
Envisioning a Unified Programmable Dataplane to
Monitor Slow Attacks

Cuidi Wei
George Washington University

Shaoyu Tu
University of California Riverside

Toru Hasegawa
Shimane University

Yuki Koizumi
Osaka University

K. K. Ramakrishnan
University of California Riverside

Junji Takemasa
Osaka University

Timothy Wood
George Washington University

Abstract—Recent work shows that programmable switches
can effectively detect attack traffic, such as denial-of-service
attacks in the midst of high-volume network traffic. However,
these techniques primarily rely on sampling or sketch-based
data structures, which can only be used to approximate the
characteristics of dominant flows in the network. As a result, such
techniques are unable to effectively detect low-volume attacks
that stealthily add only a few packets to the network.

Our work explores how the combination of programmable
switches, Smart network interface cards, and hosts can enable
fine-grained analysis of every flow in a network, even those
with only a small number of packets. We focus on analyzing
packets at the start of each flow, as those packets often can help
indicate whether a flow is benign or suspicious. We propose a
unified architecture that spans the full programmable dataplane
to take advantage of the strengths of each type of device. We
are developing new filter data structures to efficiently track
flows on the switch, dataplane-based communication protocols
to quickly coordinate between devices, and caching approaches
on the SmartNIC that help minimize the traffic load reaching
the host. Our preliminary prototype can handle the full pipe
bandwidth of 1.4 Tbps of traffic entering the Tofino switch,
forward only 20 Gbps to the SmartNIC, and minimize the traffic
load to 5 Gbps reaching the host due to our efficient flow filter,
packet batching, and SmartNIC-based cache.

Index Terms—Traffic monitor, slow network attacks, pro-
grammable switches, smartNIC

I. INTRODUCTION

New technologies such as P4 switches, SmartNICs, and

virtualized middle boxes are adding tremendous power to

the network data plane. However, appropriately harnessing

these heterogeneous processing capabilities remains a major

challenge, as their capabilities vary widely. Only by accounting

for the strengths and weaknesses of each of these platforms,

will we be able to find the proverbial ‘needle-in-the-haystack’

when monitoring large traffic volumes.

Programmable switches are increasingly being suggested for

monitoring, using queries processed at Terabit link rates [1],

yet their small memory (10s of megabytes) limits their ability

to perform stateful processing. SmartNICs allow packet pro-

cessing at fairly high-speed, i.e., 40–100 Gbps [2], although

not quite at a Terabit scale. However SmartNICs support more

general computations and can contain a few gigabytes of mem-

ory [3], making them beneficial to complement the coarse-

grained query processing of programmable switches. Finally,

end-hosts provide the largest memory capacity for storing

longterm state, and the most flexible programming model, but

can quickly become a bottleneck if performing expensive anal-

ysis on large numbers of packets. In this project we envision

how to combine the scalability of programmable switches,

the reasonably high-speed packet processing of SmartNICs,

and the flexible processing capabilities and greatest storage

capacity of host-based processing.

This combination of approaches is critical to support the

large variety of attacks that target modern communication

networks. There is a need to detect not only relatively crude

volumetric attacks that overwhelm the network through sus-

tained network activity (e.g., denial of service), but also more

sophisticated attacks that probe for system weaknesses (e.g.

SSH Brute forcing, port scan [4]), or attacks that exploit

protocol dynamics (e.g. low-rate TCP attacks [5]).

Prior work has demonstrated how sketch data structures

can be used to approximate flow-level statistics [6]. However,

these approaches are only capable of monitoring the heaviest

flows in the network. The data structures they use, such

as NitroSketch [7], are focused on detecting heavy hitters,

operating within the limits of the available amount of memory.

However, their ability to detect low volume attacks that send

only a few packets or slow attacks that send packets at low

speed is more limited.

Our work seeks to harness heterogeneous data plane devices

in order to build a network monitoring system that can

efficiently and accurately observe the first set of packets for

all flows in the network. Similar to previous work, we focus

on out-of-band monitoring, i.e., monitoring that is performed

on a mirrored stream of traffic which does not incur addi-

tional latency or impose bandwidth constraints on the real

traffic. Nevertheless, our monitoring system must be carefully

designed to ensure it can keep up with traffic rates of 100s of

gigabits or Terabits per second.

This paper presents our vision for unifying programmable

switches, network cards, and end hosts to acheive the goal of

precise tracking of slow and low volume attacks. In Section II

we demonstrate the need for fine-grained traffic monitoring

through analysis of the MAWI traces [8], where we find that

nearly 80% of incoming flows appear to be suspicious port979-8-3503-5171-2/24/$31.00 ©2024 IEEE

scan attacks. While such a large number of flows sounds like

it should be easy to detect, in practice they are often missed,

as each flow is only 1-2 packets (representing less than 12%

of the total packet volume). Next in Section III we discuss

how to unify switches, SmartNICs, and hosts via a novel filter

data structure on the switch, caching on the SmartNIC, and

dataplane-based coordination protocols across all devices. This

architecture reduces the load that must be sent to the host by up

to 70X, while effectively detecting suspicious traffic at terrabit

scale, as we show in Section IV.

II. BACKGROUND AND MOTIVATION

A. Low and Slow Attack Types

While detecting (and preventing) crude volumetric attacks

has traditionally been the focus of previous work, there are

a number of low and slow attacks that involves sending a

minimal, gradually paced stream of traffic aimed at depleting

application or server resources. Different from large-scale

DDoS attacks which can be detected quickly, low and slow

attacks can hide themselves for long periods of time, all the

while denying or slowing services to real users, making the

detection and mitigation work more challenging.

Port Scan Attacks send a small number of SYN packets

at low speed to explore targets for open ports that may

indicate a weakness. Similarly, a SYN Flood tries to exhaust a

target’s kernel socket resources by exploiting the TCP 3-way

handshake, while only requiring a small number of packets to

be sent from the attacker.

HTTP POST/PUSH/PUT/GET Floods are layer 7 attacks that

target URL endpoints and are known to consume significant

resources, causing slowdowns or crashes in the victim server.

These attacks all use standard URL requests, thus making

it hard to differentiate them from valid traffic. Furthermore,

their traffic volume is often under detection thresholds making

detection even more challenging.

Slowloris and RUDY (also known as R U Dead Yet?) are

attacks designed to hold open connections by continuously

send partial HTTP GET or POST requests at a slow rate to

keep sockets from closing. Compared to the HTTP attacks

above, these attacks are purposefully slow, which both lowers

the resources needed by the attacker and makes the attacks

more difficult to distinguish due to the very small number of

requests needed to have a large effect on the victim.

B. Slow Attacks in the Wild

To understand the current prevalence of these attacks on the

Internet, we studied the flow characteristics of several publicly

available traces. The first set we analyzed is the packet traces

from the MAWI Working Group Traffic archive [8]. These

traces are collected from the WIDE backbone in Japan.

MAWI: We present the analysis of a 64-minute trace, extracted

from a 48-hour trace captured on April 13, 2022, in Table I.

Of the nearly 90 million TCP flows identified in the 64-

minute trace, we observed over 96% of the flows were no

more than 2 packets (short flows). In fact, over 95% of the

TCP flows were a single packet (1-packet flows). We also

TABLE I: 64-minute MAWI trace from April 13, 2022.

Flow type Number Percentage (%)

TCP flows 89,266,373 100
Short flows 85,997,003 96.3
1-packet flows 85,201,286 95.4
Half-open scans 458,124 0.513
Malicious flows 71,223,022 79.8

TABLE II: Performance and resources for Tofino v1 Switch,

Netronome Agilio LX NIC, and Intel i9 3.7 GHz host.

Throughput Memory Programmability

Switch (per pipe) 1.6 Tbps 9 MB P4
NIC (per port) 40 Gbps 4 GB P4/MicroC
Host (per core) 10-24 Gbps 25 GB Full

looked at those flows that had exactly two packets sent in the

two directions - approximately 465K flows. When these flows

have a SYN packet in one direction and either a SYN/ACK

or a RST/ACK packet (essentially flows that do not complete

the 3-way handshake), we classify them as half-open scans,

indicating possibly an attacker generating a port scan attack.

Just over 458K flows were such half-open scans, initiated by

about 5,900 source IPs, which we then classify as malicious

sources. We then determine the number of malicious flows

(no more than 2 packets) initiated by these malicious sources

is over 71 million flows (or about 79.8% of all the TCP

flows). This clearly indicates a very high (and persistent)

prevalence of very short flows (less than 3 packets), indicative

of malicious traffic. Furthermore, the number of flows per

malicious source host is heavy tailed, whereas the number of

flows per legitimate host is quite small. There are very few

legitimate sources that generate more than a handful of flows.

We find similar traffic indicative of port scans in all the MAWI

trace files during the last few years, with a generally rising

trend (up to 83% malicious flows in a recent 2024 trace).

C. Heterogeneous Data Plane Devices

Table II characterizes the resources and performance of the

heterogeneous data plane devices available in our testbed.

Switches: The Tofino v1 switch typically has two or four

pipes, producing a total throughput up to 6.5 Tbps, with

guaranteed line rate performance due to the strict pipeline

based programming model. However, even the four pipe switch

contains only 22MB of memory for the register blocks needed

in stateful processing, and not all of it can be used by dataplane

programs.

Although programmable switches have been used for traffic

monitoring [1], [9], their limited SRAM memory for the

program makes it difficult to retain state across packets and to

hold the exact-match tables [9]. In fact, previous work [10],

have also shown that due to resource limitations, standalone

programmable switch solutions will suffer under high traffic,

and defensive mechanisms can still be easily exploited. It often

requires the monitor to focus on subsets of the traffic and

use dynamic iterative refinement of queries processed at the

programmable switch [1] to hone-in on the correct subset of

traffic that contains the attack traffic. Limited access to the

registers, limits on the number of match-action pipeline stages,

2

and memory limits place constraints on the amount of com-

putation performed in a typical programmable P4Switch [11].

NICs: The Netronome Agilio LX SmartNIC that we use has

two 40 Gbps ports and a total of 8GB of DRAM. While

this card provides greater programmability than the switch,

its bandwidth capacity is much lower.

Programmable SmartNICs have also been used for packet

traffic monitoring [2], but they have their own limitations.

Although they may outperform host-based solutions [2], ef-

fective traffic monitoring at Terabit speeds will require a

relatively large number of such SmartNICs. Despite these limi-

tations, SmartNICs can still nicely complement programmable

switches with their larger memory. For example, DeepMatch

[12] enables architecture-aware style programming of Smart-

NICs to support large volumes of traffic, and iPipe [13] can

help reduce CPU loads on host. These designs complement

our system to ensure flows with small number of packets do

not get drowned out by heavy hitter flows.

Hosts: Network Function Virtualization software has devel-

oped ways for hosts to very efficiently process packets at high

rates and low latency, often by bypassing the kernel and using

shared memory to eliminate copying [14]. However, each core

on our host running high performance DPDK software still can

only handle about 10 Gbps when processing small packets

(about 24 Gbps with large packets). Thus, processing terabit

scale traffic would require a large number of hosts and most

of their cores.

III. HIGH SPEED MONITORING DESIGN

The primary challenge in integrating heterogeneous data

plane devices is to mitigate the difference in forwarding rates,

processing capabilities, and memory capacity between devices.

Our core approach to resolving the challenge is threefold:

Firstly, we propose switch-based filtering to significantly de-

crease the total number of packets transferred to the Smart-

NICs and hosts by identifying the benign flows that represent

the majority of traffic in terms of packets. Our efficient switch-

based data structure design leverages the massive bandwidth

capabilities of the switch without its limited memory becoming

a bottleneck.

Secondly, we are exploring how stateful dataplane process-

ing on SmartNICs can alleviate the packet processing burden

on hosts. Since SmartNICs have significantly more memory

than switches, they can perform stateful aggregation and

lightweight analysis before sending smaller amounts of traffic

to hosts for more detailed analysis or long term preservation.

Thirdly, we seek to efficiently unify communication between

these devices via data plane based protocols that allow for

cross-device table updates that avoid the slow control plane

paths. Control plane operations on the switch in particular can

be dramatically slower than the dataplane, preventing multi-

ple devices from working together for the dynamic stateful

security analysis needed to catch low and slow attacks.

Figure 1 depicts the packet processing paths in our design.

Packets first go through a flow filter on the switch, which

efficiently determines if they belong to a flow marked as

benign. If so, then no further analysis is needed, and the packet

can simply be sent out of the switch. If the packet belongs to

a flow not stored in the filter, it must be analyzed by the

host to determine if it is suspicious. Instead of immediately

sending the packet to the SmartNIC/host, its metadata is stored

in a flow log retained on the switch. The logs are periodically

flushed out to the SmartNIC in a batch to reduce packet

transmission rates with negligible added delay.

The SmartNIC maintains a cache of currently active flows,

but it does not have sufficient memory to track all flows over

a long period of time. When the SmartNIC faces memory

pressure, flows are evicted to the host, which has significantly

more memory available to store flow state. Once the SmartNIC

or host have gathered sufficient information about a flow to

determine that it is benign, it sends an update message to the

switch to add a new entry to the flow filter. This architecture

limits the volume of traffic that must be processed at each

layer of the hierarchy.

A. Switch-Based Filtering

Rather than attempting to use the switch for stateful process-

ing, we instead view its role as a filter and traffic aggregator

that will help reduce the load on and optimize communication

to the host. To achieve this, our design requires a way to

white list flows which have been deemed benign by the

host or SmartNIC monitors. However, there may be millions

of such flows in a Terabit scale network, and they will

change over time. The (relatively) tiny amount of memory

available on a switch cannot effectively track such a large list.

Sketch-based filters such as Bloom Filters [15] and Cuckoo

Filters [16] offer a good trade-off by significantly reducing

the memory usage for set membership tests, with only a small

sacrifice in accuracy. However, there are several challenges

with implementing these filters on a P4 programmable switch,

such as avoiding recirculations and maintaining low error rates.

While a standard Bloom Filter or Cuckoo Filter cannot

have false negatives, this is no longer true once necessary

adaptations are made for them to work in our environment

– we would need the Bloom Filter to periodically replace old

flows, and the Cuckoo Filter only avoids false negatives if

it can grow in size once it is full, which is not feasible in

a space constrained switch. In our scenario, false negatives

correspond to flows being identified as needing analysis on the

host even though we’ve previously marked them as safe. While

these filters are often used in contexts where false positives

are more acceptable than false negatives, that is not true in

our monitoring context: a false positive potentially allows an

attacker to bypass our system, while a false negative only

leads to additional processing. Thus we propose a design that

appropriatelys balances the risk caused by false positives and

the overhead caused by false negatives.

Switch/Host Coordination and Flow Log Batching: In

our design, the switch must coordinate with the host for

two reasons. First, the switch must push information about

incoming packets towards the host for analysis. Then, the

host must add new entries to the switch’s flow filter when it

3

Deep Packet /
Flow analysis

Stateful Packet
Analysis

Flow filter (MBs) Flow log

Benign flows

Switch

Packet

Match

SmartNIC Host

Message to update flow filter

Flow table (GBs) Data
path

Control
path

Batched
header logs

Forward packets to
external network

Not Match

Primary Eviction
Unknown flows

Flow table (100s GBs)

Pkt
Rings

Fig. 1: Our switch-based Flow filter efficiently tracks the set of flows marked benign. Headers from unknown flows are batched

by the switch before being sent to the SmartNIC for preliminary stateful analysis using flow state maintained in a multi-level

Flow table. Finally, long term state is maintained on the host using its copious memory.

determines a flow is safe. Efficient real-time communication

between the host and switch is crucial. The typical approach

for reading or updating switch state is via its control plane

interface; however, we find that its access rate is too low.

To overcome this challenge, we propose a data plane based

coordination scheme to increase this speed by several orders

of magnitude. We optimize this process by using the host, as

described in §III-B.

Switch → Host Packet Messages: We assume the host and

SmartNIC run a security appliance to analyze packets at the

start of all flows. With a straightforward design, every packet

unknown to the switch must be sent to the SmartNIC or

host. To mitigate the communication cost, we develop two

mechanisms: packet truncation and packet batching. Firstly,

rather than directly forward each packet in full, the switch

truncates packets to just include key flow information from

the packet header need for analysis. This can dramatically

reduce the volume of data arriving at the host and SmartNIC.

Secondly, to further reduce the number of packets that must

be processed by the SmartNIC or host, we develop a packet

batching mechanism, which buffers flow information from

several packets in a flow log, and transmits it to the SmartNIC

only when the flow log is full. Even a small buffer with space

for a few packets can substantially reduce outgoing traffic by

eliminating redundant protocol headers and unnecessary data

due to frame padding. Also, because the buffer is extremely

small, it incurs almost no latency to buffer the packets and

send to the SmartNIC/host.

B. SmartNIC and Host-Based State Tracking

The host and SmartNIC in our unified dataplane typically

have much more memory than the switch, thus allowing them

to maintain state about a larger number of flows. The host in

our design maintains a longer-term primary flow table, with

information about all the flows that have been detected so far.

We leverage the design in [17] for tracking flow state and

logging flows using a simple ’flowcache’ data structure on the

SmartNIC, alongside the flow table on the host. Thus, a subset

of these entries are cached on the SmartNIC’s flowcache.

The SmartNIC packet processing engine updates the flow-

cache by computing a hash of the 5-tuple in hardware.

The SmartNIC memory (DRAM) can be multiple GBytes,

potentially supporting from 25M to 100M flow entries. We use

a two-level cache on the SmartNIC, with the first level (called

the ’primary buffer’) using a least-recently used (LRU) policy

for evictions. The second level (called an eviction buffer) uses

a least frequently used (LFU, packet count) based eviction

policy, which favors large (elephant) flows to reside longer on

the SmartNIC flowcache. This hybrid approach is effective at

handling both a large number of recent flows (LRU) while

also maintaining state related to elephant flows that might be

bursty and are replaced by a large number of small flows in

the LRU-based first-level cache.

Flows evicted from the eviction buffer of the flowcache are

moved to a ring buffer from which we periodically flush snap-

shots of the flowcache to the host. Thus the host eventually

maintains the full view of all of the flows being monitored.

The cooperative monitoring by the switch, SmartNIC and

the host enables our system to ensure minimal loss of flow

information [17].

Because of the larger amount of memory on the SmartNIC,

the flowcache on it can be much larger than what can be

accommodated on the switch. Thus, by fully utilizing the

SmartNIC’s memory efficiently, we seek to collect additional

flow level features. Beyond having access to some of the

stateless packet level features (e.g. source port, destination

port, protocol), which are contained in packet headers, the

additional flow level features (e.g. flow size, inter-arrival time)

monitored on the SmartNIC can provide higher accuracy when

detecting attacks on the host. More specifically, when detecting

for slow attacks (e.g. Slowloris), having the inter-arrival time

is crucial for keeping track of the slowness between packets

from a flow. In our design, the inter-arrival time feature can

be obtained on the SmartNIC once the P4 Switch flushes each

packet batch. The batching delay from the switch is negligible

due to both the small batch size (< 5 packets) and the fact

that inter-arrival time here can be relative time. As long as

the batching delay stays consistent between each flush from

the P4 Switch, then the change in time between each packet’s

arrival collected on the SmartNIC would also stay consistent.

Thus, the use of this flow feature by the host would be accurate

enough during the classification analysis.

As discussed previously, we have planned to introduce a

monitor module on the SmartNIC and host that can run real-

4

0.0 0.2 0.4 0.6 0.8 1.0
Attack Flow Ratio

0
5

10
15
20

Tr
af

fic
 [G

bp
s] Switch to SmartNIC

SmartNIC to Host

Fig. 2: An incoming traffic rate of 1.4 Tbps at the switch is

reduced to 20Gbps on the SmartNIC and 4Gbps on the host.

time analysis on the packets received from the P4 switch. The

monitor module will typically only need to look at the first

few packets before making a decision about the flow (benign

or suspicious). Once the SmartNIC or host has successfully

analyzed the packets for the flow, then the information will be

communicated to the P4 switch to update the flow filter with

the packet’s flow being marked as ’safe’. This communication

uses the same batching mechanism to return a small set of

updates in a single packet via the switch’s dataplane, allowing

it to update its Flow Filter rules without incurring control plane

costs.

IV. EVALUATION

In this section, we evaluate the effectiveness of our pre-

liminary design through simulation and a prototype P4 switch

and host combination in our testbed. The testbed evaluation

shows how our system responds to synthetic traffic rates up

to 1.4 Tbps. Our simulator implements the switch and hosts

components of our design, and uses the PCAP traces from the

MAWI project [8] to explore the characteristics of our design

in more detail.

A. Terabit Scale Testbed Performance

We deploy our system on our testbed using a Tofino

v1 switch, and a host with Netronome Agilio LX 40Gbps

SmartNIC. We use a separate host and switch pair to generate

packets, allowing us to create a configurable volume of traffic

which is composed of a mix of benign and attack flows. This

results in a maximum incoming load to the switch of 1.4

Tbps (170 Mpps). The traffic is then sent to the Tofino switch

running our Filter code before reaching the SmartNIC and

host. We configure the switch with a flow filter of size 4MB.

The traffic generator creates two types of flows: benign flows

have 100 packets in total, each being 1024 bytes; malicious

flows contain only a single SYN packet, such as from a Port

Scan or SYN Flood attack. We adjust the traffic generator’s

parameter α from 0 (no attack flows) to 1 (all attack flows).

Since we keep the total traffic volume constant at 170 MPPS,

this means that the number of concurrent flows in the system

will vary based on the attack rate. If there is no attack traffic,

there will be an average of 1.7 M flows per second. It rises to

170 M flows per second if it is all attack traffic. Thus raising

the attack rate also makes tracking flows within our system’s

limited switch memory more challenging.

Figure 2 shows the volume of traffic sent to the SmartNIC

and thence to the host as we adjust the attack flow ratio, while

maintaining a fixed 1.4 Tbps incoming rate to the switch. Even

for large numbers of attack flows, the volume to the SmartNIC

remains low, only passing 10 Gbps for α > 0.9. The traffic

volume to the host is even lower, showing the benefit of the

SmartNIC cache. This traffic volume could be easily handled

by a single core on a host (or even a fraction of a core). In total,

the combination of switch and SmartNIC reduce the volume

of traffic that needs to be analyzed on the host by more than

99.6%.

B. Trace-based Evaluation of Attack Monitoring

We next use our simulation of a Terabit/sec switch, focused

on its monitoring data structures, to evaluate how our system

can analyze real world traffic. We configure our system so that

a flow is considered Safe once it has processed 7 packets, with

smaller flows being treated as ’Suspicious’.
We analyze the ability of our system to track Port Scan

attacks as an example of detecting low volume attacks, and

compare it against approaches such as Count-Min Sketch and

Sampling. We analyze an April 30, 2022 MAWI trace in

which there are 9,319 concurrent flows per second or 34,063

packets per second, and consider how effective each system

is at identifying the source IP addresses of port scanners.

An attacker who sends only a small number of SYN probes

will be harder to detect than one who sends many probes

to different ports, so we evaluate different thresholds (10-

400) corresponding to the minimum number of SYN probes

a source IP must send to be considered as an attacker.
Here we compare against a Sampling approach, where only

1% of packets are analyzed by a flow table that has infinite

capacity, and against Count-Min Sketch (CMS). We configure

the sketch to keep counters based on hashing only the source-

IP, and only give it SYN packets. Thus it attempts to count the

number of SYN packets sent by each source. We then consider

the top 50 such sources as potential attackers. Any subsequent

flows that match a potential attacker are then stored in a flow

table list for further analysis. This mimics the approach of

other systems that use a sketch to detect heavy hitter flows

and then store them in a flow table [7].
Figure 3a shows the number of attacks detected by each

approach depending on the threshold of flows to be considered

a Port Scan. Our design is able to perfectly match the ground

truth data, correctly identifying all attacker source IPs. In

contrast, the CMS-based approach does very poorly, missing

between 10% to 90% of the attacks (Figure 3b). In this

scenario we find that sampling performance still misses 60%

of attackers when there is a low threshold.
Overall, this illustrates the power of our system to precisely

identify attack flows. While here we use it for Port Scans, since

the attack analysis is performed on the host, a wide range of

stealthy attacks can be handled without needing to revise the

our system design. In contrast, a sketch based approach would

need to be customized for each attack type.

C. Communication Costs & Switch Resource Consumption

Our design requires fast communication between the data

plane devices in order to rapidly deliver packets for analysis

5

10 20 100 400
of Flows / Port Scan

0

500

1000

1500

2000

of
 A

tta
ck

er
s D

et
ec

te
d

CMS
Sampling 1/100
immUNITY
Ground truth

(a) Accuracy of detecting attackers

10 20 100 400
of Flows / Port Scan

0

20

40

60

80

100

%
 o

f A
tta

ck
er

s M
iss

ed CMS
Sampling 1/100
immUNITY

(b) Inefficiency in detecting attackers

Fig. 3: MAWI: port scan detection

and to update the flow filter. We measure the latency to send

a 1KB packet from the switch to the host, parse the packet on

the host, and then return a response (e.g. flow filter update) to

the switch. We find that the median round trip latency ranges

from 2.1 microseconds to 2.2 microseconds for rates between

10-39 Gbps (i.e. up to 4.5 million operations per second). This

latency and update rate is dramatically faster than performing

switch state updates via the control plane, which prior work

has reported to take up to 1 millisecond, with a maximum

throughput of around 100K updates per second [18].

V. CONCLUSIONS AND ONGOING WORK

Switches, SmartNICs, and hosts all have unique strengths

and weaknesses that must be carefully combined to pinpoint

unusual flows in the network. Switches excel at providing

packet filtering, data extraction, and aggregation capabilities

at terabit speeds. We propose to overcome their strict memory

limitation by only maintaining state about benign flows, which

our analysis of real traces shows make up a minority of

flows, but the majority of transmitted packets. SmartNICs

provide a first layer of stateful packet analysis, with sufficient

memory capacity to track most active flows. We leverage

a mix of LFU and LRU eviction policies to ensure their

memory is used effectively, limiting the amount of data that

must be propagated to the host. Finally, we need low-latency

communication mechanisms between all of the devices; we

leverage data-plane based communication that avoids the high

overheads seen in control plane paths. Our design reduces

the volume of traffic reaching a host by 99.6%, and more

accurately detects slow attacks than sketch or sampling based

approaches. We are continuing to optimize our system and

expand its capabilities to intelligently classify multiple types

of attacks.

Acknowledgements: This work was supported in part by

NSF CNS-2210379, CNS-2210380, and NICT Contract No.

22401. Support for CAIDA’s Internet Traces is provided by

the National Science Foundation (CNS-2120399) and (OAC-

2131987).

REFERENCES

[1] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: query-driven streaming network telemetry,” in
Proceedings of ACM SIGCOMM, Aug. 2018, pp. 357–371. [Online].
Available: https://dl.acm.org/doi/10.1145/3230543.3230555

[2] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith, “Turboflow:
information rich flow record generation on commodity switches,” in
Proceedings of ACM EuroSys, Apr. 2018, pp. 1–16. [Online]. Available:
https://doi.org/10.1145/3190508.3190558

[3] Netronome, “The joy of Micro-C,” https://open-nfp.org/documents/48/
the-joy-of-micro-c fcjSfra.pdf, 2014.

[4] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan, “Fast
portscan detection using sequential hypothesis testing,” in Proceedings

of IEEE S&P, May 2004, pp. 211–225. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/1301325

[5] A. Kuzmanovic and E. W. Knightly, “Low-rate TCP-targeted denial of
service attacks: The shrew vs. the mice and elephants,” in Proceedings

of ACM SIGCOMM, Aug. 2003, pp. 75–86. [Online]. Available:
https://doi.org/10.1145/863955.863966

[6] H. Namkung, Z. Liu, D. Kim, V. Sekar, and P. Steenkiste, “SketchLib:
Enabling efficient sketch-based monitoring on programmable switches,”
in Proceedings of USENIX NSDI, Apr. 2022, pp. 743–
759. [Online]. Available: https://www.usenix.org/conference/nsdi22/
presentation/namkung

[7] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman,
R. Friedman, and V. Sekar, “Nitrosketch: robust and general
sketch-based monitoring in software switches,” in Proceedings of

ACM SIGCOMM, Aug. 2019, pp. 334–350. [Online]. Available:
https://dl.acm.org/doi/10.1145/3341302.3342076

[8] WIDE project, “MAWI working group traffic archive,” https://mawi.
wide.ad.jp/mawi/.

[9] D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. V. Ramos,
and A. Madeira, “FlowLens: Enabling efficient flow classification
for ML-based network security applications,” in Proceedings of

NDSS, Feb. 2021. [Online]. Available: https://www.ndss-symposium.
org/wp-content/uploads/ndss2021 7C-2 24067 paper.pdf

[10] H. Zhou and G. Gu, “Cerberus: Enabling efficient and effective
in-network monitoring on programmable switches,” in Proceedings

of IEEE S&P, May 2024, pp. 16–16. [Online]. Available: https:
//doi.ieeecomputersociety.org/10.1109/SP54263.2024.00016

[11] K. Zhang, D. Zhuo, and A. Krishnamurthy, “Gallium: Automated
software middlebox offloading to programmable switches,” in
Proceedings ACM SIGCOMM, Jul. 2020, pp. 283–295. [Online].
Available: https://dl.acm.org/doi/abs/10.1145/3387514.3405869

[12] J. Hypolite, J. Sonchack, S. Hershkop, N. Dautenhahn, A. DeHon,
and J. M. Smith, “DeepMatch: practical deep packet inspection
in the data plane using network processors,” in Proceedings

of ACM CoNEXT, Nov. 2020, pp. 336–350. [Online]. Available:
https://dl.acm.org/doi/10.1145/3386367.3431290

[13] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta,
“Offloading distributed applications onto smartnics using ipipe,” in
Proceedings of ACM SIGCOMM, Aug. 2019, p. 318–333. [Online].
Available: https://doi.org/10.1145/3341302.3342079

[14] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi,
K. K. Ramakrishnan, and T. Wood, “OpenNetVM: A platform for
high performance network service chains,” in Proceedings of ACM

Workshop on HotMiddlebox, Aug. 2016, pp. 26–31. [Online]. Available:
https://dl.acm.org/doi/abs/10.1145/2940147.2940155

[15] M. Yoon, “Aging bloom filter with two active buffers for dynamic
sets,” IEEE Transactions on Knowledge and Data Engineering,
vol. 22, no. 1, pp. 134–138, 2010. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/5066970

[16] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proceedings

of ACM CoNEXT, Dec. 2014, pp. 75–88. [Online]. Available:
https://dl.acm.org/doi/abs/10.1145/2674005.2674994

[17] S. Panda, Y. Feng, S. G. Kulkarni, K. K. Ramakrishnan, N. Duffield,
and L. N. Bhuyan, “SmartWatch: accurate traffic analysis and flow-state
tracking for intrusion prevention using SmartNICs,” in Proceedings

of ACM CoNEXT, Dec. 2021, pp. 60–75. [Online]. Available:
https://dl.acm.org/doi/10.1145/3485983.3494861

[18] T. Caiazzi, M. Scazzariello, and M. Chiesa, “Millions of low-latency
state insertions on asic switches,” Proceedings of the ACM on

Networking, vol. 1, no. CoNEXT3, pp. 22:1–22:23, Nov. 2023.
[Online]. Available: https://dl.acm.org/doi/10.1145/3629144

6

