
HybridMR: A Hierarchical MapReduce Scheduler
for Hybrid Data Centers
Bikash Sharma∗, Timothy Wood†, Chita R. Das∗

∗Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA
{bikash, das}@cse.psu.edu

†Department of Computer Science, The George Washington University, Washington, DC
timwood@gwu.edu

Abstract— Virtualized environments are attractive because
they simplify cluster management, while facilitating cost-effective
workload consolidation. As a result, virtual machines in public
clouds or private data centers, have become the norm for
running transactional applications like web services and virtual
desktops. On the other hand, batch workloads like MapReduce,
are typically deployed in a native cluster to avoid the performance
overheads of virtualization. While both these virtual and native
environments have their own strengths and weaknesses, we
demonstrate in this work that it is feasible to provide the best of
these two computing paradigms in a hybrid platform.

In this paper, we make a case for a hybrid data center consisting
of native and virtual environments, and propose a 2-phase
hierarchical scheduler, called HybridMR, for the effective resource
management of interactive and batch workloads. In the first
phase, HybridMR classifies incoming MapReduce jobs based on
the expected virtualization overheads, and uses this information
to automatically guide placement between physical and virtual
machines. In the second phase, HybridMR manages the run-
time performance of MapReduce jobs collocated with interactive
applications in order to provide best effort delivery to batch
jobs, while complying with the Service Level Agreements (SLAs)
of interactive applications. By consolidating batch jobs with
over-provisioned foreground applications, the available unused
resources are better utilized, resulting in improved application
performance and energy efficiency. Evaluations on a hybrid
cluster consisting of 24 physical servers and 48 virtual machines,
with diverse workload mix of interactive and batch MapReduce
applications, demonstrate that HybridMR can achieve up to
40% improvement in the completion times of MapReduce jobs,
over the virtual-only case, while complying with the SLAs of
interactive applications. Compared to the native-only cluster,
at the cost of minimal performance penalty, HybridMR boosts
resource utilization by 45%, and achieves up to 43% energy
savings. These results indicate that a hybrid data center with
an efficient scheduling mechanism can provide a cost-effective
solution for hosting both batch and interactive workloads.

Keywords—Hybrid Data Center, Hadoop MapReduce, Resource
Management, Scheduling, Virtualization, Performance, Energy

I. INTRODUCTION

Virtualization has evolved as a key technology to support
agile and dynamic IT infrastructure, which forms the base of
large distributed systems like data centers and clouds. Virtu-
alization enables autonomic management of underlying hard-
ware, server sprawl reduction through workload consolidation,
and dynamic resource allocations for better throughput and
energy efficiency. Consequently, major cloud providers like
Amazon EC2, RackSpace and Microsoft Azure, utilize server
virtualization to efficiently share resources among customers,
and allow for rapid elasticity.

Despite these numerous benefits, virtualization introduces an
extra software layer to the system stack, incurring overheads to
native performance. Analyses with generic benchmarks have
shown the virtualization overheads to be around 5% for com-
putation and 15% for I/O workloads [10]. While these virtual-
ization overheads have continued to fall with the introduction
of virtualization-aware hardware [22], the effects are still large
enough that many companies like Google and Facebook still
prefer physical machines (PMs) in their data centers to run
their core applications like Web search [7]. For data analytics
frameworks such as Hadoop MapReduce [2], which allow for
efficient large scale distributed computation over massive data
sets, virtualized cloud platforms seem like a natural fit for
providing elastic scalability. However, virtualization in clouds
is known to incur performance overheads, particularly when
used for I/O-bound MapReduce activities [20], [21]. As a
result, MapReduce users are often left with the choice of either
maximizing performance with a native cluster or obtaining ease
of use and resource efficiency with a virtualized environment.
Today’s data centers offer two different modes of computing

platforms - native and virtual clusters. Both these environments
have their own strengths and weaknesses. For example, a native
cluster is better for batch workloads like MapReduce from the
performance perspective, lowers SLA violations, but usually
suffers from poor utilization, and high hardware and power
cost. A virtual cluster, on the other hand, is attractive for
interactive workloads from consolidation and cost standpoints,
but may not provide competitive performance like a native
cluster, and incurs higher SLA infringements. Intuitively, a
hybrid platform consisting of native and virtualized cluster
should be able to exploit the benefits of both environments
for providing a better cost-effective platform. In this paper,
we explore this design alternative, which we call hybrid
data center, and demonstrate its advantages for supporting
both interactive and batch workloads, and achieving the right
balance between all these design criteria, making it a desirable
cluster configuration option.
Transactional applications like interactive web services and

virtual desktop environments are prime candidates for virtu-
alization. For supporting the SLA requirements of interactive
applications, resources are generally over-provisioned, leading
to poor utilization [15]. To exploit the potentials of both
native and virtual cluster, we leverage the over-provisioning
of bursty interactive applications by intelligently consolidating
batch MapReduce jobs using the spare resources available on
a virtualized platform. This allows for reaping the benefits
of high consolidation in multi-tenant systems. This hybrid in-
frastructure presents different trade-offs across various design

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.31

249

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.31

102

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.31

102

metrics like performance, cost, energy and resource utilization
between native, virtual and hybrid design choices.
For facilitating such a hybrid cluster platform, this paper

presents the design and implementation of a 2-phase hierar-
chical scheduler, called HybridMR, that judiciously allocates
virtual and physical resources to applications. Contrary to
the traditional workload placement schemes that completely
isolate batch MapReduce and interactive workloads,HybridMR
consolidates the workload mix in a heterogeneous infrastruc-
ture to achieve higher performance, utilization and energy effi-
ciency. The design of such a scheduler requires the knowledge
of how different MapReduce jobs are impacted by virtual-
ization overheads, estimates of their resource needs, and an
understanding of how batch jobs will impact the performance
of interactive jobs collocated on virtual machines (VMs) of the
same host. HybridMR addresses these challenges through a 2-
level scheduler design. Its first phase places MapReduce jobs
on physical or virtual nodes depending on the expected virtu-
alization overheads. Once a set of MapReduce jobs have been
selected to run on the virtual cluster, along with interactive
applications, the second phase scheduler decides how much
resources can be safely assigned to them. For this, it makes
use of statistical predictive models for understanding the run-
time resource interference between the interactive and batch
jobs, and employs dynamic resource management techniques
to provide the best effort delivery to MapReduce jobs, while
upholding the SLAs of interactive applications. HybridMR tar-
gets institutional and enterprise Intranet environments, where
the data centers can run in a hybrid fashion, comprising of
evolving cluster mix of native and virtual machines.
In summary, this paper’s main contributions are:

• We make a case for hybrid data centers with native and
virtual machines for co-hosting both transactional and batch
workloads towards exploiting the best of these two comput-
ing worlds – native performance with virtualization benefits.

• We have designed and implemented HybridMR, a 2-
phase hierarchical scheduler, for the effective placement of
MapReduce jobs on a virtualized platform, while upholding
the SLAs of interactive applications.

• Through detailed analysis, we demonstrate the trade-offs and
benefits of running Hadoop in a virtualized platform, and
leverage the insights in the design of HybridMR. Evaluations
on a hybrid data center consisting of 24 physical servers,
and 48 virtual machines, with diverse workload mix of
representative transactional and MapReduce applications,
demonstrate that HybridMR can achieve up to 40% improve-
ment in job completion times over virtual-only cluster, 45%
improvement in resource utilization, and 43% savings in en-
ergy, both relative to native-only cluster. Further, we demon-
strate the possibility and flexibility to dynamically vary the
native and virtual cluster configurations to accommodate
for the variations in the workload mix for maximizing the
performance and energy benefits. These results demonstrate
the potentials of a hybrid cluster configuration as a cost-
effective solution, when compared to either-or native and
virtual modes of computation.

The remainder of this paper is organized as follows: Sec-
tion II provides empirical evaluations of MapReduce in a
virtual environment. Section III describes the design of Hy-
bridMR. Section IV details the experimental testbed and
evaluation results. Section V discusses related work. The

conclusions and future work are outlined in Section VI.

II. MAPREDUCE IN VIRTUAL ENVIRONMENT

Here, we address the following questions that are critical for
running Hadoop MapReduce on a hybrid cluster:
Q1. What are the challenges, benefits and trade-offs of

running Hadoop on a virtual versus equivalent native cluster?
Q2. What system and application level changes are required

to realize Hadoop’s deployment on hybrid data centers?
Q3. How does the ‘data sticky-ness’ of Hadoop affects the

overall system performance in a virtualized Hadoop cluster?
First, we perform detailed analyses and present empirical

evidences demonstrating the various challenges, benefits and
trade-offs involved in the deployment of Hadoop on a virtual
cluster. We also highlight the key design choices that impact
Hadoop performance in a virtualized environment. Second,
we present a split architecture of Hadoop that addresses the
movement of large data across a virtual cluster during live VM
migrations. For these studies, each VM is configured with 1
vCPU and 1024 MB Memory, and runs on dual-core, 4 GB
RAM servers. We use a total of 1-24 PMs and 1-48 VMs,
depending on the requirements of each experiment. Details
about the experimental platform, including the MapReduce
benchmarks used are described in Section IV.
In response to Q1 and Q2, we start with comparing the

performance of MapReduce benchmarks on native versus
virtual environments. In Figure 1(a), the Y-axis represents the
percentage increase in job completion time (JCT), with respect
to a physical cluster. We observe that with the increase in the
number of VMs per PM, the performance (JCT) of I/O-bound
jobs like Twitter, Wcount, DistGrep and Sort in
virtual cluster is 7-24% worse than the physical cluster. For
CPU bound jobs like PiEst and Kmeans, the performance
difference is within 8%. Moreover, across all benchmarks,
the performance gap widens with the data size increase, as
evident in Figure 1(b) (only Sort shown). To investigate
this, we benchmark the performance of Hadoop Distributed
File System (HDFS) in terms of read and write I/O, read and
write throughput on a virtual cluster normalized with respect to
the corresponding native cluster. We use the Hadoop TestDF-
SIO [2] benchmark, and the results are shown in Figure 1(c).
We notice that the virtual cluster performs relatively worse than
the native cluster, and again this performance gap broadens
with the data size increase. The reasons for this are: (i) increase
in contention for shared I/O resources across multiple VMs,
when large amount of data is transferred between map and
reduce phase; (ii) poor performance of HDFS when multiple
VMs concurrently read/write data blocks from and to HDFS;
and (iii) increase in the number of stragglers, hence more
speculative tasks [16], causing inefficient resource utilization.
In another related experiment, we study the impact of

Hadoop VMs crossing multiple hosts due to large size of the
virtual cluster, limited server resources, and distributed data.
For this, we create a 16 VMs Hadoop cluster. In Cross-Host,
the 16 VMs are equally distributed across 8 dual-core PMs,
while in Same-Host, all the 16 VMs are equally consolidated
on 2 PMs. Figure 2(a) shows the JCT of Sort in these two
scenarios. The poor performance of Cross-Host compared to
Same-Host is due to the increase in the network I/O delay
caused by remote VMs communication in Cross-Host. Further,
the JCTs in each case increase as the input data scales up.
An interesting observation here is that despite the Cross-Host

250103103

Twitter Wcount PiEst DistGrep Sort Kmeans

%
 I

n
c

re
a

s
e

 i
n

 J
C

T

0

5

10

15

20

25

30
1−VM 2−VM 4−VM

Sort−1GB Sort−8GB Sort−16GB

J
C

T
 (

s
e

c
s

)

0

500

1000

1500

1−VM 2−VM 4−VM

1 2 4 8 16

Sort Data Size (GB)

N
o

rm
a

li
ze

d
 V

a
lu

e

0.0

0.2

0.4

0.6

0.8

1.0
R−IO W−IO R−Tput W−Tput

(a) Performance of virtual Hadoop MapReduce (b) Impact of data size increase (c) HDFS performance on virtual Hadoop

Figure 1: Illustration of virtualization overheads on Hadoop performance. Y-axis in (a), (c) normalized w.r.t. an equivalent physical
cluster. Figure 1(c): R/W-IO: Read/Write IO in MB/sec (average IO rate); R/W-Tput: Read/Write-Throughput in MB/sec ((total
number of bytes)/(sum of processing times)). In these experiments, 48 VMs are used.

1 2 3 4 5

Sort Data Size (GB)

J
C

T
 (

s
e
c
)

0

200

400

600

800

1000

1200

1400
Same−Host Cross−Host

Kmeans−1GB Kmeans−4GB Kmeans−8GB

N
o

r
m

a
li
z
e
d

 J
C

T

0.0

0.2

0.4

0.6

0.8

1.0
V1−1M−1R V2−2M−4R V4−4M−6R

Twitter Wcount PiEst DistGrep Sort Kmeans

N
o

r
m

a
li
z
e
d

 J
C

T

0.0

0.2

0.4

0.6

0.8

1.0
Native Dom−0

Twitter Wcount PiEst DistGrep Sort Kmeans

N
o

r
m

a
li
z
e
d

 J
C

T

0.0

0.2

0.4

0.6

0.8

1.0
Combined Split

(a) Network I/O effect (b) Effect of more CPU cycles (c) Native Vs. Dom-0 (d) Hadoop Split architecture

Figure 2: In (a), 16 VMs are used; 48 VMs are used in (b) and (c). In (b): V1, V2, V4 denote 1, 2, 4 VMs per PM. M, R denote
number of Map and Reduce tasks. Y-axis in (b) and (c) is normalized w.r.t. Native; Y-axis in (d) is normalized w.r.t. Combined.

having access to more cores (each VM gets 1 vCPU) compared
to Same-Host (each VM gets 0.25 vCPU), the performance of
the former is still worse than the latter. Thus, when the data
size and the number of concurrent running map/reduce tasks
increase, the network communication overheads become the
main resource bottleneck, and dictates the overall performance.
The performance of Hadoop MapReduce in a virtual envi-

ronment can also be better in certain scenarios. For example,
CPU-bound jobs like Kmeans can benefit from having more
VMs available, as shown in Figure 2(b). Further, this perfor-
mance increase is higher for larger data sizes. This is because,
a CPU-bound job can leverage higher number of map/reduce
tasks to finish faster due to the availability of more compute
cycles, and hence more slots, with multiple VMs on multi-
core hosts. Note that in Figure 1(a), CPU-bound Kmeans
tends to perform worse with more number of VMs per PM.
However, this is opposite to the results shown in Figure 2(b).
This is because, for Figure 2(b) scenario, more number of map
and reduce tasks are launched to exploit the free CPU cycles
(i.e., in form of Hadoop slots), compared to the scenario in
Figure 1(a), where fewer number (2 by default) of concurrent
mappers and reducers are present.
We next explore leveraging Xen’s split architecture to run

Hadoop in the privileged domain (Dom-0). Figure 2(c) shows
that Dom-0 provides near native performance, with overheads
less than 5% on average. This opens up the possibility of
a ‘flexibly virtualized’ cluster, where some machines can be
easily transitioned from running VMs to quasi-native applica-
tions in Dom-0 [22]. This supports the case for hybrid clusters,
whose configurations can be flexibly and on-demand adjusted.
Finally, in response to Q3, the other concern in the deploy-

ment of Hadoop in a virtualized environment is the challenge
to deal with the inherent ‘data sticky-ness’ of Hadoop, i.e.,
how to handle the movement of large amount of data living on
Hadoop VMs, which may lead to inefficiency in terms of time
and network communication overheads, thus, defeating many
of the benefits of virtualization. This also reduces the effective-
ness of resource elasticity due to the tight coupling between
the compute and data storage layer. A prospective workaround
to this problem is to place the TaskTracker (compute node)
and DataNode (storage node) on separate VMs [35]. This split
architecture (see Figure 3) maintains data locality, and removes
the constraint of moving large amounts of data around the
cluster during VM migrations, since the data stays resident in
the HDFS, while the number of map/reduce (compute) VMs
can vary as required. We did some preliminary evaluations to
assess the performance implications of this split architecture.
Figure 2(d) shows the results. We observe on an average 12.8%
improvement in JCT over the default Hadoop (Combined). We
adopt this split Hadoop architecture in this paper.
To summarize, the above analyses demonstrate that the

performance of virtualized Hadoop is governed by a multitude
of design factors, and thus, coming up with an optimal config-
uration both at the job and cluster level is non-trivial, thereby
making scheduling and resource management difficult. Some
key observations are: (i) Hadoop performance on a virtual clus-
ter is relatively worse than the equivalent physical cluster. The
magnitude of performance degradation varies depending on the
nature of the job. For example, jobs which are I/O and network
intensive like Sort suffer more performance degradation than
CPU-bound jobs like PiEst; (ii) input data size affects the
magnitude of performance difference in direct proportion; (iii)

251104104

�����
�����	�

�����
�����	�

�������
�������

�������

�������	

���������������	���������������	

�������
�����

�����	�

�������	

�������
�����

�����	�

�������	

���� ���� ���� ����

����������	� ��������
�������	
��	���
��	�
���	
��	��������	��	
	�����	��	��	�
��	�����	
����	
��	����	
���	��
�
��	��	��	����	���������	�����
�	������ ���	
�������	��	��	
	���	
����	���	��	�
���
��	�������!�
�
	���
�����

Figure 3: Hadoop Split Architecture.

Hadoop’s performance difference between native and Dom-0
is marginal; and (iv) Split Hadoop architecture is an optimized
deployment on a virtual environment.

III. DESIGN OF HYBRIDMR
This section describes the overall architecture of HybridMR

(as shown in Figure 4), which operates in two phases. In the
first phase, HybridMR attempts to classify incoming MapRe-
duce jobs based on the expected virtualization overheads,
and uses that information to automatically guide placement
between physical and virtual machines. The second phase per-
forms dynamic resource management to minimize interference
and improve performance of collocated interactive and batch
jobs. Specific details of these phases are described below:

�������	
�����	���������������	
�����	������� ������	����

������� �	
��

� ��

��� ��� ���

� ��

�������

�����	�	��������������	�	���������

�

��������

��

Figure 4: Overview of HybridMR.

A. Phase I Scheduler

The main goal of this phase is to differentiate between
workloads that should be scheduled on physical machines or
virtual machines running in a hybrid data center. Since, our
objective is to harness the spare resources on VMs running
interactive applications, the interactive applications by default
are assigned to the virtual cluster, and the placement of the
MapReduce jobs is governed by this phase. Thus, when a
MapReduce job arrives, it is initially started separately on
a small training cluster containing both physical and virtual
environments, respectively (see Figure 4). We utilize statistical
profiling techniques to estimate the JCTs of MapReduce jobs
(refer Section III-A1). By comparing the estimated JCTs of
the two instances of the job, corresponding to its run on
native and virtual machines, the level of performance overhead
(as quantified by JCT) incurred by the virtualization layer is
estimated. If the overhead is not significant, then the job is
selected for deployment on the virtual cluster, else it is run on
a separate physical cluster. To estimate the JCT, we leverage
the following job profiling methodology:

1) Job Profiling: We profile MapReduce jobs to estimate
their JCTs prior to execution. MapReduce jobs are data-
intensive and massively parallel, hence their JCTs are predom-
inantly dependent on two factors: (i) input data set size; and
(ii) resource set size, i.e., number of nodes in the cluster. The
estimation scheme accumulates a database of past execution
history of jobs (in terms of job completion times, correspond-
ing to different input data set sizes and cluster sizes). During
training, a job is run on a representative small cluster and
with a smaller data set, and extrapolation techniques are used
to estimate the run-time if the job were run on the full cluster
and data set. The profile database maintains separate run-times
for map and reduce phases to account for the differences across
phases. The exact association of a job’s profile with the cluster
size and input size is described next.

Cluster size: To quantify the dependence of cluster size
on job completion time, we measure the total time as well
as the time taken by the map and reduce phases separately,
against different cluster sizes. In Figure 5(a), we observe that
for a given data size, the JCT of a job follows an inverse
relation to the cluster size. Similar inverse relation follows for
the completion time of map phase as shown in Figure 5(b).
However, the reduce phase completion time follows a piece-
wise non-linear relation with the cluster size as shown in
Figure 5(c). This is due to the fact that the reduce phase’s
dependence on data size is highly erratic [12].

Data size: For a given cluster size, the JCT is almost
linearly proportional to the input data size, as demonstrated in
Figure 5(d). This indicates that by simple linear extrapolation,
we can accurately estimate the JCT of a new job instance
with a different data size. However, when sufficient historical
job profiles are not available, we can still profile on a subset
of data, and then use linear regression based extrapolation to
derive the JCT corresponding to the actual input size.
Thus, by building the job profiles using different data sizes

and/or cluster sizes, this module estimates the JCT. The end-
to-end mechanism for job profiling based on the above logic is
outlined in Algorithm 1. To elaborate, for an arriving MapRe-
duce job, Algorithm 1 searches the database for matching
cluster size and/or data size. On a match, the corresponding
profiled JCT estimate is retrieved. When there is no match,
an appropriate extrapolation technique based on the map and
reduce phase is used to derive the estimated JCT.
We build the database of job profiles, averaged across 3 runs

of each job instance. Note that similar procedure for profiling
MapReduce jobs has been explored in [12], [33]. There are also
complex techniques [18], [33], where profiling is done for fine-
grained stages of MapReduce framework. Also, the technique
can be extended for online profiling [12], [33]. However,
we observed that the above simple profiling technique works
well in practice for our purpose, incurring low overheads,
while producing reasonable prediction accuracy. For example,
Figure 6(a) shows the actual and estimated JCTs obtained from
profiling of Sort on 10 GB. We got similar results for other
MapReduce benchmarks, and our profiling scheme results in
an average error of 10.8% with a standard deviation of 9.7%.
2) Placement of MapReduce Jobs: When a job is submitted

to the system, depending on the type of the job (transactional
or batch), and its desired completion time, the heuristic steps
outlined in the Algorithm 2 determine its initial placement on
the native or virtual nodes. Note that, Phase I simply steers
the initial placement of the job, whereas the exact resource

252105105

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

Cluster Size (Number of VMs)

N
o

r
m

a
li
z
e
d

 J
C

T

Sort PiEst DistGrep

2 4 6 8 10 12
0

200

400

600

800

1000

1200

Cluster Size (Number of VMs)

J
C

T
 (

s
e
c
)

5GB 4GB 3GB 2GB

2 4 6 8 10 12
0

100

200

300

400

500

J
C

T
 (

s
e
c
)

Cluster Size (Number of VMs)

5GB 4GB 3GB 2GB

5 10 15
0

200

400

600

800

Data Size (GB)

J
C

T
 (

s
e
c
)

C1 C2 C4 C8 C16

(a) End-to-end job (b) Map Phase (c) Reduce Phase (d) Input Data Size

Figure 5: Dependence of job completion time on cluster size (end-to-end, map and reduce phase), and input data size. In (d),
C1, C2, C4, C8, C16 represent virtual clusters with 1, 2, 4, 8, 16 nodes, respectively. Sort is used in (b), (c) and (d).

Algorithm 1 MapReduce Job Profiling Algorithm.
Input: Q: queue of incoming jobs, each specifying the input data

size and/or cluster size; DBprofile: profile database, containing
historic observations of job completion times (JCTs) (end-to-
end and separate for map and reduce phases), along with the
corresponding cluster sizes and input data set sizes.

1: for each job Ji in Q=J1,J2,...,Jn do
2: if LOOKUP CLUSTERSIZE(DBprofile, Ji) �= NULL &

LOOKUP DATASIZE(DBprofile, Ji) �= NULL then
3: JCTestimated=Retrieve(DBprofile, Ji(csize), Ji(dsize))
4: else if DBprofile does not contain exact match for Ji’s input

configuration then
5: if DBprofile contains different data size values for the same

cluster size (see Figure 5 (d)) then
6: Do linear extrapolation to get JCTestimated

7: else if DBprofile contains different cluster size values for
the same data size then

8: Do separate Map and Reduce phase based extrapolation
to get JCTestimated (see Figures 5 (a), (b), (c))

9: end if
10: end if
11: return JCTestimated

12: end for

Algorithm 2 Job Placement Algorithm.
Input: Q: queue of incoming jobs; Inputload: number of clients for

transactional or data size for MapReduce job; P CLUSTER:
cluster of physical nodes; V CLUSTER: cluster of virtual
nodes; JCTdesired[]: vector of jobs desired completion times.

1: for each job Ji in Q=J1,J2,...,Jn do
2: if Ji ∈ transactional workload then
3: Place Ji on V CLUSTER
4: else if Ji ∈ batch MapReduce workload then
5: Profile Ji using Algorithm 1 to obtain the vector of esti-

mated job completion time (JCTestimated[]).
6: if JCTestimated[i] ≥ JCTdesired[i] then
7: Place Ji on P CLUSTER
8: else
9: Place Ji on V CLUSTER
10: end if
11: end if
12: return jobs assigned to P CLUSTER and V CLUSTER
13: end for

configuration of VMs or PMs, where the job will run, is
determined by the Phase II scheduler, as described next.

B. Phase II Scheduler

The goal of the Phase II Scheduler is to efficiently man-
age the resources of the virtual cluster across transactional

and MapReduce jobs in order to comply with the SLA of
interactive jobs, while providing the best effort performance
guarantees to the MapReduce applications. Figure 7 shows the
overall architecture of the Phase II Scheduler. It is composed
of two main components: (i) a Dynamic Resource Manager
(DRM); and (ii) an Interference Prevention System (IPS). The
DRM monitors the available capacity on each VM to guide
the placement of MapReduce jobs within the virtual cluster.
DRM records the resource consumption and completion times
of each task. This information is used to build a model for
each MapReduce job that correlates the resource allocation to
the constituent task completion time, allowing the scheduler
to make intelligent placement decisions. The IPS is an online
monitor that observes the performance of the interactive appli-
cations within the cluster to detect when they are not receiving
sufficient resources to meet their demands. If any interference
is detected, then the responsible map/reduce tasks are properly
handled. For example, the VM running the task can have its
resource share decreased, can simply be paused, or it can
even be migrated to a different host to mitigate the observed
interference. Even if the VM is aborted, the correctness of
the corresponding MapReduce job is not affected, since the
MapReduce master would initiate speculative execution [16],
assuming the task as a prospective straggler.

MapReduce jobs
on virtual cluster Mn

Contention
Detector

Performance
Balancer

GRM Resource
Profiler

Estimator

LRM

Transactional jobs
on virtual cluster In

I1

M1

CPU
Interference

Models
Memory

I/O

DRM

Arbiter

IPS

Figure 7: Components of the Phase II Scheduler.

To illustrate the level of interference which may be caused
due to collocated VMs and/or contending tasks within the
same VM, we conduct a study, where 4 VMs are deployed
on a quad-core physical server, and run a mix of CPU and
I/O bound MapReduce jobs. Each VM is pinned to a core,

253106106

0 2 4 6 8 10 12 14 16 18 20 22 24
350

400

450

500

550

600

650

J
C

T
 (

s
e

c
)

Number of Samples

Actual Estimated

0 100 300 500 700 900
1

2

3

4

5

6

7

8

N
o

rm
a

li
ze

d
 J

C
T

Total CPU Utilization (%) of Collocated VMs

Sort PiEst

0 10 20 30 40 50 60
1
2
3
4
5
6
7
8
9

N
o

rm
a

li
ze

d
 J

C
T

Total I/O rate (MB/sec) of collocated VMs

Sort PiEst

(a) Job Profiling Error (b) CPU Interference (c) I/O Interference

Figure 6: (a) Profiling error in Phase I; (b) and (c) show slowdown of JCT due to CPU and I/O interference from collocated
VMs. Y-axis in (b) and (c) are normalized corresponding to the case when the jobs (Sort and PiEst) are run in isolation.

and 8 threads are concurrently run, sharing a single disk. We
benchmark the completion time of CPU-bound PiEst and
I/O-bound Sort. We first run each job on a single VM in
isolation and note the JCT. We then measure the corresponding
JCT when these jobs are run together with 3 other instances of
PiEst and Sort, running on other VMs. Figure 6(b) shows
the JCT of PiEst normalized to the corresponding JCT when
run in isolation. The X-axis denotes the total CPU utilization,
represented as the percentage of a single thread. We observe
the slowdown in the run-time when the CPU interference
from other background jobs increases, while I/O-bound Sort
remains unaffected. Similar observation follows for I/O-bound
Sort (Figure 6(c)), where we can see exponential increase
in JCT due to increased I/O contention from other collocated
VMs. Thus, understanding the run-time interference, and per-
forming dynamic resource adjustment is required to mitigate
such performance degradation. This approach is adopted by
the Phase II Scheduler.
1) Dynamic Resource Manager (DRM): The goal of the

DRM is to build interference prediction models based on
the run-time resource profiles of collocated tasks of MapRe-
duce jobs and other co-hosted interactive jobs in order to
estimate the task slowdown caused by resource contention.
These estimations are used to orchestrate the optimal resource
allocations via dynamic resource management to minimize the
interference, and improve performance. DRM consists of two
main components (a) a Global Resource Manager (GRM); and
(b) a Local Resource Manager (LRM). The GRM consists of
two sub-components: (i) a Contention Detector that dissects
the cause of resource contention and identifies both resource-
deficit and resource-hogging tasks; and (ii) a Performance
Balancer that leverages the run-time resource estimations from
each LRM to suggest the resource adjustments based on the
global coordinated view of all tasks. The LRM also consists
of two sub-components: (i) a Resource Profiler that collects
and profiles the run-time resource usage of tasks at each
node; and (ii) an Estimator that constructs statistical estimation
models of a task’s run-time performance as a function of its
resource allocations. Due to space constraints, we are unable
to provide specific details. For further details about each of
these components, please refer to our prior work [31].
DRM performs the following two functions: (i) Resource

bottleneck detection: Here, the GRM based on the resource us-
age feedback from all LRMs identifies which task is experienc-
ing bottleneck for which resource, and on which TaskTracker.
The rationale and scheme behind this detection mechanism is
outlined in [31]; and (ii) Resource bottleneck mitigation: The

LRMs after getting information about both resource deficit and
resource hogging tasks from the GRM, invoke their Estimator
module to estimate the tasks completion times. The Estimator
builds predictive models for the completion time of a task
as a function of its resource usage/allocation. The difference
between the estimated and the current resource allocation is
the resource imbalance that has to be dynamically allocated to
the resource deficit task.
The Estimator module is responsible for building predictive

performance interference models for tasks’ run-time resource
usage/allocations (in terms of CPU, memory and I/O re-
sources). In a virtualized environment, the interference is
contributed by both collocated tasks within the same VM, and
the co-hosted VMs on the same host. It employs statistical
regression models to obtain the estimated optimal resource
allocation for the next epoch of a task’s run, which operates
in two stages. The first stage inputs a time-series of progress
scores of a given map/reduce task and outputs a time-series of
estimated completion times corresponding to multiple epochs
in its life time. The second stage uses a time-series of past
resource usage/allocations across the task’s run-time starting
from its start till the current time of estimation. The estimation
model then outputs the estimated resource allocation for the
next epoch as a function of a task’s cumulative run-time.
Separate estimation models are built for CPU, memory and I/O
resource profiles of a task. We use the linear regression model
for CPU, and piece-wise linear regression model for memory,
as derived from our previous work [31]. In this paper, we also
estimate the I/O interference through an exponential regression
model, similar to [13]. For controlling the I/O bandwidth
allocation to an individual task, we use the recently released
Linux kernel support for I/O throttling using cgroups [4].
Complete details about the construction of models, along with
the specifics of dynamic resource allocation mechanism, are
detailed in [31].
2) Interference Prevention System (IPS): For the transac-

tional workloads, collocated with the MapReduce jobs in
the virtualized environment, we build separate performance
interference models, because their application characteristics
are different from MapReduce jobs. We explored building
both linear regression model as well as non-linear exponential
regression model to quantify the CPU interference. However,
we stick to a linear regression model as it fits well in our case
in terms of offered simplicity and accuracy (refer [31]). For
memory, a piece-wise linear regression model well captures
the interference [31]. For I/O, we use a non-linear exponential
regression based interference model. Specific details of the

254107107

Algorithm 3 Arbitration Algorithm.
1: Obtain the list of map/reduce tasks, TASK LISTinterference,

interfering with collocated interactive jobs using Estimator
2: Evaluate the estimated interference for each task in

TASK LISTinterference using DRM’s prediction model
TaskInterference[]=GetEstimatedInterference()
Get list of all available VMs in V CLUSTER

3: AvailableVMs[] = GetAllAvailableVMs()
4: while InterferenceTasks[] �= NULL do
5: Get best available VM using BestFit bin-packing heuristic [12]
6: V Mbest=GetVMByBestFit()
7: Use Min-Min heuristics [13] to schedule the ‘least-interfering’

task on V Mbest

8: Adjust the resources of V Mbest

9: end while

regression models used are similar to [11].
The IPS uses these performance interference models for

interactive applications to dynamically orchestrate their re-
source allocations in the virtual cluster. The IPS continuously
tracks the performance of interactive jobs. If at some instant,
the performance falls outside allowable SLA bounds, the IPS
invokes its Arbiter module to determine the specific task(s)
and resource(s) that are causing this performance degradation.
The Arbiter employs its arbitration scheme (Algorithm 3) to
mitigate the interference, and restores the performance of the
interactive applications. The Arbiter takes into consideration
the interference from other collocated VMs, co-scheduled
MapReduce jobs and packing of VMs, while deciding on
the exact migration of VMs to other hosts, or reassignment
of interfering tasks to other VMs. Algorithm 3 describes the
details of the arbitration scheme.

IV. EXPERIMENTAL ANALYSIS

Infrastructure: Our experimental testbed contains a mix
of physical and virtual nodes constituting native and virtual
clusters, respectively. The native cluster contains 24 physical
nodes. Each node has a dual 64-bit, 2.4 GHz AMD Opteron
processor, 4 GB RAM, and Ultra320 SCSI disk drives, con-
nected with 1 Gbps Ethernet. This cluster is installed with
Hadoop v0.22.0 with 2 replicas per HDFS block, and 2
map, 2 reduce slots per node. The Hadoop FairScheduler [5]
scheduling policy is used. The virtualized cluster contains
24 physical nodes, which are virtualized with Xen v3.4.2
hypervisor [9], and host 2 VMs per PM to create an equivalent
48 nodes virtual cluster. Each VM runs RedHat AS4 with
kernel v2.6.18, and the VMs are connected by 1 Gbps Ethernet.
Each VM is configured with 1 GB RAM and 1 virtual CPU.

Benchmarks: We use a workload mix consisting of both
transactional applications as well as batch workloads. For
transactional workloads, we use three representative applica-
tions: (i) RUBiS [28], which models an online auction site; (ii)
TPC-W [32], which models a three-tier online book store; and
(iii) Olio [26], which is a Web 2.0 social events application.
For batch workloads, we use the following representative
MapReduce jobs:
• Twitter: uses 25 GB twitter data [8] to rank users

(Memory + I/O-bound).
• Wcount: computes frequencies of words in 20 GB of text

data (Memory + I/O-bound).
• PiEst: estimates Pi using 10 million points (CPU-bound).
• DistGrep: finds match of randomly chosen regular ex-

pressions on 20 GB of text data (I/O-bound).

• Sort: sorts 20 GB of text data (I/O-bound).
• Kmeans: clusters 10 GB of numeric data (CPU-bound).

The above MapReduce jobs are chosen based on their popular-
ity and being representative of real MapReduce benchmarks,
with diverse resource mix. We use the Yokogawa’s WT210
power meter to measure the server power. For better precision,
we run all our experiments 3 times, and use the average value.
Unless otherwise specified, all experiments are performed in
the hybrid cluster consisting of 24 PMs and 48 VMs.

Performance Benefits of HybridMR: We begin with
demonstrating the performance benefits of HybridMR’s Phase
I Scheduler in the initial placement of MapReduce jobs.
Towards this, we conduct an experiment, where we measure
the average response times of interactive applications and
JCTs of MapReduce jobs, when scheduled by the Phase I
Scheduler, normalized against the corresponding JCTs mea-
sured with random placement of jobs (i.e., first-come-first-
served discipline). In Figure 8(a), we plot this normalized
JCT, labeled as ‘Performance Gain’. We observe that through
efficient placement by the Phase I Scheduler, both interactive
and batch jobs benefit in performance, and the magnitude of
gain varies depending on the workload mix characteristics.
We consider 3 workload mixes: wmix-1, wmix-2 and wmix-
3, where each represents 50% interactive + 50% batch jobs,
20% interactive + 80% batch jobs, and 80% interactive + 20%
batch jobs, respectively. Intuitively, this performance gain is
achievable due to the fact that certain MapReduce jobs, which
are resource intensive and have more stringent performance
bounds, when placed on native Hadoop cluster reduce the
interference across other MapReduce and interactive jobs.
We next analyze the potential benefits of Phase II Sched-

uler towards improving the performance of MapReduce jobs
scheduled on the virtual cluster. In this experiment, we use
48 VMs virtual Hadoop cluster. We compare the performance
of each of the six MapReduce jobs when run standalone
(Single). We measure the JCT when Phase II Scheduler-based
resource orchestration is enabled (JCTHybridMR) versus with-
out it (JCTdefault). We compute percentage reduction in
JCT as ((JCTdefault − JCTHybridMR)/JCTdefault) * 100.
Figure 8(b) shows the percentage reduction in JCT of the
six MapReduce jobs. Here, each legend corresponds to the
case when only CPU, Memory, I/O or all three of them are
managed by HybridMR. Across all jobs, CPU+Memory+I/O
yields the maximum reduction in JCTs, while the reduction
with CPU, Memory or I/O alone varies in accordance with the
benchmark resource characteristics. Specifically, we observe
an average and a maximum JCT reduction of 22% and 29.1%,
respectively, with the CPU+Memory+I/O mode. Note that
larger jobs (with respect to both large input size and long
running job) like Sort and Kmeans benefit more when
compared to other relatively shorter jobs like PiEst and
DistGrep. This is due to the fact that larger jobs run in
multiple map/reduce phases, and thus, HybridMR has more
opportunities to dynamically coordinate resources and improve
their JCTs. Similar benefits are observed in the JCT of each
job when run in the presence of other 5 concurrent running
MapReduce jobs (Multiple jobs). Figure 8(c) shows the results.
Note that sinceMultiple jobs scenario induces more inteference
than corresponding Single job, higher performance benefits are
observed with Multiple jobs. We observe an average and a
maximum reduction of 28.5% and 40.8% in the JCTs with

255108108

wmix−1 wmix−2 wmix−3

Workload Mix

P
e
r
fo

r
m

a
n

c
e
 G

a
in

0.0

0.1

0.2

0.3

0.4

0.5
Transactional Batch

Twitter Wcount PiEst DistGrep Sort Kmeans

%
 R

e
d

u
c
ti

o
n

 i
n

 J
C

T

0

10

20

30

40
CPU
Memory
I/O
CPU + Memory + I/O

Twitter Wcount PiEst DistGrep Sort Kmeans

%
 R

e
d

u
c
ti

o
n

 i
n

 J
C

T

0

10

20

30

40
CPU
Memory
I/O
CPU + Memory + I/O

0

500

1000

1500

2000

4 8 16 24 32 40 48 56 64

L
a
te

n
c
y
 (

m
s
)

of RUBiS Clients*100

RUBiS+MapReduce HybridMR RUBiS

HybridMR takes control at this point,
and keeps latency withing SLA bounds

(a) Phase I scheduler placement (b) Single job improvement (c) Multiple jobs improvement (d) SLA compliance of RUBiS

Figure 8: Performance benefits of HybridMR on a virtualized platform.

0 5 10 15 20 25 30 35
0

1000

2000

3000

4000

Time Interval (min)

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

e
c

) RUBiS TPC−W

SLA

Twitter Wcount PiEst DistGrep Sort Kmeans

N
o

rm
a

li
ze

d
 J

C
T

0.0

0.2

0.4

0.6

0.8

1.0
Native Virtual HybridMR

Perf/Energy Energy # of Servers Utilization

N
o

rm
a

li
ze

d
 V

a
lu

e

0.0

0.5

1.0

1.5

2.0
Native Virtual HybridMR

(a) Performance of interactive applications (b) JCT improvement (c) Potential savings

Figure 9: HybridMR achieves better balance between Native and Virtual. Y-axis in (b) and (c) is normalized w.r.t. max. value.

CPU+Memory+I/O. In Figure 10(a), we also observe high
CPU, Memory and I/O utilization achieved by HybridMR.
Next, we analyze the impact of HybridMR on the SLAs of in-

teractive applications like RUBiS. We perform an experiment,
where we increase the number of RUBiS clients and observe
the impact on the latency of web server. Figure 8(d) shows the
results. Here, the top RUBiS+MapReduce curve corresponds to
the case, where the RUBiS virtualized cluster co-hosts other
MapReduce jobs assigned in the FIFO order by the default
MapReduce scheduler. The bottom RUBiS curve denotes the
case, where RUBiS runs in isolation with no MapReduce jobs.
The middle HybridMR curve depicts the scenario with the
HybridMR scheduler. Here, we observe that for lower client
workloads, HybridMR is able to co-host MapReduce jobs with
RUBiS and maintain its latency within bounds. However, when
HybridMR detects that client latency is exceeding a given
threshold, its Phase II Scheduler can adaptively migrate or
pause the execution of co-hosted interfering MapReduce tasks
to bring down the latency similar to the bottom RUBiS curve.
This shows the dynamic adaptation of HybridMR in keeping
up with the SLA of interactive applications.
In a related analysis, we demonstrate the effectiveness of

HybridMR in maintaining the SLAs of interactive RUBiS
and TPC-W applications, when run collocated with other
MapReduce jobs. In Figure 9(a), we observe that in the time
interval 1-10 minutes, the response times of both RUBiS and
TPC-W are below the user defined SLA (2 sec. in our ex-
periment). However, around 12th (RUBiS) and 14th (TPC-W)
time instants, the response time exceeds the SLA. HybridMR
quickly identifies this, and is able to migrate the collocated
map/reduce tasks from the VMs running RUBiS and TPC-W
to mitigate the interference. Consequently, the response time
falls within limits again. Similar behavior follows for the Olio
benchmark, but we skip the analysis in the interest of space.

Cross-Platform Performance Comparison: We next
demonstrate the benefits of HybridMR in scheduling a mix of
interactive and batch jobs. In this experiment, we evaluate three
design choices for cluster configuration. In the first design
choice (Native), the workload mix is scheduled on a 24-node
native Hadoop cluster. In the second design choice (Virtual),
the workload mix is scheduled on a 24-node virtual cluster
(hosted on 12 PMs, each PM contain 2 VMs). The third
design choice (HybridMR) corresponds to the case, where
the workload mix is scheduled on a 24-node hybrid cluster,
consisting of 12 PMs + 12 VMs (consolidated on 6 PMs with
2 VMs each). Thus, Native, Virtual and HybridMR require
24, 12, and 18 number of physical servers, respectively. From
Figure 9(b), we observe that the performance of MapReduce
jobs is the worse for Virtual because of the possible virtu-
alization overheads. Native achieves the best performance as
expected. HbyridMR’s performance is intermediate between
Native and Virtual. However, as we can observe in Figure 9(c),
HybridMR achieves the highest Performance/Energy, which is
a very important data center design metric. In terms of other
metrics like energy, utilization, and total number of physical
servers, HybridMR strikes a better balance between the two
extreme choices – Native and Virtual design alternatives.

Impact of live migration of Hadoop VMs: In the IPS
module (Section III-B2), we leverage live migration of VMs
as a mechanism to redistribute interfering map/reduce tasks. To
understand the performance implications of Hadoop VMs mi-
gration, we perform some empirical analyses. We run Wcount
on different data size on a 24 VMs Hadoop cluster, and migrate
randomly the 24 VMs during the execution. Figure 10(b) and
Figure 10(c) demonstrate the migration time and downtime of
each VM during migration. We observed: (i) larger the amount
of memory involved, longer is the migration time, while the
downtime dependence on memory is ad-hoc; (ii) migration

256109109

0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

Time (1 minute interval)

C
PU

 U
til

iz
at

io
n

Base−line
HybridMR

0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

Time (1 minute interval)

M
em

or
y

U
til

iz
at

io
n

0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

Time (1 minute interval)

I/O
 U

til
iz

at
io

n

0 5 10 15 20 25
0

50

100

150

200

250

300

Node Index

V
M

 M
ig

ra
ti

o
n

 T
im

e
 (

s
e

c
)

Idle−0.5GB
Idle−1GB
Wcount−0.5GB
Wcount−1GB

0 5 10 15 20 25
0

200

400

600

800

1000

1200

1400

Node Index

V
M

 D
o

w
n

ti
m

e
 (

m
s

e
c

) Idle−1GB
Wcount−0.5GB
Wcount−1GB

(a) Improvement in resource utilization (b) Impact of VM migration (c) Impact of VM downtime

Figure 10: In (a), HybridMR boosts resource utilization; (b) and (c) show performance impact of live migration of Hadoop VMs.

 0 5 10 15 200.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 0
 5

10
15

20

of Physical Machines

of

 V
irt

ua
l M

ac
hi

ne
s

Pe
rfo

rm
an

ce
/E

ne
rg

y

c1 c2
c3

c4
c5 c6

c7

c8 c9

c10
c11

c12c13c14

c15

c16
c17

c18c19
c20

Figure 11: Hybrid configuration design trade-off analysis.

time of VMs running Wcount is relatively longer than the
corresponding idle Hadoop cluster; and (iii) downtime of each
VM running Wcount shows wide variation, possibly due to
skewness of each Hadoop VM, due to difference in resident
data blocks, concurrent map/reduce tasks, and interference
from other collocated VMs. From this analysis, we conclude
that live migration of Hadoop VMs incurs some overheads,
especially the downtime. However, due to the inherent fault-
tolerant characteristics of Hadoop (i.e., replication), the down-
time period can be adjusted by regenerating the data blocks
from other available copies. However, the MapReduce jobs still
run to finish in the face of the migration induced downtime.

Design Trade-off Analysis: We next discuss the flexibility
of HybridMR in terms of splitting a given physical infrastruc-
ture into different hybrid cluster configurations, each consisting
of a fixed number of VMs and PMs for running a workload
mix to meet different performance and energy requirements.
To highlight this empirically, we split our testbed (consisting
of 24 PMs hosting 48 VMs) into 20 different cluster config-
urations (C1 − C20), where each Ci corresponds to randomly
selected PMs and VMs, and runs workload mix of interactive
and MapReduce jobs. For each configuration, we measure
the average completion times (performance), average energy
consumption and average utilization across all jobs and nodes.
In Figure 11, each configuration corresponds to a particular
〈#ofPMs,#ofV Ms, Performance/Energy〉 tuple in the
3D space. For example, configuration C7 (with 12 PMs, 12
VMs) and C17 (with 24 PMs, no VMs) gives the best and worst
Performance/Energy, respectively. Such analysis can provide
some useful insights. For example, a cluster administrator may

use some hints from a similar empirical analysis for deciding
on how to partition the infrastructure into hybrid cluster to
meet a desired performance-energy envelope.

V. RELATED WORK

The prior work related to this paper is summarized under
the following three categories:

Resource Scheduling in Hadoop MapReduce: Scheduling
techniques for dynamic resource management of MapReduce
jobs have been recently addressed [23], [27], [29], [31], [33].
Two popular recent resource managers for Hadoop MapReduce
are Mesos [19] and YARN [3]. Most of the works in this
category primarily focus on different scheduling policies for
MapReduce jobs to reduce their completion times, improve
cluster resource utilization and energy efficiency.

MapReduce and virtualization: There has been a re-
cent thrust to improve the performance of MapReduce on
virtualized platforms. Amazon Elastic MapReduce [1] is a
publicly offered web service that runs on virtualized cloud
platform. Serengeti [6] is an open source project initiated by
VMware to enable rapid deployment of Hadoop on a virtual
platform. Cardosa et al. [12] proposed techniques for MapRe-
duce provisioning in virtualized cloud clusters, with emphasis
on energy reduction. Managing MapReduce workloads using
Amazon virtual spot instances is studied in [14]. Resource
allocation in Hadoop MapReduce using dynamic prioritiza-
tion is proposed in [29]. Preliminary evaluations of Hadoop
MapReduce performance on virtualized clusters is recently
done in [20], [35]. Virtual machine scheduling heuristic to
improve Xen scheduler, targeting MapReduce workloads, is
addressed in [21]. Harnessing unused CPU cycles in interactive
clouds for batch MapReduce workloads has been recently
motivated in [15]. Bu et al. [11] proposed an interference-
aware and locality-aware scheduling algorithm for optimizing
MapReduce in virtualized environment. VMware DRS [34]
manages VMs through dynamic load balancing.

Interference based resource management in clouds: With
the advent of cloud computing, resource management in vir-
tualized clouds has emerged as an important research avenue.
There exists quite a few literatures in this context. For example,
Q-Clouds [25] leverages online feedback control technique to
dynamically manage the resource allocation to VMs. TRA-
CON [13] is an interference-aware scheduling algorithm for
data-intensive applications in virtual environment. Automatic
resource provisioning in MapReduce cloud clusters is explored
in [12]. Younggyun et al. [36] presents an empirical study on
the performance interference effects in virtual environments.

257110110

We share our motivation of hybrid compute clusters
with [15], [22], [24]. We believe our work differs from others
in the following manner. First, a detailed empirical evaluation
and performance analysis study of Hadoop MapReduce on
virtual environment have not been addressed in prior liter-
ature. Second, scheduling of heterogeneous workloads (mix
of transactional and batch MapReduce jobs) on a hybrid
cluster (consisting of native and virtual environments) to
exploit the spare resources available due to over-provisioning
of interactive applications, has not been explored before. Third,
our proposed scheduler, HybridMR, uniquely focuses on the
performance enhancement of MapReduce jobs, collocated with
interactive jobs in a virtual environment while complying with
the SLAs of the foreground jobs. Fourth, no previous studies
have paid much attention to the benefits and design trade-offs
of hybrid data centers consisting of both native and virtual
servers, and hosting heterogeneous workload mix.

VI. CONCLUSIONS

This paper presents a 2-phase hierarchical scheduler, called
HybridMR, for hybrid data centers, consisting of a mix of
native and virtual machines to leverage the benefits of both
paradigms. In the first phase, HybridMR profiles incoming
MapReduce jobs to gauge the estimated virtualization over-
heads, and utilizes this information to automatically guide
placement between physical machines and virtual machines.
In the second phase, HybridMR builds run-time resource pre-
diction models, and performs dynamic resource orchestration
to minimize the interference within and across collocated
interactive and MapReduce applications. Detailed evaluations
on a hybrid compute cluster consisting of 24 physical servers
and 48 virtual machines, with a diverse workload mix of in-
teractive and batch MapReduce benchmarks, demonstrate that
HybridMR achieves up to 40% improvement in job completion
times of MapReduce jobs over a virtual cluster, while satis-
fying the SLAs of interactive applications. Further, HybridMR
provides 45% improvement in resource utilization and around
43% energy savings compared to a native cluster, with minimal
performance penalty. Furthermore, we empirically demonstrate
that it is possible to dynamically change the native and virtual
cluster configurations to accommodate variations in workload
mix for maximizing the performance-energy envelope. These
results establish that a hybrid cluster configuration is a better
cost-effective solution than the either-or approach to native and
virtual modes of computation.
As part of the future work, we plan to investigate the ap-

plicability of HybridMR with other Hadoop implementations,
including iterative MapReduce (Twister [17]) and in-memory
version (Spark [37]). We are also pursuing the the dual problem
of scheduling interactive jobs on virtual and physical machines
in a heterogeneous compute environment [30].

ACKNOWLEDGMENT
We thank the anonymous reviewers, Adwait Jog, Amin

Jadidi, Mahshid Sedghi, Nachiappan Chidambaram Nachiap-
pan, and Onur Kayiran for their valuable comments towards
improving this paper. This research is supported in part by NSF
grants #1213052, #1205618, #1152479, #1147388, #0702617
and research grants from Google and Intel.

REFERENCES
[1] Amazon MapReduce. http://aws.amazon.com/elasticmapreduce/.
[2] Apache Hadoop. http://hadoop.apache.org.

[3] Apache Hadoop YARN. http://tinyurl.com/hadoop-yarn.
[4] Cgroup Support for I/O Throttling. http://tinyurl.com/io-throttle.
[5] Hadoop Fair Scheduler. http://tinyurl.com/scheduler-fair.
[6] Hadoop on VMware. http://serengeti.cloudfoundry.com/.
[7] No Virtualization for Clouds. http://tinyurl.com/novirtualization.
[8] Twitter Traces. http://an.kaist.ac.kr/traces/WWW2010.html.
[9] Xen Hypervisor. http://www.xen.org.

[10] P. Barham, B. Dragovic, and et al. “Xen and the Art of Virtualization”.
SIGOPS Oper. Syst. Rev., 37(5):164–177, 2003.

[11] X. Bu, C. Xu, and J. Rao. “Interference and Locality-Aware Scheduling
for MapReduce Service in Virtual Clusters”. Technical report, Univer-
sity of Colarado, 2012.

[12] M. Cardosa, P. Narang, A. Chandra, H. Pucha, and A. Singh. “STEA-
MEngine: Driving MapReduce Provisioning in the Cloud”. In HiPC,
2011.

[13] R. C. Chiang and H. H Huang. “TRACON: Interference-aware Schedul-
ing for Data-intensive Applications in Virtualized Environments”. In
SC, 2011.

[14] N. Chohan, C. Castillo, and et al. “See Spot Run: Using Spot Instances
for Mapreduce Workflows”. In HotCloud, 2010.

[15] Ross Benjamin Clay. “Enabling MapReduce to Harness Idle Cycles in
Interactive-User Clouds”. Master’s thesis, NC State University, 2011.

[16] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing on
Large Clusters”. Communications of the ACM, 51(1):107–113, 2008.

[17] J. Ekanayake, H. Li, and et al. “Twister: A Runtime for Iterative
MapReduce”. In HPDC, 2010.

[18] H. Herodotou and S. Babu. “Profiling, What-if Analysis, and Cost-
based Optimization of MapReduce Programs”. PVLDB, 4(11):1111–
1122, 2011.

[19] B. Hindman, A. Konwinski, and et al. “Mesos: A Platform for Fine-
grained Resource Sharing in the Data Center”. In NSDI, 2011.

[20] S. Ibrahim, H. Jin, and et al. “Evaluating MapReduce on Virtual
Machines: The Hadoop Case”. In CloudCom, 2009.

[21] H. Kang, Y. Chen, J. L. Wong, R. Sion, and J. Wu. “Enhancement of
Xen’s Scheduler for MapReduce Workloads”. In HPDC, 2011.

[22] T. Kooburat and M. Swift. “The Best of Both Worlds with On-demand
Virtualization”. In HotOS, 2011.

[23] G. Lee, B.G. Chun, and R. Katz. “Heterogeneity-Aware Resource
Allocation and Scheduling in the Cloud”. In HotCloud, 2011.

[24] H. Lin, X. Ma, and et al. “MOON: MapReduce On Opportunistic
eNvironments”. In HPDC, 2010.

[25] R. Nathuji, A. Kansal, and A. Ghaffarkhah. “Q-clouds: Managing
Performance Interference Effects for QoS-aware Clouds”. In EuroSys,
2010.

[26] Olio. Web 2.0 Social Events Application. http://incubator.apache.org/
olio.

[27] J. Polo, C. Castillo, and et al. “Resource-aware Adaptive Scheduling
for Mapreduce Clusters”. In Middleware, 2011.

[28] RUBiS. E-commerce Application. http://rubis.ow2.org.
[29] T. Sandholm and K. Lai. “MapReduce Optimization using Regulated

Dynamic Prioritization”. In SIGMETRICS, 2009.
[30] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and C. R.

Das. “Modeling and Synthesizing Task Placement Constraints in Google
Compute Clusters”. In SOCC, 2011.

[31] B. Sharma, R. Prabhakar, S. Lim, M. T. Kandemir, and C. R. Das.
“MROrchestrator: A Fine-Grained Resource Orchestration Framework
for MapReduce Clusters”. In CLOUD, 2012.

[32] TPC-W. E-commerce Benchmarking. http://www.tpc.org/tpcw/.
[33] A. Verma, L. Cherkasova, and R. H. Campbell. “ARIA: Automatic

Resource Inference and Allocation for Mapreduce Environments”. In
ICAC, 2011.

[34] VMware. Distributed Resource Scheduler. http://www.vmware.com/
files/pdf/VMware-Distributed-Resource-Scheduler-DRS-DS-EN.pdf.

[35] VMware. Elastic Hadoop for Cloud. http://tinyurl.com/elastic-hadoop.
[36] K. Younggyun, R. Knauerhase, and et al. “An Analysis of Performance

Interference Effects in Virtual Environments”. In ISPASS, 2007.
[37] M. Zaharia, M. Chowdhury, and et al. “Resilient Distributed Datasets:

A Fault-tolerant Abstraction for In-memory Cluster Computing”. In
NSDI, 2011.

258111111

