
Adaptive Dynamic Priority Scheduling
for Virtual Desktop Infrastructures

Jinho Hwang and Timothy Wood
Department of Computer Science, George Washington University, Washington, DC

Email: {jinho10, timwood}@gwu.edu

Abstract—Virtual Desktop Infrastructures (VDIs) are gaining
popularity in cloud computing by allowing companies to deploy
their office environments in a virtualized setting instead of
relying on physical desktop machines. Consolidating many users
into a VDI environment can significantly lower IT management
expenses and enables new features such as “available-anywhere”
desktops. However, barriers to broad adoption include the slow
performance of virtualized I/O, CPU scheduling interference
problems, and shared-cache contention. In this paper, we propose
a new soft real-time scheduling algorithm that employs flexi-
ble priority designations (via utility functions) and automated
scheduler class detection (via hypervisor monitoring of user
behavior) to provide a higher quality user experience. We
have implemented our scheduler within the Xen virtualization
platform, and demonstrate that the overheads incurred from co-
locating large numbers of virtual machines can be reduced from
66% with existing schedulers to under 2% in our system. We
evaluate the benefits and overheads of using a smaller scheduling
time quantum in a VDI setting, and show that the average
overhead time per scheduler call is on the same order as the
existing SEDF and Credit schedulers.

Index Terms—Xen, scheduler, virtual desktop infrastructure,
desktop virtualization, cloud computing

I. INTRODUCTION

Cloud computing infrastructure has seen explosive growth in
the last few years as a source of on-demand storage and server
power. Beyond simply being used to run web applications and
large data analytic jobs, the cloud is now being considered
as an efficient source of resources for desktop users. Virtual
Desktop Infrastructure (VDI) systems seek to utilize network
connected virtual machines to provide desktop services with
easier management, greater availability, and lower cost.

Businesses, schools, and government agencies are all con-
sidering the benefits from deploying their office environments
through VDI. VDI enables centralized management, which
facilitates system-wide upgrades and improvements. Since the
virtualized desktops can be accessed through a thin terminal
or even a smartphone, they also enable greater mobility of
users. Most importantly, companies can rely on cloud hosting
companies to implement VDI in a reliable, cost-effective way,
thus eliminating the need to maintain in-house servers and
support teams.

To offer VDI services at a low cost, cloud providers seek
to massively consolidate desktop users onto each physical
server. Alternatively, a business using a private cloud to host
VDI services may want to multiplex those same machines

for other computationally intensive tasks, particularly since
desktop users typically see relatively long periods of inactivity.
In both cases, a high degree of consolidation can lead to
high resource contention, and this may change very quickly
depending on user behavior. Furthermore, certain applications
such as media players and online games require high quality of
service (QoS) with respect to minimizing the effects of delay.
Dynamic scheduling of resources while maintaining high QoS
is a difficult problem in the VDI environment due to the high
degree of resource sharing, the frequency of task changes, and
the need to distinguish between actively engaged users and
those which can handle higher delay without affecting their
quality of service.

Existing real-time scheduling algorithms that consider ap-
plication QoS needs [1–4] use a fixed-priority scheduling ap-
proach that does not take into account changing usage patterns.
Similarly, the scheduling algorithms included in virtualization
platforms such as Xen [5] provide only coarse grain priori-
tization via weights, and do not support dynamic adaptation.
This has a particularly harmful effect on the performance of
interactive applications, and indicates that Xen is not ready
to support mixed virtual desktop environments with high QoS
demands.

For this paper we have enhanced the Xen virtualization
platform to provide differentiated quality of service levels in
environments with a mix of virtual desktops and batch pro-
cessing VMs. We have built a new scheduler, D-PriDe1, that
uses utility functions to flexibly define priority classes in an
efficient way. The utility functions can be easily parameterized
to represent different scheduling classes, and the function for
a given virtual machine can be quickly adjusted to enable
fast adaptation. Utilities are also simple to calculate, helping
our scheduler make decisions efficiently even though it uses a
smaller scheduling quantum.

Our utility driven scheduler is combined with a monitoring
agent built inside the hypervisor that enables automatic user
behavior recognition. In a VDI consisting of a hypervisor
and multiple VMs, the hypervisor is unaware of the types of
applications running in each VM. However, knowledge of ap-
plication behavior is important to the scheduler responsible for
allotting system resources, e.g., to distinguish between VMs
that have a user actively connected to them and ones which
do not have any user interaction and thus are more tolerant

1 D-PriDe stands for Dynamic-Priority Desktop Scheduler.978-1-4673-1298-1/12/$31.00 c© 2012 IEEE

to service delays. In order to recognize user behavior and
group VMs into scheduling classes, the proposed scheduler
uses information obtained by the management domain about
packets transmitted between the guest domains (VMs) and the
external network.

This paper has the following main contributions:
1) A utility function-based scheduling algorithm that as-

signs VM scheduling priority based on application types,
where fast adaptation is accomplished via linear func-
tions with a single input argument.

2) A classification system that determines application type
based on networking communication, and dynamically
assigns VM scheduling priority using this information.

3) Experimental results that justify using smaller schedul-
ing quanta than the quanta that are used in existing
algorithms.

The remainder of this paper is organized as follows: Sec-
tion II provides background on the standard schedulers in Xen,
and on other system issues related to scheduling. Section III
describes how to modify the Xen network structure to enable
detection of VM scheduler classes. Section IV introduces the
proposed utility-driven VDI scheduling algorithm. Section V
presents results from several experiments. Finally, Sections VI
and VII discuss related work, conclusions, and possible direc-
tions of future research.

II. BACKGROUND

In this section, we provide background information on Xen
schedulers, the VDI protocol, and hardware-related issues.

A. Xen Schedulers

The Xen hypervisor is used by many companies in the
cloud computing business, including Amazon and Citrix. We
describe the evolution of Xen’s scheduling algorithms from the
Borrowed Virtual Time (BVT) and Simple Earliest Deadline
First (SEDF), to the currently used Credit algorithm [6].

BVT [7] is a fair-share scheduler based on the concept of
virtual time. When selecting the next VM to dispatch, it selects
the runnable VM with the smallest virtual time. Additionally,
BVT provides low-latency support for real-time and interactive
applications by allowing latency sensitive clients to “warp”
back in virtual time and to gain scheduling priority. The client
effectively borrows virtual time from its future CPU allocation.

The BVT scheduler accounts for running time in terms of
a minimum charging unit, typically the frequency of clock
interrupts. Each runnable domain i receives a share of CPU
in proportion to its weight weighti, and the virtual time of
the currently running Domi is incremented by its running
time divided by weighti. This scheduler only supports work-
conserving mode (WC-mode). In this mode, an idle CPU
(with no runnable domains) can be consumed by a domain
that does not normally have claim to that CPU. By contrast,
in non work-conserving mode (NWC-mode), each domain is
restricted to its own CPU share, even if another CPU is idle.
The inability of BVT to support NWC-mode limits its usage

in a number of environments, and has led to the development
of another Xen Scheduler, SEDF [6].

SEDF uses real-time algorithms to deliver performance
guarantees. Each domain Domi specifies its CPU requirements
with a tuple (si, pi, xi), where the slice si and the period pi
together represent the CPU share that Domi requests: Domi

will receive at least si units of time in each period of length
pi. The boolean flag xi indicates whether Domi is eligible to
receive extra CPU time (in WC-mode). SEDF distributes this
slack time in a fair manner after all runnable domains receive
their CPU share. For example, one can allocate 30% CPU to
a domain by assigning either (3 ms, 10 ms, 0) or (30 ms, 100
ms, 0). The time granularity in the definition of the period
impacts scheduler fairness.

For each domain Domi, the scheduler tracks an additional
pair (di, ri), where di is a time at which Domi’s current
period ends, also called the deadline. The runnable domain
with the earliest deadline is selected to be scheduled next. ri
is the remaining CPU time of Domi in the current period.
SEDF, however, is unable to perform global load balancing
on multiprocessors. The Credit algorithm, discussed next,
addresses this shortcoming.

Credit1 is Xen’s latest proportional share scheduler featur-
ing automatic load balancing of virtual CPUs across physical
CPUs on a symmetric multiprocessing (SMP) host [8]. Before
a CPU goes idle, Credit considers other CPUs in order to find
a runnable VCPU, if one exists. This approach guarantees that
no CPU idles when runnable work is present in the system.
Each VM is assigned a weight and a cap. If the cap is 0, then
the VM can receive extra CPU (in WC-mode). A non-zero
cap (expressed as a percentage) limits the amount of CPU a
VM receives in NWC-mode. The Credit scheduler uses a 30
ms time quantum for CPU allocation. A VM (VCPU) receives
30 ms of CPU throughput before being preempted by another
VM. Once every 30 ms, the priorities (credits) of all runnable
VMs are recalculated. The scheduler monitors resource usage
every 10 ms.

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'%!"

!" '" #" (" $")" %" *"

!
"
#
$%
&
#
'(
%
)*
#
+'
,-
+#
$.
!
$$
/"
%
0'
1
/2

#
''

3
/+
4
'5
#
"
/%
6
7
-
'8
2
9:
'

;<2=#$'7>'?(@',-+#-9/"#'AB9'

+,-./0"

Fig. 1. The Credit scheduler causes the performance of a desktop VM
to become increasingly variable as more interfering VMs are added to the
machine.

Existing Scheduler Limitations: To demonstrate the per-

1 Credit-based cpu scheduler, http://wiki.xensource.com/xenwiki/CreditScheduler

formance issues seen when using these schedulers, Figure 1
shows how the time between screen updates for a desktop
virtualization client (measured by inter-packet arrival time)
changes when adjusting the number of computationally in-
tensive VMs causing interference. We see that with the Credit
scheduler, the background VMs can increase the delay be-
tween VDI client updates by up to 66%. Further, the standard
deviation of arrival times can become very large, making it
impossible to offer any kind of QoS guarantees.

The existing scheduling algorithms satisfy fairness among
VMs, but they are not well designed to handle latency sensitive
applications like virtual desktops, nor do they provide support
for dynamic changes of VM priorities. While the Credit
scheduler used in our motivating experiment could be tweaked
to give a higher weight to the VDI VM, this would only
increase the total guaranteed share of CPU time it is allocated,
not affect the frequency with which it is run. We propose D-
PriDe, a scheduler that confronts these issues by using a low
overhead priority scheduling algorithm that allocates VMs on
a finer time scale than Credit. In addition, D-PriDe can detect
when users log on or off of a desktop VM, allowing it to
dynamically adjust priorities accordingly.

DomU

VDI Protocol

netfront

Applications

!"#$%&'

($)*+&,,'

!"#+-*.'

GUI Engine

/
0
1'
2
3
&
"
.'

Dom0

netback

Hypervisor

Hardware

Client Computer

Network Interface

0&#+-*.'

0&#$)*+&,,'

0&#$%&'

/
0
1'
(
45
&
"
.'

GUI Engine

Screen

67-,5#84'98#75"&'

Fig. 2. Xen Networking Diagram with Simplified VDI Flow

B. VDI Protocol

The Internet Engineering Task Force [9] has recently drafted
a preliminary VDI protocol problem statement. This document
defines the VDI protocol to entail remote desktop access
from either a PC, tablet computer, or mobile phone as a
client device. The OS and applications of the desktop run
on virtual machines, which are deployed in data centers.
Mainstream commercial VDI products include Microsoft’s
RDS, Citrix’s XenDesktop, Redhat’s Enterprise Virtualization
for Desktops, and VMware’s VMware View. An open-source
alternative, virtual network computing (VNC), uses the remote
framebuffer protocol.

Figure 2 shows a Xen networking diagram with simplified
VDI flow. Each guest domain (VM) has a VDI agent (server)
running as a daemon and each client has a VDI client that
connects to the VDI agent. A VDI service has high QoS
requirements due to the streaming process, which involves
encoding/compressing/encrypting the screen in the VDI agent
and decrypting/decompressing/decoding the data in the VDI

client. Streaming performance is directly related to user ex-
perience. In the Xen system, packets from a VDI agent are
produced by netfront in a VM, then delivered to netback in
Dom0, which sends them to the network interface hardware.
The packets are transmitted on events such as screen changes,
key strokes, or mouse clicks.

The base standard specification for the VDI protocol, ITU-
T T.120 [10] specifies the terminal resource management for
telematic services. Also, T.121 provides a template for T.120
resource management, which developers are encouraged to use
as a guide for building VDI-related application protocols.

C. Cache Affinity

Cache affinity means keeping a VM within the same group
of CPUs sharing cache at a certain level. It is important to keep
a VM in the same cache group because cache misses, which
involve retrieving data from memory, are very expensive.
Sometimes, a scheduler considering SMP degrades system
performance by moving VMs too often, resulting in cache
trashing (cache data of a new VM replaces cache data of
the resident VM) and future cache misses. CPU schedulers
consider cache architecture in order to avoid cache trashing. In
our scheduler design, we migrate VMs with lower scheduling
classes to available CPUs first, so that VMs with higher
scheduling classes are not affected by cache trashing.

III. SCHEDULER CLASS DETECTION

In a virtualized system such as Xen, the hypervisor is
responsible for managing access to I/O devices, thus it has
the capability of monitoring all network traffic entering and
leaving a virtual machine. D-PriDe uses information about the
network traffic sent from a VM to determine its scheduling
class. D-PriDe uses packet information to distinguish between
two main priority classes: VMs which have an active network
connection from one or more desktop users, and those which
are either being used for batch processing or have no con-
nected users. If there are virtual machines detected that have
online users, then they are granted a higher priority class and
the system is switched to use a finer grain scheduling quantum,
allowing interactive applications to achieve higher quality of
service levels.

In Xen, the management domain is called Dom0, and we
term a particular guest domain as DomU. D-PriDe modifies
the scheduling operation hypercall (hypercall number 29) to
enable cooperation between Dom0 and the hypervisor. As
depicted in Figure 3, when DomU attempts to send a network
packet, it is prepared in the netfront driver and then handed
off to the netback driver to be fully processed. At this point,
D-PriDe can inspect the packet and determine whether it
matches the characteristics of an active VDI connection (e.g.,
based on port number). Dom0 then must make a hypercall so
that the Xen scheduler will determine which virtual machine
to schedule next. D-PriDe modifies this call so that it passes
priority class information along with the hypercall. Thus
whenever a VDI packet is detected in the outbound TCP buffer
of a virtual machine, the Xen scheduler will elevate the virtual

machine’s priority level; if a timeout occurs before another
VDI packet is seen, the priority level is reduced.

!"#$

Dom0

netback

T
 R

DomU

netfront

T
 R

Packet

(Source Port)

X
e
n

S
c
h
e
d
u
l
e
r

do_sched_op

net_tx_submit {

 hypercall(SCHEDOP_service)

}

UDP
 TCP

Dom Info Updates

Utility FN
 Next DomU

n
e
x
t
_
s
l
i
c
e

context_switch

Soft IRQ

Service Type Update

Fig. 3. D-PriDe Scheduler Architecture

D-PriDe places top emphasis on providing a positive user
experience, and assigns scheduling classes to clients in order
to schedule jobs with proper scheduling priority. We define
three different VM scheduling classes as follows:
• Online Active (ONA): Client is actively using VD, and

applications are running.
• Online Inactive (ONI): Client has VD connection and

applications are running, but client is currently in idle
mode (i.e., no VD packets are sent to the client).

• Offline (OFF): Client is not connected, but applications
may be running.

Once the scheduling hypercall with SCHEDOP service
option is called, the scheduling class is updated for the
corresponding DomU. The hypervisor stores the scheduling
class value itself in the domain’s meta data. If the scheduling
class does not update for a long period of time (e.g., 10
seconds), it will degrade to a lower scheduling class, and the
utility value of this VM will decrease. This situation occurs
when no outbound VDI traffic leaves DomU.

Xen uses soft interrupt requests (IRQs) as a scheduling
trigger. The soft IRQ is not interrupted by hardware, so it does
not have a preset time period. When initializing, the scheduler
registers the soft IRQ with the schedule() function through
open softirq. This can be adjusted to control the time quan-
tum between scheduling calls. D-PriDe uses a quantum of 5
ms if there are any ONA or ONI priority VMs, and a quantum
of 30 ms (the default of the Credit scheduler) otherwise.

IV. UTILITY DRIVEN PRIORITY SCHEDULING

A utility function enables fast calculation and reduces
scheduling overhead. When the proposed scheduler is called,
utility values for VMs are compared, and the VM with the
largest utility value is returned to the scheduler. This section
describes how we use a VM’s priority and time share to
determine its utility, and how the utility functions are used
to make scheduling decisions.

A. Time Share Definition

Consider a hypervisor with a set of N VMs. The proposed
algorithm schedules VMs according to their current utility
values. Each VM has its own scheduling class, which is
ONA, ONI, or OFF. Each VM x ∈ N is assigned a time
slot whenever the Xen hypervisor uses soft IRQ to trigger
a scheduling event. The duration of time slots is not fixed
because the time granularity of soft IRQ can range from tens
of microseconds to tens or thousands of milliseconds. This
irregularity makes hard real time scheduling difficult.

The scheduling algorithm selects a VM at time slot t. Based
on its received time (CPU utilization) and its delay (time since
last scheduling event), each VM is assigned a utility value.
We define trx(t) as a moving average of the received time
assigned to a VM x at time slot t over the most recent time
period of length t0.

If VM x has been in the system for at least time period t0,

trx(t) = trx(t− 1) +
sx(t)hx(t)

t0
− trx(t− 1)

t0
, (1)

and if VM x enters the system at time ux such that (t−ux) <
t0,

trx(t) =

∑ux

j=0 sx(t− j)hx(t− j)
t0

, (2)

where sx(t) is the time period from time slot t − 1 to time
slot t of VM x, and hx(t) = 1 if VM x is scheduled from
time slot t − 1 to time slot t and hx(t) = 0 otherwise. If
VM x is scheduled at time t, trx(t) increases. Otherwise,
trx(t) decreases by trx(t−1)

t0
. Intuitively, if trx(t) increases,

the utility value decreases and VM x will have fewer chances
to be scheduled in subsequent time slots.

In addition, we consider the situation when a high priority
VM x is scheduled consecutively for a long period of time.
In order to maintain fairness to other VMs, VM x is not
scheduled until trx(t) decreases. Therefore, we need one more
dimension to distribute the scheduling time evenly for VMs.
We define the scheduling delay tdx(t) as

tdx(t) =
now(t)− p(x)

t0
, (3)

where now(t) is the current scheduling time value at time
slot t and p(x) is the last scheduled time. tdx(t) is employed
in order to avoid the case when a VM receives enough CPU
utilization at first, but is not later scheduled until the average
utilization becomes small by Equation (1).

Together with Equations (1) and (3), we define the compos-
ite time unit (time share) containing CPU utilization trx(t) and
delay tdx(t) as

tx(t) =
trx(t)

tdx(t) + 1
. (4)

tx(t) decreases if, during the time period t0, the delay
increases or the average utilization decreases. We use this

equation in our definition of the utility function, as describing
in Section IV-D.

B. CPU Allocation Policy

We now introduce policies that recognize different CPU
allocation time-based types. These policies define rules that
govern relationships between VM scheduling classes. Let
C(x) denote the scheduling class of VM x, as determined by
our detection method described in Section III. Given two VMs
x and y, C(y) < C(x) means that scheduling class C(x) has a
higher preference value than C(y). Note that VMs in the same
scheduling class have the same guaranteed (or minimum) time
period. Let T (x) denote the guaranteed time share of VM x,
and let T (x) = T (y) when C(x) = C(y). For any two VMs
x, y ∈ N , we define the following policy rules:
• Policy Rule 1: In any time slot t, VM x ∈ N with time
share tx(t) < T (x) has a higher scheduling priority than any
other VM y ∈ N with scheduling class C(y) < C(x). Hence,
a VM y can be scheduled if and only if every VM x such that
C(y) < C(x) has time share tx(t) ≥ T (x).
• Policy Rule 2: In any time slot t, VM x ∈ N with
tx(t) ≥ T (x) has a lower scheduling priority than any other
VM y ∈ N with scheduling class C(y) < C(x) and time
share ty(t) < T (y). This means that once the utilization
guarantees of all VMs in a particular scheduling class are
satisfied, the scheduling priority shifts to VMs with lower
scheduling classes.
• Policy Rule 3: In any time slot t, if all VMs meet their
guaranteed time share, the remaining time must be distributed
such that for any two VMs x, y ∈ N , the time ratio
tx(t)/ty(t) = αC(x),C(y), where αC(x),C(y) is an arbitrary
number given as a part of the policy rules.

C. Scheduling Algorithm

The scheduling algorithm is based on a marginal utility
function that takes into account scheduling class. Given a
VM x with scheduling class C(x) and time share tx(t), let
fC(x)(tx(t)) denote the marginal utility function.

In each time slot t, the scheduling algorithm selects and
schedules VM x∗i of CPU i such that

x∗i = argmaxx∈Ni
{fC(x)(tx(t))}, (5)

where Ni is the set of VMs in CPU i. Accordingly, hx(t) is set
to 1 for the selected VM and to 0 for all other VMs. ∀x ∈ Ni,
time share tx(t) is updated according to Equation (4).

D. Marginal Utility Function

Suppose k different VM scheduling classes C1, ..., Ck such
that the guaranteed minimum time share for VMs in schedul-
ing class Ci is denoted by Ti, where T1 < ... < Tk. The
k scheduling classes are given a preference order that is
independent from the minimum time share requirement. If
Ti < Tj for some i, j such that 1 ≤ i, j ≤ k, Ci may have a
higher preference than Cj .

Let Ci and Cj be arbitrary VM types with Ti < Tj .
Assuming that Cj has a higher preference than Ci, we define

u

Uj

Ui

t
tmax
Tj
Ti

fj

fj

fi

fi

t0
 αt0

!
"
#$
%&
'(
)
#*
+
'

,$-+'./)0+'

Fig. 4. Marginal Utility Function: fj = −t+ tmax; fi = −αt+ tmax

marginal utility functions fi and fj for types Ci and Cj ,
respectively, as

fj(t) =

{
Uj if 0 ≤ t < Tj
−t+ tmax if Tj ≤ t ≤ tmax

(6)

and

fi(t) =

{
Ui if 0 ≤ t < Ti
−αCj ,Ci

t+ tmax if Ti ≤ t ≤ tmax
(7)

where Ui and Uj are constants defined such that Ujtmin >
Uitmax and 0 < tmin < tmax. Policy Rule 1 is satisfied
even if a VM in scheduling class Cj has a low time share.
Similarly, fj(Tj) is defined with Uitmin > fj(Tj)tmax in
order to satisfy Policy Rule 2. Suppose the current utilization
of a VM x in scheduling class Ci and that of a VM y in
scheduling class Cj are t0 and αt0, respectively, where α =
αCj ,Ci . Then, fi(t0) = fj(αt0), as shown in Figure 4. α ratio
can be easily extended to k different utility functions with
k different scheduling classes. Hence, if the time shares are
same for x and y, Policy Rule 3 will also be satisfied. When
Ci has a higher preference than Cj , fi and fj can be similarly
constructed with minor changes.

In practice, D-PriDe defines only three scheduling classes
(ONA, ONI, and OFF), however, the utility function scheme
described above could be used to support a much broader
range of priority types. This could also be used to allow for
differentiated priority levels within a scheduling class (i.e.,
multiple tiers within ONA), or to support a set of scheduling
classes outside of the VDI domain.

E. CPU Migration

As the purpose of CPU migration is to balance loads among
CPUs, D-PriDe tries to assign each CPU an equal number of
VMs in each scheduling class. We do not take OFF VMs
into consideration for CPU migration because OFF VMs are
scheduled in a lower priority than ON (ONA and ONI) VMs.
Once the scheduling algorithm selects a VM to schedule in the
next time slot for a particular CPU, it will attempt to assign
that VM to an idle CPU, if one exists. This process does
not take long time because the D-PriDe scheduler keeps idle
maps for the idle CPU currently as the Credit scheduler does.
Migration proceeds in order of priority from low to high, thus
minimizing cache trashing for higher priority VMs. This CPU
migration scheme is similar to that of the Credit scheduler

except the consideration of priority. The Credit scheduler
migrates VMs when there is no OVER priority in a run-queue,
whereas our migration scheme considers scheduling class
order from lower scheduling class VMs to higher scheduling
class VMs.

V. EXPERIMENTAL EVALUATION

In this section, we analyze the D-PriDe scheduler’s perfor-
mance and overheads.

A. Experimental Setup

Hardware: Our experimental testbed consists of one server
(2 cores, Intel 6700, 2.66 GHz, with 8GB memory and 8MB
L1 cache) running Xen and one PC running VDI clients.
Xen and VM Setup: We use Xen version 4.1.2 with linux
kernel version 3.1.1 for Dom0 and linux kernel version 3.0.9
for DomU. Xentop is used for measuring CPU utilization. We
use a 5 ms quantum in all the experiments except Section V-F,
where we experiment with other quanta.
VDI Environment Setup: We use tightVNC server (agent)
with the JAVA-based tightVNC client (vncviewer). VDI
clients, which connect to VM servers through vncviewer, are
co-located in the same network with the server in order to
prevent network packet delay. To measure packet inter-arrival
time in a VDI client, we modify the packet receiving function
processNormalProtocol (located in the V ncCanvas class
of vncviewer) by adding a simple statistics routine. We gen-
erate packets by playing a movie (23.97 frames per second
and 640×480 video resolution) on the VDI agent. While the
video is at 23.97 frames per second, in practice VNC delivers
a slower rate because of how it recompresses and manages
screen updates. A VM is called VD-VM when it is connected
to a client and runs a video application, whereas a VM is called
CPU-VM when it is or is not connected to a client and runs
CPU intensive application such as a linux kernel compilation.

B. Credit vs. D-PriDe

We performed experiments for the existing Credit schedul-
ing algorithm in a VDI setting, and found that packet inter-
arrival time degraded when CPU-VMs ran in the background.
Figure 5 and Figure 6 show the results when one VM runs
a VDI agent connected to a VDI client and maximum seven
CPU-VMs compile the linux kernel. We play a movie on the
VD-VM in order to generate screen refreshments, so that the
VDI agent on the VD-VM will send data to the VDI client.
Watching a movie on the VDI client requires high QoS with
respect to packet inter-arrival time. In order to measure packet
inter-arrival time, we quantify the time difference between
screen updates (a set of packets) from a client side.

When there are no interfering VMs, both schedulers see
an average screen update interval time of 69ms (as shown
for Credit in Figure 1). Figure 5(a) illustrates the average
additional packet delay when CPU intensive VMs are added.
For the Credit scheduler, as the number of CPU-VMs in-
creases, the added packet inter-arrival time becomes large due
to CPU interference. For the D-PriDe scheduler, however, the

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

'#"

#!"

!" $" %" &" '" #" (")"

!
"
#
$%
!
&
&
'
&
%(
)
*+
'
,%
-
'
.)
/
%0
1
23
%

4516'7%89%:(;%<=,'=2>"'%?@2%

*+,-./"

012+.0,"

(a) Added Packet Inter-Arrival Time

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

'#"

#!"

!" $" %" &" '" #" (")"

!
"#
$
%
#
&%
'(
)
*
+#
,
-
$
'.
/
01
'

23/4)&'-5'678'9$")$0+*)':;0'

*+,-./"

012+.0,"

(b) Standard Deviation

Fig. 5. Packet Delay Comparison between the Credit scheduler and the
D-PriDe scheduler for a VM playing a video (VD-VM) via VDI protocol,
and maximum seven CPU intensive VMs running a linux kernel compile:
(a) shows added packet delay defined as added delayi = packet delayi−
packet delay0 where i is the number of CPU-VMs; (b) describes a standard
deviation for the packet delay.

added packet inter-arrival time remains almost unchanged due
to the priority-based scheduling. Figure 5(b) shows that the
packet inter-arrival time fluctuation of the Credit scheduler
becomes very high when many CPU intensive VMs run in
the background, but the D-PriDe scheduler limits the standard
deviation even though the number of CPU-VMs increases. In
the worst case, the packet delay overhead of Credit is 66%,
whereas the overhead of D-PriDe is less than 2%.

Figure 6(a) shows the CPU share given to the VD-VM.
With no other VMs competing for a share, both schedulers
allocate approximately 31% of one core’s CPU time to the
video streaming VM. When additional VMs are added, this
share can decrease due to competition. However, when using
a fair share scheduler we would not expect the VM to receive
less than this base allocation until there are more than six VMs
(i.e., our two CPU cores should be able to give six VMs equal
shares of 33% each). In practice, imprecise fairness measures
prevent this from happening, and the CPU dedicated to the
VD-VM drops by over 7% when there are six or more VMs
in the Credit scheduler as shown by Figure 6(b). The priority
boost given to the VD-VM with D-PriDe prevents as much
CPU time being lost by the VD-VM, with a drop of only
2.8% in the worst case.

Figure 7 shows that the cumulative density function of
packet inter-arrival times in D-PriDe is more densely weighted

!"!#

$"!#

%!"!#

%$"!#

&!"!#

&$"!#

'!"!#

'$"!#

!# %# &# '# (# $#)# *#

!
"
#
$#
%
&'
()
%
*
+
$,
-
.$

/01234$*5$!"#$6+73+8'93$:;8$

+,-./0# 123,/1-#

(a) CPU Utilization

!"!#

$"!#

%"!#

&"!#

'"!#

("!#

)"!#

*"!#

+"!#

,"!#

!# $# %# &# '# (#)# *#

!
"
#
$%
&
'(
)
*(
)
(
&
+
(
$

,-./()$0*$!"#$%&'(&123($451$

-./012#

345.13/#

(b) CPU Interference

Fig. 6. CPU Utilization Comparison between the Credit scheduler and the
D-PriDe scheduler for a VM playing a video (VD-VM) via VDI protocol, and
maximum seven CPU intensive VMs running a linux kernel compile: (a) and
(b) illustrate CPU utilization and CPU interference of a VD-VM. CPU inter-
ference is defined as cpu interferencei = cpu usagei − cpu usage0.

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

$!" &!" (!" *!" ,!" $$!" $&!" $(!" $*!" $,!" %$!" %&!" %(!" %*!" %,!"

!
"
#
$

%&'()*$+,*)-./--01&2$304)5467

-./01-2"

302415"

Fig. 7. Cumulative Density Function (CDF) for Packet Inter-Arrival Time
from Credit and D-PriDe.

towards lower delays. The graph shows that 95% of screen
update packets arrive within 90 ms for D-PriDe, whereas only
40% of packets arrive within 90 ms and takes as long as 190
ms to achieve 95% CDF with Credit. This guarantees the user
experience when using D-PriDe is better than when using the
credit scheduler.

C. Multiple VD-VMs

In this experiment, we run multiple VD-VMs simultane-
ously and show how competition between VD-VMs (of the
same scheduling class) affects packet inter-arrival time and
its standard deviation. The results of this experiment are
shown in Figure 8. Since now all the VD-VMs are given the
same high priority, we expect the packet delay to increase
due to competition. However, the figure shows that D-PriDe
still achieves better results than Credit. The primary reason
is that D-PriDe uses a smaller quantum than Credit, which
makes the scheduler respond quickly for the short sporadic
requests. While D-PriDe cannot prevent competition between
equivalently classed VMs, it still lowers the total overhead and
keeps the deviation of the packet delay in a reasonably small
cap.

D. Automatic Scheduling Class Detection

One characteristic of VDI setups is that users may have
bursts of high interactivity followed by periods of idleness.

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'" #" (" $")" %" *" &" +"

!
"
#
$%
!
&
&
'
&
%(
)
*+
'
,%
-
'
.)
/
%%

0
1,
2
%3
,)
4
&
)
5&
%-
'
"
1)
6
7
4
%8
9
:;
%

<=9>'5%7?%@-A@B:%

,-./01"

234-02."

Fig. 8. Multiple VD-VMs: The figure shows the added packet delay defined
as added delayi = packet delayi−packet delay0 where i is the number
of VD-VMs, with the standard deviation of the packet delay.

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'" #" (" $")" %" *" &" +" '!"

!
"
#
$%
#
&'
(
)*
#
+&
,-
+#
$.
!
$$
/"
(
0&
1
/2

#
&3
2
45
&

1/2#&32/-5&

,-./01"

234-02."

Fig. 9. Automatic Scheduling Class Detection in the D-PriDe scheduler
improves the performance of an interactive user once competing VMs no
longer have active client connections.

The goal of D-PriDe is to automatically detect these events
with help from the hypervisor, and adjust the priority of VD-
VMs accordingly. To test D-PriDe’s ability to detect and adjust
scheduler classes, we consider an experiment where three VMs
all initially have virtual desktop clients actively connected to
them. The users of two of the VMs initiate CPU intensive tasks
and then disconnect after a four minute startup period. The two
CPU intensive VMs are assigned two VCPUs each so that they
can saturate the CPU usage across all the cores, interfering
with a video streaming task performed by the third VM.
Figure 9 shows the average packet arrival rates for the third
VM watching a video stream during the entire experiment. The
two CPU intensive VMs get disconnected at 4 min for both
Credit and D-PriDe schedulers. The Credit scheduler does not
know anything about which users are performing interactive
tasks, whereas the D-PriDe scheduler detects the scheduling
class based on the user traffic so that it can adjust the priority
of VMs. By minute 5, the two CPU VMs have been lowered
from scheduler class ONA to ONI since no VDI packets have
been detected by D-PriDe; they are further lowered to OFF
after a timeout expires in minute 6 and the two VMs are
considered low priority. This results in a decrease in packet
inter-arrival times for D-PriDe, increasing the user perceived
quality of service.

TABLE I
SCHEDULING OVERHEAD

Scheduler
Average
per call
(ns)

Max (ns) Min (ns) Total (µs)

D-PriDe 527 12057 32 1801
Credit 493 12082 64 874
SEDF 546 13201 56 645

E. Scheduling Overhead

We compare the scheduling overhead of the D-PriDe sched-
uler to the SEDF and Credit schedulers. We implement an
overhead checker in scheduler.c, which reports the scheduler
overhead (average time per call, maximum time, minimum
time, and total scheduling time) through xm dmesg every
five seconds. Among eight VMs created, four VMs run VD
services connected to a VDI client playing a video, and the
other four VMs run a linux kernel compile in the background.
Table I shows the overhead of the scheduling algorithms.
Credit has the most efficient overhead time on average, but
the average time difference between Credit and D-PriDe is 34
ns, which is negligible. Also, there is almost no difference
in the maximum scheduling times of the Credit and D-PriDe
schedulers. Since the time quantum of the D-PriDe scheduler
is smaller than the Credit scheduler, the D-PriDe scheduler
is called more frequently, resulting in greater total overhead.
However, the absolute cost of scheduling remains small: in an
average 5 second monitoring window only 0.036% of CPU
time is spent on scheduling.

F. Quantum Effects

The Credit scheduler uses a coarse-grained scheduling
quantum of 30 ms which does not perform well when VMs
run applications requiring short, irregularly-spaced scheduling
intervals (e.g., VD, voice, video, or gaming applications). In
this experiment, we try a range of quanta in order to find
a fine-grained quantum for the D-PriDe scheduler that yields
good performance with respect to packet inter-arrival time and
CPU utilization. All VMs are VD-VMs.

Figure 10 shows how scheduling quantum impacts packet
delay from the clients perspective and CPU utilization on the
server; in the best case we would like to minimize both, but
lower time quantums typically improve client responsiveness
at the expense of increased CPU overhead. We normalize the
packet delay by the score achieved by the scheduler with a
30ms quantum (the default used by Credit), and normalize
the total CPU utilization by the amount consumed with a very
fine 1ms quantum. We run eight VD-VMs simultaneously with
quantum times between 1 ms and 30 ms. The figure shows that
average packet inter-arrival time increases when the quantum
increases, whereas the CPU utilization decreases. The D-PriDe
scheduler uses a time quantum of 5 ms, which provides a
balance between packet inter-arrival time and CPU utilization.
We have also tested the impact of the 5ms quantum when
running CPU benchmarks inside competing VMs and found
less than 2% overhead.

!"!!#

!"$!#

!"%!#

!"&!#

!"'!#

("!!#

("$!#

(#)# *# (!#)!#

!
"
#$

%
&'
()
*
+,
)
#-
"
#$

%
.
/)
+

01%.21$+3$45+

+,-./0123#456728#9:82-;5--0<5/#=0.2#

+,-.5/0123#>4?#?@/015@,:#

Fig. 10. Normalized Performance for Packet Inter-Arrival Time and CPU
Utilization to show the best quantum to satisfy both criteria.

G. Discussion

Our results show that D-PriDe can significantly improve
VDI performance and that our scheduling algorithm does not
add significant overhead. When multiple background VMs are
competing for resources with a VD-VM, D-PriDe lowers the
interference impact from over 66% to less than 2% by using
a finer grained time quantum than Credit and prioritizing
the VM with an active desktop connection. When there are
multiple VD-VMs running simultaneously, D-PriDe improves
overall QoS by almost 40% and reduces the performance
variability seen by clients. We have shown that the cost of
making scheduling decisions in our system is comprable to
other Xen schedulers, even though it provides a more powerful
prioritization mechanism. Using a smaller scheduling time
quantum reduces the additional packet delay seen by clients
without incurring substantial overheads, and D-PriDe’s ability
to automatically detect when desktop users disconnect allows
it to revert to a longer time quantum when high interactive
performance is not required.

D-PriDe makes the assumption that virtual machines seeing
workloads that involve frequent screen updates sent via VDI
communication protocols are more important than other VMs.
While we believe this assumption is valid for mixed envi-
ronments hosting both virtual desktops and batch processing
tasks, the framework provided by D-PriDe could be used
in a variety of other situations as well. Utility functions
provide a flexible way to assign priorities, and could be easily
adapted for a situation such as running multiple scientific
computing jobs with different priority levels. Similarly, D-
PriDe’s adaptation of scheduling parameters based on hyper-
visor observed behavior has many other uses. For example,
the ruleset governing priority changes could instead be based
on packet origin IP address, allowing a VM hosting a web
application to automatically receive a priority boost whenever
customers from a preferred network region arrive. We believe
that resource management in the virtualization layer offers new
approaches to QoS management that can be provided in a
flexible, application agnostic way.

VI. RELATED WORK

The deployment of soft real-time applications are hindered
by virtualization components such as slow performance virtu-
alization I/O [11, 12], lack of real-time scheduling, and shared-
cache contention.

Certain scheduling algorithms [13, 14] use network traffic
rates to make scheduling decisions. [13] modifies the SEDF
scheduling algorithm in order to provide a communication-
aware CPU scheduling algorithm to tackle high consolidation
required circumstances, and conducts experiments on consoli-
dated servers. [14] modifies the Credit scheduling algorithm by
providing a task-aware virtual machine scheduling mechanism
based on inference techniques, but this algorithm uses a large
time quantum that is not conducive to interactive tasks. The
network traffic rate approach in general is not suitable for VDI
environments because high traffic rate does not directly imply
high QoS demands.

Real-time fixed-priority scheduling algorithms [1, 3] are
based on a hierarchical scheduling framework. RT-Xen [1]
uses multiple priority queues that increase scheduling process-
ing time by considering instantiation and empirical evaluation
of a set of fixed-priority servers within a VMM. [3] pro-
poses fixed priority inter-VM and reservation-based scheduling
algorithms to reduce the response time by considering the
schedulability of tasks. Instead of using SMP load balance,
these algorithms dedicate each VM to a physical CPU. This
approach can give better performance when a consistent level
of CPU throughput is required, but results in degraded perfor-
mance in a general VDI setting.

Soft real-time task scheduling algorithms [2, 4] have also
been studied. [2] focuses on managing scheduling latency and
controlling shared cache. This algorithm schedules VMs based
on the laxity time in voice streaming applications, resulting
in queue wait times of 2-5 ms and threshold delay of 2 ms.
However, average scheduling delay of 2 ms is too high in a
VDI setting, where delay is noticeable on the order of tens
of microseconds when multiple virtual desktop applications
are running. [4] assumes that VM types are set manually in
advance, which is not possible in a dynamic VDI setting.

An inference technique-based scheduler has been proposed
in [15]. The proposed scheduler is aware of task-level I/O-
boundness using inference techniques, thereby improving I/O
performance without compromising CPU fairness. The sched-
uler proposed in this paper aims to guarantee the fairness
between VMs with the knowledge of task-level I/O-boundness,
but the authors did not investigate interactive applications like
VDI services.

VII. CONCLUSION

Virtualization and cloud computing promise to transform
desktop computing by allowing large numbers of users to
be consolidated onto a small number of machines. However,
this goal cannot yet be achieved because most cloud hosting
companies are not yet willing to schedule multiple VMs per
CPU due to quality of service concerns; they prefer to buy
additional server resources and to err on the side of caution.

Our work tries to minimize VM interference in order to
provide high-performing virtual desktop services even when
the same machines are being used for computationally inten-
sive processing tasks. D-PriDe’s improved scheduling methods
have the potential to increase revenue for hosting companies
by improving resource utilization through server consolidation.
We have shown that our scheduler reduces interference effects
from 66% to less than 2% and that it can automatically detect
changes in user priority by monitoring network behavior.

In the future, further tests of the proposed algorithm are
needed in larger-scale systems (with more memory and a larger
number of VMs) where hardware components such as cache
and NUMA may impact experimental results.

REFERENCES

[1] C. Lu S. Xi, J. Wilson and C. Gill, “Rt-xen: Towards
real-time hypervisor scheduling in xen,” EMSOFT, 2011.

[2] M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh, and
S. Yajnik, “Supporting soft real-time tasks in the xen
hypervisor,” VEE, 2010.

[3] T. Cucinotta, G. Anastasi, and L. Abeni, “Respecting
temporal constratins in virtualized services,” COMPSAC,
2009.

[4] A. Crespo, I. Ripoll, and M. Masmano, “Partitioned
embedded architecture based on hypervisor: the xtratum
approach,” EDCC, 2010.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen
and the art of virtualization,” ACM SOSP, 2003.

[6] L. Cherkasova, D. Gupta, and A. Vahdat, “Comparison
of the three cpu schedulers in xen,” SIGMETRICS, 2007.

[7] K. J. Duda and D. R. Cheriton, “Borrowed-
virtual-time(bvt) scheduling: supporting latency-sensitive
threads in a general-purpose scheduler,” SOSP, 1999.

[8] N. Nishiguchi, “Evaluation and consideration of the
credit scheduler for client virtualization,” Xen Summit
Asia, 2008.

[9] S. Ma J. Wang and L. Liang, “Virtual desktop infras-
tructure problem statement,” IETF, 2011.

[10] ITU-T T.120, “Data protocols for multimedia conferenc-
ing,” ITU-T, 2007.

[11] D. Ongaro, A. L. Cox, and S. Rixner, “Scheduling i/o
in virtual machine monitors,” VEE, 2008.

[12] G. Liao, D. Guo, L. Bhuyan, and S. R. King, “Software
techniques to improve virtualized io performance on
multi-core systems,” ANCS, 2008.

[13] S. Govindan, J. Choi, A. R Nath, A. Das, B. Urgaonkar,
and A. Sivasubramaniam, “Xen and co.: Communication-
aware cpu management in consolidated xen-based host-
ing platforms,” VEE, 2007.

[14] H. Kim, H. Lim, J. Jeong, H. Jo, and J. Lee, “Task-aware
virtual machine scheduling for i/o performance,” VEE,
2009.

[15] H. Kim, H. Lim, J. Jeong, H. Jo, J. Lee, and S. Maeng,
“Transparently bridging semantic gap in cpu manage-
ment for virtualized environments,” ELSEVIER, 2009.

