceedings of the first edition of the MCC workshop on Mobile
cloud computing, MCC@SIGCOMM 2012, Helsinki, Finland, August 17,
2012, Mario Gerla and Dijiang Huang (Eds.). ACM, 13–16. https:

//doi.org/10.1145/2342509.2342513

[9] Anshul Gandhi, Xi Zhang, and Naman Mittal. 2015. HALO:

Heterogeneity-Aware Load Balancing. In 2015 IEEE 23rd Interna-
tional Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems. 242–251. https://doi.org/10.1109/

MASCOTS.2015.14 ISSN: 1526-7539.

[10] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott

Shenker, and Ion Stoica. 2011. Dominant Resource Fairness: Fair

Allocation of Multiple Resource Types.. In NSDI. 24–24.
[11] Katja Gilly, Carlos Juiz, and Ramon Puigjaner. 2011. An up-to-date

survey in web load balancing. World Wide Web 14, 2 (March 2011),

105–131. https://doi.org/10.1007/s11280-010-0101-5

[12] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram

Rao, and Aditya Akella. 2014. Multi-resource packing for cluster

schedulers. ACM SIGCOMM Computer Communication Review 44, 4

(2014), 455–466.

[13] Varun Gupta, Mor Harchol Balter, Karl Sigman, and Ward Whitt.

2007. Analysis of join-the-shortest-queue routing for web server

farms. Performance Evaluation 64, 9 (Oct. 2007), 1062–1081. https:

//doi.org/10.1016/j.peva.2007.06.012

[14] LLC Gurobi Optimization. 2021. Gurobi Optimizer Reference Manual.

http://www.gurobi.com [online].

[15] Pawan Kumar and Rakesh Kumar. 2019. Issues and Challenges of Load

Balancing Techniques in Cloud Computing: A Survey. Comput. Surveys
51, 6 (Feb. 2019), 120:1–120:35. https://doi.org/10.1145/3281010

[16] Junfeng Li, Sameer G Kulkarni, K. K. Ramakrishnan, and Dan Li. 2019.

Understanding open source serverless platforms: Design considera-

tions and performance. In Proceedings of the 5th International Workshop
on Serverless Computing. 37–42.

[17] Wes Lloyd and et al. 2018. Serverless computing: An investigation of

factors influencing microservice performance. In 2018 IEEE Interna-
tional Conference on Cloud Engineering (IC2E). IEEE, 159–169.

[18] Garrett McGrath and Paul R Brenner. 2017. Serverless computing: De-

sign, implementation, and performance. In 2017 IEEE 37th International
Conference on Distributed Computing Systems Workshops (ICDCSW).
IEEE, 405–410.

[19] M. Mitzenmacher. 2001. The power of two choices in randomized load

balancing. IEEE Transactions on Parallel and Distributed Systems 12, 10
(Oct. 2001), 1094–1104. https://doi.org/10.1109/71.963420 Conference

Name: IEEE Transactions on Parallel and Distributed Systems.

[20] S. K. Mohanty, G. Premsankar, and M. di Francesco. 2018. An Evalua-

tion of Open Source Serverless Computing Frameworks. In 2018 IEEE
International Conference on Cloud Computing Technology and Science
(CloudCom). 115–120.

[21] Andrei Palade, Aqeel Kazmi, and Siobhán Clarke. 2019. An Evaluation

of Open Source Serverless Computing Frameworks Support at the

Edge. In 2019 IEEE World Congress on Services (SERVICES), Vol. 2642.
IEEE, 206–211.

[22] Christos-Alexandros Psomas and Jarett Schwartz. 2013. Beyond beyond

dominant resource fairness: Indivisible resource allocation in clusters.

Tech Report Berkeley, Tech. Rep. (2013).
[23] Robert Ricci, Eric Eide, and CloudLab Team. 2014. Introducing Cloud-

Lab: Scientific infrastructure for advancing cloud architectures and

applications. The magazine of USENIX & SAGE 39, 6 (2014), 36–38.

[24] Mahadev Satyanarayanan, Zhuo Chen, Kiryong Ha, Wenlu Hu,

Wolfgang Richter, and Padmanabhan Pillai. 2014. Cloudlets: at

the Leading Edge of Mobile-Cloud Convergence. In Proceedings of
the 6th International Conference on Mobile Computing, Applications
and Services. ICST, Austin, United States. https://doi.org/10.4108/

icst.mobicase.2014.257757

[25] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao

Carreira, Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez,

Ion Stoica, and David A. Patterson. 2021. What serverless computing

is and should become: the next phase of cloud computing. Commun.
ACM 64, 5 (April 2021), 76–84. https://doi.org/10.1145/3406011

[26] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry,

Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark

Russinovich, and Ricardo Bianchini. 2020. Serverless in the wild:

Characterizing and optimizing the serverless workload at a large

cloud provider. In 2020 {USENIX} Annual Technical Conference
({USENIX}{ATC} 20). 205–218.

[27] Tarik Taleb, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny

Dutta, and Dario Sabella. 2017. On Multi-Access Edge Computing: A

Survey of the Emerging 5G Network Edge Cloud Architecture and

Orchestration. IEEE Communications Surveys Tutorials 19, 3 (2017),

1657–1681. https://doi.org/10.1109/COMST.2017.2705720

[28] Liang Wang and et al. 2018. Peeking behind the curtains of serverless

platforms. In 2018 USENIX Annual Technical Conference (USENIX ATC
18). 133–146.

[29] Cui Yan. 2017. How does language, memory and package size

affect cold starts of AWS Lambda? https://read.acloud.guru/does-

coding-language-memory-or-package-size-affect-cold-starts-of-

aws-lambda-a15e26d12c76. [online].

181

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/503
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/503
https://kubernetes.io/blog/2015/04/borg-predecessor-to-kubernetes/
https://kubernetes.io/blog/2015/04/borg-predecessor-to-kubernetes/
https://knative.dev/docs/serving/autoscaling/autoscaling-concepts/#horizontal-pod-autoscaler-hpa
https://knative.dev/docs/serving/autoscaling/autoscaling-concepts/#horizontal-pod-autoscaler-hpa
https://knative.dev/docs/serving/autoscaling/autoscaling-concepts/#horizontal-pod-autoscaler-hpa
https://knative.dev/
https://knative.dev/docs/serving/autoscaling/autoscaling-concepts/#knative-pod-autoscaler-kpa
https://knative.dev/docs/serving/autoscaling/autoscaling-concepts/#knative-pod-autoscaler-kpa
https://kubernetes.io/
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1109/MASCOTS.2015.14
https://doi.org/10.1109/MASCOTS.2015.14
https://doi.org/10.1007/s11280-010-0101-5
https://doi.org/10.1016/j.peva.2007.06.012
https://doi.org/10.1016/j.peva.2007.06.012
http://www.gurobi.com
https://doi.org/10.1145/3281010
https://doi.org/10.1109/71.963420
https://doi.org/10.4108/icst.mobicase.2014.257757
https://doi.org/10.4108/icst.mobicase.2014.257757
https://doi.org/10.1145/3406011
https://doi.org/10.1109/COMST.2017.2705720
https://read.acloud.guru/does-coding-language-memory-or-package-size-affect-cold-starts-of-aws-lambda-a15e26d12c76
https://read.acloud.guru/does-coding-language-memory-or-package-size-affect-cold-starts-of-aws-lambda-a15e26d12c76
https://read.acloud.guru/does-coding-language-memory-or-package-size-affect-cold-starts-of-aws-lambda-a15e26d12c76

	Abstract
	1 Introduction
	2 Background and Related Work
	3 System Design
	3.1 Metrics
	3.2 Incoming Rate Prediction
	3.3 Autoscaler
	3.4 Load Balancer
	3.5 Placement Engine

	4 Overall Mu Implementation & Evaluation
	4.1 Overall Mu Performance

	5 Conclusion
	References

