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Abstract
Distributed in-memory caching systems such as mem-

cached have become crucial for improving the perfor-
mance of web applications. However, memcached by
itself does not control which node is responsible for
each data object, and inefficient partitioning schemes
can easily lead to load imbalances. Further, a statically
sized memcached cluster can be insufficient or inefficient
when demand rises and falls. In this paper we present
an automated cache management system that both intel-
ligently decides how to scale a distributed caching sys-
tem and uses a new, adaptive partitioning algorithm that
ensures that load is evenly distributed despite variations
in object size and popularity. We have implemented an
adaptive hashing system1 as a proxy and node control
framework for memcached, and evaluate it on EC2 using
a set of realistic benchmarks including database dumps
and traces from Wikipedia.

1 Introduction

Many enterprises use cloud infrastructures to deploy web
applications that service customers on a wide range of
devices around the world. Since these are generally
customer-facing applications on the public internet, they
feature unpredictable workloads, including daily fluctua-
tions and the possibility of flash crowds. To meet the per-
formance requirements of these applications, many busi-
nesses use in-memory distributed caches such as mem-
cached to store their content. Memcached shifts the per-
formance bottleneck away from databases by allowing
small, but computationally expensive pieces of data to be
cached in a simple way. This has become a key concept
in many highly scalable websites; for example, Facebook
is reported to use more than ten thousand memcached
servers.

1 Our system can be found in https://github.com/jinho10 as an open
source project.

Large changes in workload volume can cause caches
to become overloaded, impacting the performance goals
of the application. While it remains common, over-
provisoining the caching tier to ensure there is capacity
for peak workloads is a poor solution since cache nodes
are often expensive, high memory servers. Manual provi-
sioning or simple utilization based management systems
such as Amazon’s AutoScale feature are sometimes em-
ployed [7], but these do not intelligently respond to de-
mand fluctuations, particularly since black-box resource
management systems often cannot infer memory utiliza-
tion information.

A further challenge is that while memcached provides
an easy to use distributed cache, it leaves the application
designer responsible for evenly distributing load across
servers. If this is done inefficiently, it can lead to cache
hotspots where a single server is selected to host a large
set of popular data while others are left lightly loaded.
Companies such as Facebook have developed monitor-
ing systems to help administrators observe and manage
the load on their memcached servers [16, 18], but these
approaches still rely on expert knowledge and manual in-
tervention.

We have developed adaptive hashing that is a new
adaptive cache partitioning and replica management sys-
tem that allows an in-memory cache to autonomically ad-
just its behavior based on administrator specified goals.
Compared to existing systems, our work provides the fol-
lowing benefits:

• A hash space allocation scheme that allows for tar-
geted load shifting between unbalanced servers.

• Adaptive partitioning of the cache’s hash space to au-
tomatically meet hit rate and server utilization goals.

• An automated replica management system that adds or
removes cache replicas based on overall cache perfor-
mance.

We have built a prototype system on top of the popular
moxi + memcached platform, and have thoroughly eval-
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uated its performance characteristics using real content
and access logs from Wikipedia. Our results show that
when system configurations are properly set, our system
improves the average user reponse time by 38%, and hit
rate by 31% compared to the current approaches.

2 Background and Motivation

Consistent hashing [10] has been widely used in dis-
tributed hash tables (DHT) to allow dynamically chang-
ing the number of storage nodes without having to reor-
ganize all the data, which would be disastrous to appli-
cation performance. Figure 1 illustrates basic operations
of a consistent hashing scheme: node allocation, virtual
nodes, and replication. Firstly, with an initial number
of servers, consistent hashing calculates the hash values
of each server using a hash function (such as md5 in the
moxi proxy for memcached). Then, according to the pre-
defined number of virtual nodes, the address is concate-
nated with “-X”, X is the incremental number from 1 to
number of virtual nodes. Virtual nodes are used to dis-
tribute the hash space over the number of servers. This
way is particularly not efficient because the hash values
of server addresses are not guaranteed to be evenly dis-
tributed over the hash space, which makes imbalances.
This inefficiency is shown in Section 4.2.
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Figure 1: Consistent Hashing Operations; Ni is ith cache node.
Integer (32 bits) hash space consists of 232 possible key hashes.
Using virtual nodes somewhat helps to solve non-uniform key
hash distribution, but it is not guaranteed; Also, data replication
can help cache node faults.

Once the hash size for each server is fixed, it never
changes even though they may have serious imbalances.
Moreover, adding a new server may not significantly im-
prove performance since node allocation is determined
by hash values, which is a random allocation. Even
worse, the consistent hashing scheme has no knowledge
about the workload, which is a highly important vari-
ant [3].

As a motivating example, we randomly select 20,000
web pages among 1,106,534 pages in Wikipedia wiki-
books database to profile key and value statistics. Fig-
ure 2(a) shows the number of objects when using 100
cache servers. Even though the hash function tends
to provide uniformity, depending on the workloads the

number of objects in each server can largely vary. The
cache server that has the largest number of objects (659)
has 15× more objects than the cache server with the
smallest number of objects (42). This means that some
cache servers use a lot more memory than others, which
in turn worsens the performance. Figure 2(b) illustrates
the object size has a large variation, potentially resulting
in irregular hit rate to each server. Figure 2(c) describes
the comparison between the number of objects and the
size of objects in total. The two factors do not linearly
increase so that it makes harder to manage the multiple
number of servers. Figure 2(d) shows the average cache
size per each object by dividing the total used cache size
with the number of objects. From these statistics, we can
easily conclude that consistent hashing needs to be im-
proved with the knowledge of workloads.

3 System Design

The main argument against consistent hashing is that it
can become very inefficient if the hash space does not
represent the access patterns and cannot change over
time to adapt to the current workload. The main idea
of system design is that we adaptively schedule the hash
space size for each memory cache server so that the over-
all performance over time improves. This is essential
because currently once the size of hash space for each
memory cache server is set, it never changes the config-
uration unless a new cache server is added or the exist-
ing server is deleted. However, adding/deleting a server
does not have much impact since the assigned location is
chosen randomly ignoring workload characteristics. Our
system has three important phases: initial hash space
assignment using virtual nodes, space partitioning, and
memory cache server addition/removal. We first explain
the memory cache architecture and assumptions used in
the system design.

3.1 System Operation and Assumptions
There exist three extreme ways to construct a memory
caching tier depending on the location of load-balancers:
centralized architecture, distributed architecture, and hi-
erarchically distributed architecture as shown in Fig-
ure 3. The centralized architecture handles all the re-
quests from applications so that it can control hash space
in one place which means object distribution can be
controlled easily, whereas the load-balancers in the dis-
tributed architectures can have different configurations
so that managing object distribution is hard. Since the
centralized architecture is widely used structure in real
memory caching deployments, we use this architecture
in this paper. As load-balancers are implemented in a
very efficient way minimizing the processing time, we
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Figure 2: Wikibooks object statistics shows the number of objects in each server and used cache size are not uniform so that cache
server performance is not optimized.

assume that the load-balancer does not become the bot-
tleneck.
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Figure 3: Memory Cache System Architecture; LB is load-
balancer or proxy.

When a user requests a page from a web server appli-
cation, the application sends one or more cache requests
to a load-balancer – applications do not know there is
a load-balancer since the implementation of the load-
balancer is transparent. The load-balancer hashes the
key to find the location where the corresponding data is
stored, and sends the request to one of the memory cache
servers (get operation). If there is data already cached,
the data is delivered to the application and then to the
user. Otherwise, the memory cache server notifies the
application that there is no data stored yet. Then, the ap-
plication queries the source medium such as database or
file system to read the data, then sends it to the user and
stores in the cache memory (set operation). Next time
another user wants to read the same web site, the data is
read from the memory cache server, resulting in a faster
response time.

3.2 Initial Assignment
Consistent hashing mechanism can use “virtual nodes” in
order to balance out the hash space over multiple mem-
ory cache servers so that different small chunks of the
hash space can be assigned to each cache server. The
number of virtual nodes is an administrative decision
based on engineering experience, but it has no guaran-
tee on the key distribution. Since our goal is to dynam-
ically schedule the size of each cache server, we make a
minimum bound on how many virtual nodes we need for
schedulability.

Let S = {s1, ...,sn0} be a set of memory cache servers
(the terms, memory cache server and node, are exchange-
ably used), where n0 is the initial number of nodes. We
denote v as the number of virtual nodes that each node
has in the hash space H, and vi as a virtual node i. That
is, a node i can have |si|= |H|

n0
objects, and a virtual node

i can have |vi|= |H|
n0×v objects, where |H| is the total num-

ber of possible hash value. One virtual node can affect
the other cache server in a clockwise direction as shown
in Figure 1.

The key insight in our system is that in order to enable
efficient repartitioning of the hash space, it is essential to
ensure that each node has some region of the total hash
space that is adjacent to every other node in the system.
This guarantees that, for example, the most overloaded
node has some portion of its hash space that is adjacent to
the least loaded node, allowing a simple transfer of load
between them by adjusting just one boundary. In order
to allow every pair to influence each other, we need to
make at least

v≥
n0P2

n0
= n0−1, (1)

virtual nodes, where P is a permutation operation. Equa-
tion (1) guarantees that every node pair appears twice in
a reverse order. So each physical node becomes (n0−1)
virtual nodes, and the total number of overall virtual
nodes becomes n0× (n0−1). Also, we can increase the
total number of virtual nodes by multiplying a constant
to the total number. Figure 4 depicts an example assign-
ment when there are five nodes. In a clockwise direction,
every node influences all the other nodes.

N1
N2 N3 N4 N5 N1 N3 N5 N2

N4

N3
N1N4N2N5N4N1N5N3

N2

Figure 4: Assignment of Five Memory Cache Servers in Ring;
As the example shows, N1 can influence all the other nodes N2,
N3, N4, and N5. This applies to all the nodes.
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Our node assignment algorithm is as follows. Let each
node si have an array si, j = {(x,y) | 1 ≤ x ≤ n0 and y ∈
{0,1}}, where 1 ≤ i ≤ n0 and 1 ≤ j ≤ (n0− 1). Let sx

i, j
and sy

i, j be x and y values of si, j, respectively. sx
i, j is de-

fined as

sx
i, j =

{
j if j < i
j+1 if j ≥ i,

and all sy
i, j are initialized to 0. We pick two arbitrary

numbers w1 and w2, where 1 ≤ w1 ≤ n0 and 1 ≤ w2 ≤
n0−1, assign w1 in the ring, and label it as virtual node
v∗ in sequence (∗ increases from 1 to n0 × (n0 − 1)).
Set sy

w1,w2 = 1, and w3 = sx
w1,w2

. We denote w4 =
(w2 + k) mod n0, where 1 ≤ k ≤ n0 − 1. We then in-
crement k from 1 to n0− 1, and check entries satisfying
sy

w3,w4 = 0, and assign w3 to w1, w4 to w2, and sx
w3,w4

to
w3. Repeat this routine until the number of nodes reaches
n0× (n0− 1). For performance analysis, the time com-
plexity of the assignment algorithm is O(n3

0) because we
have to find sy

w3,w4 = 0 to obtain one entry each time, and
there are n0× (n0−1) virtual nodes. Therefore, the total
time is n0(n0− 1)2. Note that this cost only needs to be
paid once at system setup.

3.3 Hash Space Scheduling

As seen in Figure 2, key hash and object size are not uni-
formly distributed so that the number of objects and the
size of used memory are significantly different, which in
turn gives different performance for each memory cache
server. The goal to use memory cache servers is to speed
up response time to users by using a faster medium than
the original source storage. Therefore, the performance
of memory cache servers can be represented by the hit
rate with the assumption that response time for all the
cache servers are the same. However, usage ratio of each
server should also be considered because the infrequent
use of a cache server usually means the memory space is
not fully utilized.

We define t0 as the unit time slot for memory cache
scheduling, which means the load-balancer repartitions
the cache every t0 time units. t0 is an administrative pref-
erence that can be determined based on workload traffic
patterns. Typically, only a relatively small portion of the
hash space controllable by a second system parameter is
rearranged during each scheduling event. If workloads
are expected to change on an hourly basis, setting t0 on
the order of minutes will typically suffice. For slower
changing workloads t0 can be set to an hour.

In the load-balancer which distributes cache requests
to memory cache servers, we can infer the cache hit rate
based on the standard operations: set and get. A hit rate
of a node si is

hi = 1− set(i)
get(i)− set(i)

,

where if hi > 1, hi = 1, and if hi < 0, hi = 0. “Hit rate” is
a composite metric to represent both object sizes and key
distribution, and this also applies when servers have dif-
ferent cache size. A simplified weighted moving average
(WMA) with the scheduling time t0 is used to estimate
the hit rate smoothly over the scheduling times. There-
fore, hi(t) = hi(t − 1)/t0 + (1− set(i)/get(i)), where t
is the current scheduling time and t − 1 is the previous
scheduling time. In each scheduling, set(i) and get(i)
are reset to 0. We can also measure the usage ratio mean-
ing how many requests are served in a certain period of
time. The usage of a node si is ui = set(i)+ get(i), and
the usage ratio is ri = ui/max1≤ j≤n{u j}, where n is the
current number of memory cache servers, The usage ra-
tio also uses a simplified WMA so that ri(t) = ri(t)/t0 +
ui/maxa≤ j≤n{u j}. In order to build up a scheduling
objective with the hit rate and the usage ratio, we de-
fine a composite cost from hit rate and usage rate as
c=α ·h+(1−α) ·r, where α ∈ [0,1] is the impact factor
to control which feature is more important and h = 1−h
is a miss rate, and state the scheduling objective as fol-
lows:

minimize ∑
n
i=1 (α ·hi +(1−α) · ri)

subject to hi ∈ [0,1] and ri ∈ [0,1], 1≤ i≤ n
α ∈ [0,1]

where n is the current number of the memory cache
servers, and the objective is the sum of cost, and the
conditions bind the normalized terms. This remains in
a linear programming because we do not expand this to
an infinite time span, which means the current schedul-
ing state information propagates to the next scheduling
only through hit rate WMA and usage ratio WMA. That
is, we do not target to optimize all future schedulings,
but the current workload pattern with small impact from
past workload patterns. To satisfy the objective, we de-
fine the simple heuristic that finds the most cost disparity
node pair with

s∗i, j = max1≤i, j≤n{ci− c j}. (2)

For performance analysis, since c is always non-
negative, this problem becomes the problem finding a
maximum cost and a minimum cost. Therefore, we can
find proper pairs in O(n) because only neighbor nodes
are considered to be compared. Equation (2) outputs a
node pair where ci > c j, so a part of the hash space in ci
needs to move to c j for balancing out. The load-balancer
can either just change the hash space or migrate objects
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from ci to c j. Changing just hash space would provide
more performance degradation than data migration be-
cause the old cache space in ci should be filled in c j
again by reading slow data source medium. The amount
of hash space is determined by the ratio of two nodes as
c j/ci to balance the space. Also, we define β ∈ (0,1] to
control the amount of hash space moved from one node
to the other node. Therefore, we move data from node si
in a counter clockwise direction (i.e., decreasing direc-
tion) of the consistent hash ring for the amount of

β · (1−
c j

ci
)×|si|. (3)

For example, if we start with five inital memory cache
servers, and at the first scheduling point with ci = 1,
c j = 0.5 and β = 0.01 (1%), we have to move ci with
the amount of 0.01 · (1− 0.5

1 )× 232

20 = 1,073,741. This
means 0.5% of the hash space from si moves to s j. With
traditional consistent hashing, there is no guarantee that
si has hash space adjacent to s j, but our initial hash as-
signment does guarantee all pairs of nodes have one ad-
jacent region, allowing this shift to be performed easily
without further dividing the hash space.

3.4 Node Addition/Removal
Most current memory cache deployments are fairly static
except for periodic node failures and replacements. We
believe that these cache deployments can be made more
efficient by automatically scaling them along with work-
loads. Current cloud platforms allow virtual machines to
be easily launched based on a variety of critiera, for ex-
ample by using EC2’s as-create-launch-config command
along with its CloudWatch monitoring infrastructure [5].

The main goal of adding a new server is to balance
out the requests across replicas that overall performance
improves. Existing solutions based on consistent hash-
ing rely on randomness to balance the hash space. How-
ever, this can not guarantee that a new server will take
over the portion of the hash space that is currently over-
loaded. Instead, our system tries to more actively assign
a balanced hash space to the new server. The base idea
is that when servers are overloaded− the loads cross up-
ward the threshold line defined in advance based on ser-
vice level agreement (SLA) and sustain the overloaded
states for a predefined period of time − we find the most
overloaded k servers with s∗i =maxk

1≤i≤n{ci} and support
them with new servers, where an operator maxk denotes
finding top k values. So, n0 number of virtual nodes are
added as neighbors of s∗i ’s virtual nodes in the counter
clockwise direction. The new server takes over exactly
half of the hash space from s∗i , which is |si|

2 . The left
part of Figure 5 illustrates that s j is overloaded and sk is
added. sk takes over a half of the hash space s j has.

sksi

Migrate

new node

Set

removed
sj sksi sjsi

Set

moved

Node Addition Node Removal

Figure 5: Object Affiliation in Ring After Node Addition and
Removal

When a server is removed, the load-balancer knows
about the removal by losing a connection to the server
or missing keep-alive messages. Existing systems deal
with node removal by shifting all the objects belonging
to the removed node to the next node in a clockwise di-
rection. However, this operation may make the next node
overloaded and also misses a chance to balance the data
over all the cache servers. When a node is removed in
our system due to failure or managed removal − as with
the adding criteria, the loads cross downward the thresh-
old line and sustain the states − the two immediately
adjacent virtual nodes will divide the hash space of the
removed node. As shown in the right part of Figure 5,
when there are three nodes si, sk, and s j in a clockwise
sequence, and sk is suddenly removed due to some rea-
sons, the load-balancer decides how much hash space si
moves based on the current costs ci and c j. si needs to
move c j

ci+c j
×|s j| amount of the hash space in a clockwise

direction.
Of course, after a node is added or removed, the hash

space scheduling algorithm will continue to periodically
repartition hash space to keep the servers balanced.

3.5 Implementation Considerations

To end our discussion of the system design, it is worth
highlighting some of the practical issues involved in im-
plementing the system in a cloud infrastructure. The
scheduling algorithm is simple, and so is reasonable for
implementation; however there exist two crucial aspects
that must be addressed to deploy the system in the real
infrastructure.

Data migration: When the scheduling algorithm
schedules the hash space, it inevitably has to migrate
some data from one server to another. Even though data
are not migrated, the corresponding data are naturally
filled in the moved hash space. However, since a re-
sponse time between an original data source and a mem-
ory cache server are significantly different, users may
feel slow response time [9]. The best way is to migrate
the affected data behind the scene when the scheduling
decision is made. The load-balancer can control the data
migration by getting the data from the previous server
and setting the data to the new server. The implementa-
tion should only involve the load-balancer since memory
cache applications like memcached are already used in
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Figure 6: Experimental Setup

many production applications. Also, Couchbase [6], an
open source project, currently uses a data migration so
that it is already publicly available.

Scheduling cost estimation: In the scheduling algo-
rithm, the cost function uses the hit rate and the usage
ratio because applications or load-balancers do not know
any information (memory size, number of CPUs, and so
on) about the attached memory cache servers. Estimating
the exact performance of each cache server is challeng-
ing, especially under the current memory cache system.
However, using the hit rate and the usage ratio makes
sense because these two factors can represent the current
cache server performance. Therefore, we implement the
system as practical as possible to be deployed without
any modifications to the existing systems.

4 Experimental Evaluation

Our goal is to perform experiments in a laboratory envi-
ronment to find out the scheduler behavior, and in a real
cloud infrastructure to see the application performance.
We use the Amazon EC2 infrastructure to deploy our sys-
tem.

4.1 Experimental Setup

Laboratory System Setup: Five experimental servers,
each of which has 4× Intel Xeon X3450 2.67GHz pro-
cessor, 16GB memory, and a 500GB 7200RPM hard
drive. Dom-0 is deployed with Xen 4.1.2 and Linux
kernel 3.5.0-17-generic, and the VMs use Linux ker-
nel 3.3.1. A Wikipedia workload generator, a web
server, a proxy server, and memory cache servers are

S
er

v
er

 N
u
m

b
er

 1

 2

 3

 4

 5 Consistent

S
er

v
er

 N
u

m
b

er

Hash Space (0 - 2
32

)

 1

 2

 3

 4

 5 Adaptive

(a) Initial Assignment Hash Map (5 servers)

 0

 200

 400

 600

 800

 1000

 1200

1 2 3 4 5

H
as

h
 S

p
ac

e 
S

iz
e 

(x
1

0
6
)

Server Number

Consistent
Adaptive

(b) Hash Space Size (5 servers)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Hash Space Size (0 - 2
30

)

Consistent
Adaptive

(c) Hash Space Dist. (20 servers)

Figure 7: Initial hash space assignment with 5 - 20 memory
cache servers.

deployed in a virtualized environment. We use Me-
diaWiki 1.14.1 [13], moxi 1.8.1 [15], and memcached
1.4.15 [14]. MediaWiki has global variables to spec-
ify whether it needs to use memory cache: wgMainCa-
cheType, wgParserCacheType, wgMessageCacheType,
wgMemCachedServers, wgSessionsInMemcached, and
wgRevisionCacheExpiry. In order to cache all texts,
we need to set wgRevisionCacheExpiry with expiration
time, otherwise MediaWiki always retrieves text data
from database.

Amazon EC2 System Setup: As shown in Figure 6(a),
web servers, proxy, and memory cache servers are de-
ployed in Amazon EC2 with m1.medium – 2 ECUs, 1
core, and 3.7 GB memory. All virtual machines are in
us-east-*. Wikipedia clients are reused from our labora-
tory servers.

Wikipedia Trace Characteristics: Wikipedia database
dumps and request traces have been released to sup-
port research activities [21]. January 2008 database
dump and request traces are used in this paper. Fig-
ure 6(b) shows the trace characteristics of Wikipedia af-
ter we have scaled down the logs through sampling. Fig-
ure 6(b)(1) illustrates the number of requests per sec-
ond from a client side to a Wikipedia web server. Re-
quests are sent to a web server, which creates the requests
sent to a proxy server and to individual memory cache
servers depending on the hash key. Figure 6(b)(2) de-
picts the key distribution over the hash space 232 range
– most keys are the URL without a root address (e.g.,
http://en.wikipedia.org/wiki/3D Movie).
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Figure 8: Hash Space Scheduling with Different Scheduling Impact Values α and β .

4.2 Initial Assignment

As we explain in Section 2 and 3.2, the initial hash space
scheduling is important. Firstly, we compare the hash
space allocation with the current system, ketama [11] –
an implementation of consistent hashing. Figure 7 il-
lustrates the initial hash space assignment. Figure 7(a)
shows the difference between the consistent hashing al-
location and adaptive hasing allocation when there are
five memory cache servers. The number of virtual nodes
is 100 (system default) for the consistent hashing scheme
so that the total number of virtual nodes is 5 × 100. Our
system uses the same number of virtual nodes by increas-
ing the number of virtual nodes per physical node by a
factor of 100

(n0−1) . With n0 = 5, the total number of vir-

tual nodes in our system is 5× 4× 100
4 = 500. Consis-

tent hashing has an uneven allocation without knowledge
of workloads, which is bad. Adaptive hasing starts with
the same size of hash space to all the servers, which is
fair. Figure 7(b) compares the size of hash space allo-
cated per node with each technique. In consistent hash-
ing, the largest gap between the biggest hash size and
the smallest hash size is 381,114,554. This gap can
make a huge performance difference between memory
servers. Figure 7(c) shows the hash size distribution
across 20 servers—our approach has a less variability in
the hash space assigned per node. Even worse, the con-
sistent hashing allocation fixes the assignment based on
a server’s address, and does not adapt if the servers are
not utilized well. We can easily see that without knowl-
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edge of workloads, it is hard to manage this allocation to
make all the servers perform well in a balanced manner.

4.3 α Behavior

As described in Section 3.3, we have two parameters α

and β to control the behaviors of the hash space sched-
uler. α gauges the importance of hit rate or usage rate.
α = 1 means that we only consider the hit rate as a metric
of scheduling cost. α = 0 means that we only consider
the usage rate as a metric of scheduling cost. β is the ra-
tio of the hash space size moved from one memory server
to another. Since β changes the total scheduling time
and determines fluctuation of the results, we fix β as a
0.01 (1%) based on our experience running many times.
In this experiment, we want to see the impact of α pa-
rameter. Particularly, we check how α changes hit rate,
usage rate, and hash space size. Our default scheduling
frequency is 1 min.

As a reference, Figure 8(a) illustrates how the current
consistent hashing system works under the Wikipedia
workload. The default hash partitioning leaves the three
servers unbalanced, causing significant differences in the
hit rate and utilization of each server.

Figure 8(b) shows the performance changes when α =
1.0, which means we only consider balancing hit rates
among servers. As Host 3 starts with a lower hit rate than
other two hosts, the hash scheduler takes a hash space
from Host 3 in order to increase its hit rate. The usage
rate of host 3 decreases as its hash allocation decreases.

Figure 8(c) depicts the results when α = 0.0, which
means we only seek to balance usage rates among
servers. The system begins with an equal hash space al-
location across each host, but due to variation in object
popularity, each host receives a different workload inten-
sity. Since Host 1 initially has about 2.5 times as many
requests per second arriving to it, the scheduler tries to
rebalance the load towards Hosts 2 and 3. The system
gradually shifts data to these servers, eventually balanc-
ing the load so that the request rate standard deviation
across servers drops from 0.77 to 0.09 over the course of
the experiment. This can be seen from the last (fourth)
figure in Figure 8(c).

To balance these extremes, we next consider how α

value (0.5) affects the performance. Figure 8(d) shows
hit rate and usage rate of each server with α = 0.5. Since
the cost of each server is calculated out of hit rate and us-
age rate, the scheduler tries to balance both of them. As
shown in the third graph in Figure 8(d), the costs balance
among three servers which also means balancing both hit
rate and usage rate.

Since workloads have different characteristics, the pa-
rameters α and β should be adjusted accordingly. We
show further aspects of this adjustment while experi-
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Figure 10: Hash Space Scheduling Analysis

menting the system in the Amazon EC2 infrastructure.

4.4 β Behavior

β value is the ratio of the amount of hash size moved in
each scheduling time. We can show the behavior of β

by illustrating the number of requests from each server
(Figure 10(a)) and the amount of hash size per schedul-
ing time (Figure 10(b)). As β value 0.01 yields approx-
imately 1% of hash space from Equation (3), the moved
hash size is decreasing as the hash space of an overloaded
server decreases. Figure 10(b) shows the amount of hash
space moved each interval. This continues to fall as Host
1’s hash space decreases, but has relatively little effect on
the request rate. However, after 180 minutes, a small, but
very popular region of the hash space is shifted to Host 2.
The system responds by trying to move a larger amount
of data between hosts in order to rebalance them. This il-
lustrates how the system can automatically manage cache
partitioning, despite highly variable workloads.

4.5 Scaling Up and Down

As we explained in Section 3.4, adaptive hasing can au-
tonomously add or delete memory cache servers based
on the current performance. Since cloud infrastructure
hosting companies provide a function to control the re-
sources elastically, this is a very useful feature to prevent
performance issues due to traffic bursts situation. Fig-
ure 9 shows the performance impact when adding a new
server or deleting a server from the memory cache tier.
Figure 9(a) starts with three memory cache servers, and
a new server is added at 100 minutes due to an over-
loaded server. When a new server is added, the over-
loaded server gives 30% of its traffic to the new server so
that overall usage rates of all servers are balanced. Con-
versely, Figure 9(b) assumes that one server out of five
servers crashes at 100 minutes. As our initial hash allo-
cation assigns the servers adjacent to one another, this
gives a good benefit by distributing hash space to all
other servers. This can be seen from the third graph in
Figure 9(b).
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Figure 9: Memory Cache Node Addition / Deletion (α = 0.5 and β = 0.01).

4.6 User Performance Improvement

The previous experiments have demonstrated how the
parameters affect the adaptive hash scheduling system;
next we evaluate the overall performance and efficiency
improvements it can provide. We use Amazon EC2 to
run up to twenty total virtual machines — three web
servers, one proxy server, one database, and between 3
and 15 memory cache servers. We use five servers in our
own lab to act as clients, and have them connect to the
web servers using the Wikipedia workload.

We compare two caching approaches: a fixed size
cluster of fifteen caches partitioned using Ketama’s con-
sistent hashing algorithm and our adaptive approach. The
workload starts at 30K req/min, rises to 140K req/min,
and then falls back to the original load over the course of
five hours, as shown in Figure 12. We configure Ketama
for a “best case scenario”—it is well provisioned and re-
ceives an average response time of 105 ms, and a hit rate
of 70%. We measure our system with α values between
0 and 1, and initially allocate only 3 servers to the mem-
cached cluster. Our system monitors when the request
rate of a cache server surpasses a threshold for more than
30 seconds to decide whether to add or remove a node
from the memory server pool. For this experiment, we
found that more than 6K requests/sec caused a signifi-
cant increase for the response time, so we use this as the
threshold.

Figure 11 shows (a) average hit rate; (b) average re-

sponse time from clients; (c) average standard deviation
on number of requests to the EC2 cache servers; (d) num-
ber of used servers including dynamically added ones.
Horizontal lines show the average performance of the
current consistent hashing system used by moxi, and bars
represent our system with different α values.

As expected, increasing α causes the hit rate to im-
prove, providing as much as a 31% increase over Ke-
tama. The higher hit rate can lower response time by
up to 38% (figure b), but this is also because a larger α

value tends to result in more servers being used (figure
d). Since a large α ignores balance between servers (fig-
ure c), there is a greater likelihood of a server becoming
overloaded when the workload shifts. As a result, using
a high α does improve performance, but it will come at
increased monetary cost for using more cloud resources.
We find that for this workload, the system administrators
may want to assign α = 0.5, which achieves a reason-
able average response time while requiring only a small
number servers compared to Ketama.

Figure 12 shows how the workload and number of ac-
tive servers changes over time for α = 1. As the work-
load rises, the system adapts by adding up to five ad-
ditional servers. While EC2 charges in full hour in-
crements, our system currently aggressively removes
servers when they are no longer needed; this behavior
could easily be changed to have the system only remove
servers at the end of each instance hour.
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Figure 11: Amazon EC2 Deployment: Five Workload Generators, Three Web Servers, One Database, and Total 15 Memory Cache
Servers in Memory Cache Pool; Three memory cache servers are used initially.
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based on the workload intensity.

5 Related Work

Peer-to-peer applications gave rise to the need for dis-
tributed lookup systems to allow users to find content
across a broad range of nodes. The Chord system used
consistent hashing algorithms to build a distributed hash
table that allowed fast lookup and efficient node removal
and addition [20]. This idea has since been used in a
wide range of distributed key-value stores such as mem-
cached [14], couchbase [6], FAWN [2], and SILT [12].
Rather than proposing a new key-value store architec-
ture, our work seeks to enhance memcached with adap-
tive partitioning and automated replica management.
Previously, memcached has been optimized for large
scale deployments by Facebook [16, 18], however their
focus is on reducing overheads in the network path,
rather than on load balancing. Zhu et. al. [22] demon-
strate how scaling down the number of cache servers
during low load can provide substantial cost savings,
which motivates our efforts to build a cache management
system that is more adaptable to membership changes.
Christopher et. al. [19] proposes a prediction model to
meet the strict service level objectives by scaling out us-
ing replication.

There are many other approaches for improving the
performance of key-value stores. Systems built upon
a wide range of hardware platforms have studied, in-
cluding low-power servers [2], many-core processors [4],
having front-end cache [8], and as combined memory
and SSD caches [17]. While our prototype is built around

memcached, which stores volatile data in RAM, we be-
lieve that our partitioning and replica management al-
gorithms could be applied to a wide range of key-value
stores on diverse hardware platforms.

Centrifuge [1] proposes a leasing and partioning
model to provide the benefits of fine-grained leases to in-
memory server pools without their associated scalability
costs. However, the main goal of Centrifuge is to provide
a simplicity to general developers who can use the pro-
vided libraries to model leasing and partioning resources.
This work can be applied to managing the memory cache
system, but Centrifuge does not support dynamic adap-
tation to workloads.

6 Conclusion

Many web applications can improve their performance
by using distributed in-memory caches like memcached.
However, existing services do not provide autonomous
adjustment based on the performance of each cache
server, often causing some servers to see unbalanced
workloads. In this paper we present how the hash space
can be dynamically re-partitioned depending on the per-
formance. By carefully distributing the hash space across
each server, we can more effectively balance the system
by directly shifting load from the most to least loaded
servers. Our adaptive hash space scheduler balances both
the hit rate and usage rate of each cache server, and the
controller can decide automatically how many memory
cache servers are required to meet the predefined per-
formance. The partitioning algorithm uses these param-
eters to dynamically adjust the hash space so that we
can balance the loads across multiple cache servers. We
implement our system by extending memcached and an
open source proxy server, and test both in the lab and in
Amazon EC2. Our future works include an automatic α

value adjustment according to the workloads and a mi-
cro management of hot objects without impacting appli-
cation performance.
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