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Abstract
Despite the use of virtualization to share individual
servers, data centers are still often only lightly loaded,
leaving large amounts of spare capacity idle. In some
ways, Big Data applications are an ideal fit for using
this excess capacity to perform meaningful work, yet the
high level of interference between interactive and batch
processing workloads currently prevents this from be-
ing a practical solution in virtualized environments. In
this paper we study both the amount of spare capacity
that could potentially be used for Big Data processing,
and the limitations of current interference isolation tech-
niques. Within our university data center we find that an
average of 90%, 53%, and 89% of CPU, memory, and
disk IO capacity are left idle; an analysis of Wikipedia’s
137 application servers shows similar results. We then
evaluate the impact of colocating a Hadoop VM with an
interactive website, and find that median web server re-
sponse time can increase by over seven times. Finally,
we propose how scheduling mechanisms in both the vir-
tualization layer and the Hadoop job tracker could be en-
hanced to improve this situation.

1 Introduction
Virtualization has facilitated the growth of infrastructure
cloud services by allowing a single server to be shared by
multiple customers. Dividing a server into multiple vir-
tual machines (VMs) provides both a convenient man-
agement abstraction and resource boundaries between
users. However, the performance isolation provided by
virtualization software is not perfect, and interference
between guest VMs remains a challenge. This is par-
ticularly true for IO intensive virtual machines, since ac-
cesses to the underlying devices needs to be mediated
by the hypervisor. If the hypervisor does not enforce
proper priorities among guests, it is easy for one virtual
machine’s performance to suffer due to another guest.

Despite the danger of interference, resource sharing
through virtualization has been crucial for lowering the

cost of cloud computing services. Multiplexing servers
allows for higher average utilization of each machine,
giving more profit for a given level of hardware expense.
Yet the reality is that many data centers, even those em-
ploying virtualization, are still unable to fully utilize each
server. This is due in part to fears that if a data center is
kept fully utilized there will be no spare capacity if work-
loads rise, and part due to the risk of VM interference
hurting performance even if servers are left underloaded.

In this paper we investigate the level of load in current
data center environments and explore how data center
utilization can be safely increased, despite workload fluc-
tuations and the danger of interfering virtual machines.
Our belief is that many big data applications are an ideal
fit for consuming spare data center capacity due to their
resource hungry, distributed nature. If big data appli-
cations can be deployed in virtual machines throughout
a data center, they can easily make use of spare CPU,
memory, and IO capacity for productive work. Since
many big data frameworks such as MapReduce are al-
ready designed for distributed workloads, jobs can be
easily spread across the data center. Further, the fault
tolerance capabilities of these frameworks can automat-
ically handle the case where a big data VM needs to be
shutdown, perhaps because it is consuming too many re-
sources on a server that now needs that capacity to ser-
vice a rising workload.

Despite these potential benefits, there are several im-
portant challenges that prevent big data applications from
being used today to quickly fill data center capacity. The
first challenge is that deploying big data applications can
cause significant interference to other data center appli-
cations such as web servers. MapReduce’s IO and CPU
intensive nature can cause dramatic performance degra-
dation for interactive applications; our measurements
show that web server response times can increase by
seven times due to colocated Hadoop tasks, even when
scheduling parameters are used to reduce the big data
application’s priority. The second key challenge, is that
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Figure 1: While resource consumption varies over time, at
least 75% of the IT servers consistently use less than 20% of
their total CPU capacity.

even if Hadoop tasks could be run without interference,
the variability in resources available to them is known to
cause a reduction in overall performance due to specula-
tive job scheduling. We believe that combating these two
challenges will require work at both the hypervisor layer
to reduce interference and at the task scheduling level to
ensure that big data applications can still receive some
performance guarantees.

2 Big Potential
Both private and public data centers are known to have
relatively low utilization rates, yet servers are the largest
cost in the data center [3]. We have studied a cluster of
55 hosts within our university and 137 hosts that run the
Wikimedia Foundation’s websites, including wikipedia,
to see how much capacity is left idle.

2.1 IT Department Virtualized Cluster
We start our analysis by examining a cluster of servers
used by our university’s Division of IT. The university
uses VMWare’s virtualization platform to run approxi-
mately 10 virtual machines on each of the cluster’s 55
hosts. The virtual machines run a range of applications
such as web servers, domain controllers, databases, and
business applications. We have gathered traces of the
CPU, memory, network, and disk utilization for each
host over a five month period. For each resource we re-
port % utilization out of the total host capacity. We report
the percent of memory on each host that VMware consid-
ers actively used, i.e., memory that is allocated to a VM
and is considered part of its working set [11]. All hosts
have two Xen E5-2640 CPUs (12 cores total), 96GB of
RAM, and are connected to ten gigabit ethernet.

Figure 1 shows the CPU utilization of all hosts over
the first two months of the trace. While load fluctuates
on a diurnal basis, the median utilization level is often
below 10%. In fact, in only 2.5% of the measurement
intervals is there even a single server with CPU usage
greater than 50%.

Of course CPU is only one of several important re-
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Figure 2: Servers used to host VMs for our IT department il-
lustrate that many resources are often left idle; memory is the
only resource with a median utilization level above 50%.

sources, and often is not the main bottleneck. We next
plot a CDF of the utilization of CPU, Memory, Network,
and Disk in Figure 2. This data confirms that CPU is
lightly utilized, but also shows that network and disk see
relatively low loads as well. In contrast, memory is rea-
sonably well utilized in this cluster, with about half of
the servers using 50% or more of their total RAM.

We believe the low utilization across this cluster is due
in part to our IT department purposely overprovisioning
resources, and partly because the cluster is sized to meet
future needs. However, these scenarios seem very com-
mon from anecdotal evidence, and suggests that there is
a great deal of capacity of all resource types that is being
wasted in many data centers, even virtualized ones.

2.2 Wikipedia Application Servers
Many popular websites consider their server workloads
proprietary information, limiting the availability of real
utilization data. Fortunately, Wikipedia, the 6th busiest
website in the world, releases all of its monitoring data.1

We have analyzed a trace of data from Wikipedia’s Ap-
plication Servers running in its Equiad data center start-
ing on March 14th and ending on April 11th. This clus-
ter is composed of 137 servers, each with either 6 or 12
processing cores. While this cluster does not use virtual-
ization, it still gives us insight into the workload seen by
a large-scale web application, and illustrates the poten-
tial for better resource multiplexing if virtualized servers
could be used.

Figure 3 shows the average utilization of all hosts over
the full measurement period of 28 days; we average uti-
lization by host regardless of differences in server specs.
For this data set we only report CPU utilization since the
application severs use minimal disk bandwidth, and since
the servers are not virtualized, it is impossible to measure
how much memory is actively used.

Once again, we find that the hosts are very lightly
loaded, reporting average CPU utilization of only 25%
over the month long trace. The average utilization

1 http://ganglia.wikimedia.org/
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Figure 3: Wikipedia’s Application servers have a utilization
range of 18 to 33%, leaving a large amount of capacity idle.

throughout the trace is quite stable, with only minor fluc-
tuations due to diurnal access patterns. We speculate that
this may be because wikipedia has a global audience, so
there is less night time dip. Wikipedia is composed of
multiple service tiers (e.g., memcached nodes, databases,
load balancers, etc), all of which appear to have a sim-
ilar light load as the application servers. Despite this,
wikipedia has a reputation for running a massive web
application at as low cost as possible, so we believe that
it is very likely that these load levels are not unique to
Wikipedia, but are likely representative of a much wider
range of web applications.

3 Big Problems
We next consider what happens if a system administra-
tor decides to make use of the ubiquitous spare capacity
found in the previous section by deploying virtual ma-
chines running Hadoop.

Experimental Setup: For our tests we use Xen 4.1.2
with Linux 3.2, running on Dell servers with Intel E5-
2420 CPUs and 16GB of RAM. The CPU has six physi-
cal cores at 1.90GHz with 64KB of L1 cache and 256KB
of L2 cache per core, and a shared 15MB L3 cache. De-
pending on the experiment, the web and Hadoop virtual
machines are pinned to either two dedicated or shared
CPU cores. Xen’s Domain-0, which hosts drivers used
by all VMs, is given the server’s remaining cores.

We use the TPC-W web benchmark—an online book
store—as our interactive application, and measure the
response time seen by client workload generators run-
ning on an identical host connected by gigabit ethernet.
TPC-W runs in a single VM hosting both Tomcat and
MySQL servers; client interactions involve database and
file system accesses to process page requests and load
images. It has been shown that many modern web ap-
plications are significantly more complicated than TPC-
W, e.g., accessing amazon.com’s home page involves ap-
proximately 141 HTTP requests compared to TPC-W’s
6 [1]. While our results show a high degree of interfer-
ence on TPC-W, we expect that this will be even larger
on more complex applications that involve many interac-
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Figure 4: Colocated Hadoop jobs significantly hurt web appli-
cation performance, even when Xen’s scheduler priority mech-
anisms are used.

tions to load a full web page.
To evaluate the interference caused by a big data ap-

plication, we use two different types of Hadoop jobs:
PI and Wordcount. The first is primarily CPU inten-
sive while the second is IO intensive. We configure
a simple Hadoop cluster composed of only two virtual
machines—a master running on a separate host and a
slave virtual machine that is colocated with the TPC-W
VM. Hadoop data files are spread across the Master and
Slave, but the slave does all processing. All results are
the average of at least three fifteen minute trials.

3.1 Hadoop Interference
We begin by studying how colocating a Hadoop PI cal-
culation job with a TPC-W virtual machine affects the
response time of the interactive website. Motivated by
the data in the previous sections, we use a relatively
light workload for TPC-W: we emulate 700 active client
browsers, which consumes an average of 48% of the two
CPU cores given to the TPC-W virtual machine. Fig-
ure 4 shows a CDF of web response times under several
different scenarios. When TPC-W runs by itself, we find
an average response time of 36ms. When it is run sharing
the CPUs with Hadoop (the “w/PI Def. Weight” line), the
response time rises to 209ms.

To try to mitigate this performance loss, we use the
Xen Credit scheduler’s support for relative weights to
give TPC-W the maximum weight and Hadoop the min-
imum (65,535 to 1). Unfortunately, this has only a minor
performance improvement: the average response time is
153ms, and the 95th percentile of response times still
rises from 130ms in the base case to 560ms when using
the CPU scheduler’s weighted priority mechanism (the
“w/PI Min Weight” line). Note that the minimal differ-
ence between the default CPU weights and these extreme
weights is partially due to the fact that even in the default
case, Xen would attempt to give an equal 50% share of
the two CPU cores to TPC-W, which is slightly more
than it needs to service its workload. Xen’s scheduler
gives TPC-W the same overall CPU utilization whether
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Figure 5: Surprisingly, dedicating CPUs to each VM elimi-
nates nearly all interference.

a Hadoop task is running or not (48.4% with Hadoop vs
48.6% alone), but clearly this type of weighted share is
insufficient for ensuring the performance of latency sen-
sitive applications.

We next consider the interference when running a
Word Count Hadoop job (the “w/WC Min. Weight” line
in Figure 4). This task involves significant CPU usage
and disk IO. Not surprisingly, this causes even worse
performance for the TPC-W application. The average
response time rises from 36ms to 291ms, and there are
many failed requests that in some trials cause TPC-W
to crash (which happened occasionally with PI as well).
The 95th percentile of response times rises to 1040ms, an
eight-fold increase over running TPC-W alone.

3.2 Separate CPU Cores

The interference demonstrated in the previous section is
not unexpected. Prior work has particularly shown that
IO virtualization can incur high overheads and interfer-
ence [2, 6]. As a result, we were quite surprised by
our experiments shown in Figure 5, which measured the
interference when the Hadoop VM is given two sepa-
rate CPU cores from TPC-W (thus Dom-0, TPC-W, and
Hadoop are each pinned to a pair of distinct physical
cores). We find that when given separate CPUs, the per-
formance interference is dramatically lowered: the 95th

response time percentile with Word Count is only 190ms
when it is given a separate CPU (compared to 1040ms
when sharing with TPC-W).

While dedicating CPUs to the Hadoop VM violates
the goals of this work (trying to maximize the utiliza-
tion of shared resources), this does illustrate that at least
for some applications, the interference is almost entirely
based on CPU behavior, not IO activities as has tradi-
tionally been believed. As discussed later, this result
guides our future work to not only investigate interfer-
ence prevention in the IO path, but also within the CPU
scheduler and caching systems.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500

C
D

F

TPC-W Response Time (msec)

TPCW Alone
w/SysCPU Separate CPU

w/CacheBench Separate CPU
w/SysCPU Min Weight

w/CacheBench Min Weight

Figure 6: CPU benchmarks also interfere with TPC-W when
sharing CPU cores.

3.3 CPU Benchmark Interference
Given that the interference observed for Hadoop can
be almost entirely eliminated by manipulating CPU re-
sources, we next analyze the amount of interference that
can be caused by two processor intensive benchmarks.

Figure 6 shows the impact on response time from run-
ning either the SysBench1 prime calculating benchmark
or CacheBench2, a cache intensive workload. We select
these benchmarks because the previous section makes it
difficult to determine if the interference is caused by poor
CPU scheduling choices or simply due to cache interfer-
ence. The CPU’s 15MB L3 cache is shared even in the
separate CPU case described above that had minimal in-
terference, hinting that the scheduler is more likely to
blame than the cache.

Our results in Figure 6 show that these CPU bench-
marks can cause just as much interference as the Hadoop
jobs. The CacheBench VM causes the highest degree
of interference, with a 95th response time percentile of
1140ms, versus 770ms with SysBench.

Despite this high potential for interference, we again
find that placing the benchmarks on separate CPU cores
solves the problem. Since these benchmarks perform no
disk or network IO, this makes sense, although it is im-
portant to note that separate cores resolves even the cache
intensive benchmark’s interference, despite still using the
same shared last level cache. This means that if cache in-
terference is to blame, it is only due to L1 and L2 cache
interference problems. In our future work we intend to
examine this phenomenon more closely using data from
hardware performance counters.

3.4 Impact on Hadoop Performance
Running a Hadoop task has a clear impact on TPC-
W’s performance, but it is also important to consider
how variable resource availability affects Hadoop’s per-
formance. This is particularly important because the
Hadoop task tracker may consider slow tasks to be fail-
ures, causing speculative execution. There is no point
1 http://sysbench.sourceforge.net
2 http://icl.cs.utk.edu/projects/llcbench
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Second Share Sep
VM 50th 75th 95th 50th 75th 95th

None 18 43 120 18 43 120
PI 64 180 560 20 58 160

WC 140 320 1040 23 71 190
SysCPU 110 250 770 18 37 130
CacheB 140 330 1140 20 51 190

Table 1: The 50th, 75th, and 95th percentiles of TPC-W re-
sponse time in ms when a second VM has either a shared or
separate pair of cores.

using spare capacity to run Hadoop if all tasks started
there are simply aborted or ignored by the task tracker.

When we run the Hadoop PI task alongside the TPC-
W VM, the total job completion time is 1729 seconds,
compared to 1228 seconds if Hadoop is run alone on the
two CPU cores. When run together, TPC-W consumes
48% of the CPU time, so Hadoop performance is actu-
ally better than expected, given that it is receiving half
as much CPU time as when running alone. However,
the main problem is that when Hadoop runs using only
resources that otherwise would be left idle, it will have
higher variation in task completion time.

3.5 Result Summary
Our results, summarized in Table 1, illustrate that Xen is
able to provide good performance isolation for TPC-W
if virtual machines are given dedicated CPUs, but that
its priority mechanism is insufficient if CPUs must be
shared. Importantly, our results are currently limited to
the TPC-W benchmark, which has a relatively simple
processing path and performs a limited amount of net-
work and disk IO. Our ongoing work will study a wider
range of interactive application types to see how they are
impacted by different types of interference.

4 The Sources of Interference
The Xen architecture, illustrated in Figure 7, has multiple
subsystems that can cause interference. Device drivers
are managed by Xen’s Domain-0, which can both cause
interference and makes it difficult to account how pro-
cessing time should be attributed to each VM. Our re-
sults indicate that the sharing of CPUs can cause a sig-
nificant amount of interference for latency sensitive ap-
plications, most likely because of poor choices made by
Xen’s scheduler. The shared CPU caches may also be a
culprit, although the globally shared L3 cache does not
appear to have any significant contention.

Xen’s Credit scheduler is a non-preemptive weighted
fair-share scheduler. As a VM runs, its VCPUs are dy-
namically assigned one of three priorities - over, under,
or boost, ordered from lowest to highest. Each physi-
cal CPU has a local run queue for runnable VCPUs, and
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Figure 7: The Xen virtualization architecture allows resources
to be shared, but this can potentially cause interference in each
of the highlighted areas.

VMs are selected by their priority class. Every 30ms,
a system-wide accounting thread updates the credits for
each VCPU according to its weight share and resorts the
queue if needed. If the credits for a VCPU are negative,
Xen assigns “over” priority to this VCPU since it has
consumed more than its share. If the credits are positive,
it is assigned “under” priority. Every 10ms, Xen updates
the currently running VCPUs credits based on the VCPU
running time. In order to improve a virtual machine’s
I/O performance, if a VCPU is woken up (e.g., because
an IO request completes) and it has credits left, it will be
given “boost” priority and immediately scheduled. After
the boosted VCPU consumes a non-negligible amount of
CPU resources, then Xen resets the priority to “under”.

We had originally believed that Hadoop was caus-
ing interference due to being scheduled as “boost” pri-
ority, allowing it to interrupt TPC-W. However, since
we see a high degree of interference even when running
CPU benchmarks that perform negligible IO, this can-
not be the only problem. One possibility is to reduce the
scheduling time quantum, although our preliminary tests
with a 1ms quantum indicate this alone is not sufficient.

5 Related Work
Several projects have sought to improve virtual I/O per-
formance at the network [4] or disk [10] layers. How-
ever, the goal of these projects is typically to maximize
IO throughput, rather than provide low latency to high
priority VMs. Several previous works propose to im-
prove the efficiency of the Xen credit scheduler. Xi et.
al., use techniques from Real-Time scheduling to give
stricter deadline guarantees to each virtual machine [12].
Our previous work automatically detected VM work-
loads and assigned dynamic CPU priorities, but it was
not designed for IO intensive applications [5]. [8] im-
proves application performance in NUMA multicore sys-
tems by designing a NUMA aware scheduler. Cheng
proposes a proportional share CPU scheduler with soft
real-time support to reduce scheduling delay for network
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packets [2]. Kang et. al., specifically looks at MapRe-
duce, and designs two scheduling policies to achieve pro-
portional fair sharing across MapReduce clusters [6].

The key difference between previous studies and
our work is that we focus on reducing the interfer-
ence between latency-sensitive applications like TPC-W
and data and computational intensive applications like
Hadoop. Other work has looked at avoiding interfer-
ence between these tasks by careful VM placement [13]
or dedicating resources [7], but our goal of maximizing
data center utilization dictates that we must find a way
to safely and efficiently combine these types of VMs on
hosts throughout a data center.

Work has been done on managing Map Reduce in het-
erogeneous environments to meet performance goals [14,
9]. Running Map Reduce using spare resources will re-
quire advances at both the virtualization layer and within
these job schedulers and performance models.

6 Conclusions & Future Work
Several studies have shown that data centers often leave
a large fraction of their resources idle, and we have con-
firmed this with studies of 55 hosts in our university’s
data center and 137 hosts running Wikipedia’s applica-
tion servers. Since well over half of the CPU, memory,
and disk bandwidth on these machines is often left un-
used, it would be highly desirable to run low priority Big
Data analysis applications in the background on these
servers. However, we have shown that the performance
isolation provided by the Xen hypervisor is not currently
strong enough to support a mix of latency sensitive web
applications and Big Data processing tasks. Surprisingly,
we find that interference caused by the CPU scheduling
algorithm or the CPU cache (not IO interference) are the
key causes of performance degradation in our tests.

In our ongoing work, we are using hardware perfor-
mance counters to better understand cache performance
and the details of scheduler behavior. Towards the goal
of being able to run big data applications with minimal
interference, we will investigate how Xen’s CPU sched-
uler can be improved by adjusting the scheduling quan-
tum and priority calculations. We are also testing more
complicated web applications to see at what point IO in-
terference within Domain-0 becomes the key bottleneck,
and whether existing Linux IO scheduling mechanisms
are sufficient—our initial tests suggest they are not and
that further work will need to be done at that level as
well. Finally, we are considering how the Hadoop task
scheduler can be improved to better handle running on a
wide range of nodes with different amounts of spare ca-
pacity. Ideally, system administrators should be able to
run big data applications in the background without im-
pacting interactive applications, while still achieving the
deadlines set for the processing tasks.
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