
Customizable and Predictable Synchronization in a Component-Based OS
Gabriel Parmer Jiguo Song
Computer Science Department

The George Washington University
Washington, DC

{gparmer,jiguos}@gwu.edu

Abstract
Component-based operating systems enable embedded

systems to adapt system policies, mechanisms, and abstrac-
tions to the specific workloads and contexts of each system.
The scope of an embedded system developer to customize the
software of the system is often limited by the kernel abstrac-
tions. For example, synchronization and scheduling policies
are often constrained to the static few provided by the kernel.
As time-management is an essential aspect of many embed-
ded systems, there is motivation to enable these systems to
configure synchronization policies to their needs.

In this paper, we present a component-based implemen-
tation of system synchronization policies in the COMPOS-
ITE OS. This implementation provides fault-isolation be-
tween applications, synchronization mechanisms, and system
schedulers while maintaining high levels of performance.
Empirical evaluation demonstrates that the proposed prim-
itives have performance comparable to a highly optimized,
but uncustomizable futex mechanism in Linux.

1 Introduction
Embedded and real-time systems are deployed in a large

variety of environments, many of which require specialized
policies for managing the resources of the system. The re-
quired policies differ across systems. For example, a sys-
tem anticipating high utilization and dynamic workloads
might prefer an earliest-deadline first (EDF) scheduling pol-
icy that has a utilization bound of 1, whereas a resource con-
strained system with a fixed task-set might use Rate Mono-
tonic Scheduling (RMS) and a simple fixed priority sched-
uler [9]. Additionally, real-time system requirements go be-
yond scheduling policies. Famously, the mars pathfinder
rover required a dynamic update to its software to activate the
priority inheritance resource sharing protocol to complete its
mission [6].

Motivated in part by the desire to provide a canonical base
system that is configured for specific systems, component-
based operating systems enable the system abstractions,
mechanisms, and policies to be defined by replaceable com-
ponents [1, 4]. A component is an encapsulated instance of
some specific functionality that exports an interface through
which that functionality can be used by other components.
Specialized components – including those defining schedul-

ing policies, physical memory mapping, and event notifica-
tion – are chosen to satisfy the goals of the system and appli-
cations. This configurability is used to scale from very sim-
ple systems with low resource utilization to complex systems
such as performance-based web servers.

In addition to increased configurability, component-based
operating systems often enforce the encapsulation of user-
level components using protection domains (via, e.g. hard-
ware page-tables). This increases the reliability of the system
as the scope of the adverse effects of an errant component are
limited to that component.

Though progress has been made to define many system
resource management policies as components, this paper in-
vestigates how synchronization and resource sharing poli-
cies can be implemented efficiently and predictably in a
component-based OS. Integral to this is the definition of
the appropriate interfaces to access synchronization primi-
tives, and the functional implementation of the synchroniza-
tion mechanisms themselves. As the scheduling policies
of the system change, different synchronization policies are
used. Consequentially, if scheduling policies are customiz-
able [11], it is beneficial for synchronization to be com-
parably specialized. Even for a single scheduling policies
(e.g. fixed priority), there are many possible resource shar-
ing protocols that can be used to produce a predictable sys-
tem. For instance, priority ceiling protocols (PCP) prevents
unbounded priority inversion [13] and deadlock, but requires
that one know the maximum priority of all threads access-
ing each lock. On the other hand, the priority inheritance
protocol (PIP) doesn’t prevent deadlock, but does not require
a-priori knowledge of thread priorities. It is clear that appro-
priate synchronization policies should be chosen given the
characteristics and requirements of each individual system.

More broadly, the customization of the system’s synchro-
nization protocols is useful for debugging – by using dead-
lock detection algorithms – and when customized in conjunc-
tion with the scheduler policy, can even be used to prevent
bugs [7], or provide deterministic multi-core execution [10].

Figure 1 is an example of a simple component-based sys-
tem configured with only three components, a client appli-
cation component, a synchronization component providing a
lock abstraction, and a scheduler component that can switch
between multiple threads executing in the components. Invo-

lock_take

Client

Component

Lock

Component

Scheduling

Component

sched_block sched_wakeup

lock_release

Figure 1. A client component invoking functions on a lock
component which invokes scheduler functions.

cations between components are made on functions within
the interface of the invoked component. If the components
are in separate protection domains, this is mediated by the
kernel, otherwise the invocation is made directly.

Challenges: The goals is to provide an efficient, cus-
tomizable synchronization mechanism in a component-based
system. As system schedulers change, or as the require-
ments for the system change, applications should be able to
use specialized synchronization components. However, be-
cause components are in different protection domains, the
cost of inter-component invocations must be considered to
achieve acceptable performance. Additionally, many bene-
fits of components rely on encapsulation of state, which can
make consistency of state (e.g. lock state) across components
difficult.

The contributions of this paper include
• the definition of different component-based synchro-

nization policy implementations that consider both pre-
dictability and efficiency (esp. regarding component invo-
cations), and
• an empirical evaluation of these protocols in the COM-

POSITE component-based operating system, including an
analysis for when each separate implementation is prefer-
able.
Previous component-based systems typically define a kernel-
provided (thus fixed) semaphore abstraction, or use threads
to serialize access, which is limited by the default thread
communication semantics [1, 8]. This paper, thus presents
the first implementation we know of for configurable syn-
chronization policies defined as possibly fault-isolated com-
ponents. In this paper, we will focus mainly on the uni-
processor case as many embedded systems fall into this cat-
egory. Additionally, this focus will simplify the discussion.

This paper is organized as follows: We introduce the
COMPOSITE component-based OS in Section 2, and the
methodologies for providing component-defined synchro-
nization policies in Section 3. In Section 4, we experimen-
tally evaluate the synchronization policies. In Section 5 we
discuss the related work, and Section 6 concludes.

2 The COMPOSITE Component-Based OS
To investigate the design of a component-based imple-

mentation of synchronization policies, we use the COM-

POSITE component-based operating system [12]. The sys-
tem policies, mechanisms, and abstractions that are typi-
cally found in the kernel in traditional systems, are imple-
mented as user-level components in COMPOSITE. For ex-
ample, scheduling policies, networking protocols, physical
memory management, and, of course, the synchronization
policies, are defined as user-level components. Invocations
of a specific function in a component’s interface are used to
access that component’s functionality.

Threads and Schedulers: Threads begin execution in
a component, and can invoke others throughout their life-
time. Invocations mimic function calls, thus threads execute
through many components to harness the system’s function-
alities. System schedulers are normal user-level components
that have the capability to dispatch (switch) between threads.
This capability is used to block threads (switch away from
them until some event occurs), and to wake them up when the
event occurs (switch to them). Component-based schedulers
afford a number of benefits. (1) System temporal policies are
configurable and can be replaced by simply using a differ-
ent component, and (2) schedulers are isolated from faults in
other components, and likewise. This can increase the de-
pendability of the system if appropriate recovery techniques
are used [3, 2].

Protection Domains: Each component is, by default, iso-
lated from other components in its own protection domain
(provided by hardware page tables). Invocations between
components require switching between page-tables, and are
therefore mediated by the kernel. Though this process is
optimized, direct function invocations is still significantly
faster. A performance comparison is conducted in Section 4.
COMPOSITE enables the system to manage the trade-off be-
tween fault-isolation (inter-protection domain invocations),
and performance (direct invocation) with a mechanism called
Mutable Protection Domains (MPD) [12]. MPD enables
protection domain boundaries between specific components
to dynamically be constructed and removed in response to
where the overheads for inter-protection domain invocations
are the greatest. Importantly, where security constraints exist
in the system (e.g. between applications), protection bound-
aries always exist to ensure system security. Contrarily, if
a security boundary doesn’t exist between components, the
main purpose of protection domains is to increase reliability
by limiting the scope of errant behaviors.
2.1 Scheduler Interfaces

Component Critical Sections. A component that pro-
vides a lock abstraction will require critical sections itself
to modify locks structures, do memory allocation, etc. Here
we describe what facilities schedulers provide in COMPOS-
ITE towards this. Schedulers provide a single lock per com-
ponent that can be used to create critical sections for that
component. Components (e.g. lock components) can use
this to define their own higher-level synchronization prim-
itives. Building higher-level synchronization primitives on
those that are lower-level is common: monolithic kernels use
the ability to disable interrupts to construct mutexes, and use

these mutexes to provide user-level accessible synchroniza-
tion primitives.

Specifically, Schedulers provide a pair of func-
tions: sched comp critsect take(comp id)
and sched comp critsect release(comp id)
that a lock component can use. Each component can
invoke these functions to provide mutual exclusion be-
tween the take and release. If a thread invokes the
sched comp critsect take function, and another
thread is currently holding the critical section, the sched-
uler will immediately switch to the critical section holder
allowing it to complete its critical section. Upon releasing
the critical section, the scheduler immediately switches to
the contending thread, thus allowing it to take the critical
section. The goal of the scheduler here is to provide a simple
mechanism such that the other components can define their
own customizable, and semantically rich synchronization
policies.

Controlling Thread Execution State. Schedulers
provide two other functions that are used to con-
trol thread execution, sched block(thd dep) and
sched wakeup(thd). sched block blocks the cur-
rent thread 1(i.e. the one calling sched block), and cre-
ates a dependency between it and the thread identified by
thd dep. The scheduler deals with dependencies as fol-
lows: if a thread τ is dependent on τd, and the scheduling
policy wishes to execute τ , it will immediately switch to τd

instead. τd will presumably switch to τ at its earliest conve-
nience which will remove the dependency (as is exemplified
in Algorithm 1).

To wakeup a thread that has been blocked, the
sched wakeup function is used. The scheduler will make
the thread runnable and remove any thread dependencies it
may have. It will be executed the next time the scheduling
policies wishes for it to run.

3 Synchronization Component Design and
Implementation

This paper investigates how synchronization policies can
be specialized for different subsystems and applications. The
basic goals of any synchronization primitive’s design in-
clude:
• Predictability: The basic implementation should not

include unbounded operations such as memory allocation 2.
Additionally, we will discuss the ability to customize syn-
chronization policies to include features necessary in em-
bedded systems such as preventing unbounded priority in-
version, and more generally, enabling the definition of cus-
tomized policies.
• Efficiency: As synchronization primitives might be

used quite frequently, the overhead they impose should be as
small as possible. This might include optimising for different

1The thread will block unless a wake-up for it has been received in the
mean time. This might happen if a thread is preempted before completing
an invocation to sched block.

2It is difficult to bound the execution of the out-of-memory case.

common cases (e.g. often critical sections are not contended
by multiple threads).

critical

section

critical

section

lock_releaselock_take

sched_block lock_wakeup lock_wakeupsched_block

lock_pretake lock_take lock_release

Figure 2. Invocations made between components for
the pessimistic and optimistic algorithms assuming con-
tention when taking and releasing the lock. Left:
pessimistic lock component. Right: optimistic lock
library and component. Dotted invocations desig-
nate invocations of sched comp critsect take and
sched comp critsect release. The black square in-
dicates atomic instructions.

We will discuss two lock implementations. Figure 2 de-
picts a pessimistic implementation, and an optimistic im-
plementation that optimises for uncontended use of locking
primitives.
3.1 A Pessimistic Lock Component

We now discuss the implementation of a synchronization
component that provides a lock (or mutex) abstraction to
client components. This component is pessimistic in that
the implementation is not optimised for locks that are un-
contended 3. The uncontended case is not treated specially.
Many operating systems have up until recently provided (or
still provide) comparible user-level locking primitives. The
equivalent lock in monolithic systems would require a sys-
tem call for both the taking and releasing of each lock. In
COMPOSITE, this means that each acquisition and release of
a lock involves an invocation (IPC) between the client com-
ponent, and the lock-providing component.

The pessimistic lock (or plock) implementation is de-
tailed in Algorithm 1. These two functions provide the tradi-
tional operations of taking and releasing a lock. Additional
functions for allocating and freeing a lock are not displayed.
These trivially involve the allocation and deallocation of the
lock data-structure within the synchronization component.
Locks are identified in the client component as an integer
(lock id in the algorithms).

Each lock structure (denoted local lock) includes a
field for storing the owner of the lock. If a lock isn’t taken,
then the owner is set to 0. In lock take, if the lock is
already taken by another thread, then we wish to (1) add the
current thread to a list of the blocked threads for that lock,
and (2) block the current thread with a dependency on the
thread who owns the lock.

3This should not be confused with optimistic or pessimistic concurrency
mechanisms such as transactions versus mutexes.

Algorithm 1: Pessimistic Lock
lock take:
Input: lock id: integer identifying the specific lock
sched comp critsect take(this comp)
local lock = get lock datastruct(lock id)
owner = local lock.owner
if owner == 0 then

local lock.owner = this thd id
sched comp critsect release(this comp)
return

blocked list node.thd = this thd id
add list(local lock.list, blocked list node)
sched comp critsect release(this comp)
sched block(owner)
// now we are the lock owner
return

lock release:
Input: lock id: integer identifying the specific lock
sched comp critsect take(this comp)
local lock = get lock datastruct(lock id)
if empty(local lock.list) then

blocked list node = dequeue(local lock.list)
blocked thd = blocked list node.thd
local lock.owner = blocked thd
sched comp critsect release(this comp)
sched wakeup(blocked thd)

else
local lock.owner = 0
sched comp critsect release(this comp)

When releasing a lock, the owner checks if there are any
threads blocked waiting for the lock to be released. If there
are, the first one is woken up which then owns the lock.

Discussion: The pessimistic strategy is functionally cor-
rect and simple, but it does not optimize for the common
case: when a lock is taken and released without contention.
Indeed, to increase the efficiency, the next strategy considers
that case specifically.
3.2 Optimistic Lock Component

In this section we discuss the implementation of a lock
that optimises for the case when there is no contention (i.e. it
is optimistic that there will be infrequent contention). In our
experience with constructing a webserver on COMPOSITE,
this is a worthwhile optimization [12]. We are inspired by
Linux futexes [5] 4 that are designed to significantly decrease
uncontended lock access latency for user-level programs by
avoiding system calls.

The algorithm for the optimistic lock (or olock) consists
of two main bodies of code, one that is loaded as a small li-
brary into the client component (Algorithm 2), and one in the
lock component that defines lock behavior under contention
(Algorithm 3).

The library must use some synchronization mechanism.
As it is optimistically attempting to avoid making component
invocations, the client library relies on an atomic instruction
such as compare and swap to atomically read and update a
memory location. Here we assume that compare and swap
takes three arguments: the address to be modified, the value
the thread last loaded from that memory location, and the

4Futexes are used by default if you use pthread mutexes.

Algorithm 2: Optimistic Lock (Client Library)
lock take:
Input: lock: lock structure
repeat

repeat
l old = lock
owner = l old.owner
if owner then

l new.owner = owner
l new.contended = 1
lock component pretake(lock.id)

else
owner = l new.owner = this thd id
l new.contended = 0

until cmp and swap(lock, l old, l new)
if owner != this thd id then

// wait till owner releases the lock
lock component take(lock.id, owner)

until owner == this thd id
return

lock release:
Input: lock: lock structure
repeat

l old = lock
contended = l old.contended
l new.owner = 0
l new.contended = 0

until cmp and swap(lock, l old, l new)
if contended then

lock component release(lock.id)

new value that location is to be updated to. Compare and
swap checks that if the memory location is set to the first
value, and if it is, it is updated to the new value. This is done
atomically, and it will return true if the update is made, false
otherwise. Instead of using architectural compare and swap
instructions, we use restartable atomic instructions to pro-
vide the same functionality with less overhead as described
in [11]. This technique can be used on architectures that do
not provide atomic instructions. At a high-level, compare
and swap is used to manipulate a word in memory semanti-
cally associated with the lock that includes both the owner of
the lock, and a bit for if that lock has been contested or not
(i.e. if there are threads blocked waiting for the lock to be
released).

All manipulations for the common-case of uncontested
critical section access are done within the library, avoiding
component invocations. This enables the overhead of lock
access in the uncontended case to approach that of a function
call. However, it does complicate the contested case. This
is because the relevant state concerning if a lock is currently
taken or not, and if there are threads blocked on it, is dis-
tributed across multiple components (the client and the lock
components). With distributed state, additional logic must
ensure that actions in each component are taken with a con-
sistent view of the lock’s state.

Algorithm 3 depicts the code in the synchronization com-
ponent for interfacing with the library in Algorithm 2. Much
of the design of this algorithm is motivated by the need to en-
able a consistent view of the lock’s state between the client
and synchronization components. The main difficulty here

Algorithm 3: Optimistic Lock (Component)
lock component pretake:
Input: lock id: integer identifying the specific lock
sched comp critsect take(this comp)
local lock = get lock datastruct(lock id)
local lock.epoch = curr epoch
sched comp critsect release(this comp)
return

lock component take:
Input: lock id: integer identifying the specific lock
sched comp critsect take(this comp)
local lock = get lock datastruct(lock id)
if local lock.epoch != curr epoch then

// outdated attempt to take the lock, has
been released in the mean time

sched comp critsect release(this comp)
return

// block this thread
blocked list node.thd = this thd id
add list(local lock.list, blocked list node)
sched comp critsect release(this comp)
sched block(owner)
// try to reacquire the lock in library again
return

lock component release:
Input: lock id: integer identifying the specific lock
sched comp critsect take(this comp)
local lock = get lock datastruct(lock id)
curr epoch + +
while !empty(local lock.list) do

blocked list node = dequeue(local lock.list)
blocked thd = blocked list node.thd
// release component lock before waking

last thread
if empty(local lock.list) then

sched comp critsect release(this comp)
sched wakeup(blocked thd)

end

is typified by the following sequence: If a thread attempts
to take a lock, but finds it contested, it will invoke the lock
component to block waiting. However, if before the lock
component can process this request to block, the lock owner
releases the lock, then we are in a difficult situation. When
resumed, the first thread will ask to block waiting for the lock
to be released even though it is really available. The lock is
not taken, so blocking it would be in error. The root prob-
lem is that the thread asking to block till the lock is released
is making that request on ”stale” information (it believes the
lock is taken, but it is actually not). There would be no way
for the lock component to discriminate between this stale in-
vocation and the typical condition where a thread is blocking
on a lock that actually is current held by another thread. This
condition, then, must be detected.

To disambiguate between ”stale” blocking requests from
the client library, and requests to block on an actually con-
tended lock, we identify the case where a lock has been re-
leased after a thread determines in the library code the lock
is contended, but before it has successfully been placed on
the list of blocked threads for the lock in the synchronization
component. This is done by making multiple invocations of

the synchronization component, one before the lock is set
as contested, and one after. The synchronization component
simply tracks if a release of the lock occurs between these
invocations. It does so trivially by incrementing a value (an
integer: curr epoch) for each lock release. The epoch
number is recorded before the lock is set as contended, and
verified to be identical when the contending thread asks to
block waiting for the lock to be released. If these values dif-
fer, then a release occurred between these calls. In this way,
the lock component can detect if an invocation that is made to
block the current thread is made on inconsistent information,
i.e. when the lock isn’t actually taken.

There is an additional difference between this implemen-
tation and the one that doesn’t optimize for the uncontended
case. The lock component release function – called
when the lock is contended and released – wakes up all
threads blocked waiting for the lock to be released. This in
contrast to the pessimistic lock where only the first one on the
list is unblocked. When they execute, they will again attempt
to take the lock. This is an optimization assuming that the
thread to next hold the lock will be able to release it before
preempted. Subsequent accesses will be uncontended.

Discussion: The optimistic lock optimizes for the
uncontended case, but pays in complexity, and in
the cost of contended accesses. The invocation of
lock component pretake to ensure consistency of
lock state between client library and lock component in-
creases the number of invocations. The optimal lock imple-
mentation, thus, depends on the workload.
3.3 Real-Time Resource Sharing Protocols

We have presented two algorithms for implementing lock-
ing in a component-based system. Here we describe how
these are expanded to implement the priority inheritance pro-
tocol (PIP) and the priority ceiling protocols (PCP) to prevent
unbounded priority inversion for real-time systems. We as-
sume the reader is familiar with these protocols [13]. The
point here is to demonstrate the presented implementations
can be easily specialized to specific system requirements.

Priority Inheritance Protocol: Both existing algorithms
automatically behave equivalent, semantically, to PIP. This
is due to the dependencies that are tracked by the scheduler.
PIP ensures that the lock holder is scheduled with the prior-
ity of the thread contending that lock with the highest pri-
ority. Thread dependencies define the following semantics:
if a high-priority thread is chosen to run by the scheduling
policy, the thread it is dependent on will actually be exe-
cuted 5. Thus, as long as when a thread blocks, it passes
the holder/owner of the lock as a dependency, the behavior is
equivalent to the PIP protocol.

Priority Ceiling Protocol: The pessimistic algorithm is
trivially extended to PCP. Within lock take, the sched-
uler must be invoked with a request to compare the cur-
rent thread’s (possibly elevated) priority to the current ceil-

5The dependency relation is transitive, so a chain of threads with de-
pendencies will determine a single thread the rest depend on. A cycle of
dependencies denotes deadlock and is detected and treated as erroneous.

ing maintained by the lock component. Only if the lock is
not taken, and the effective priority is higher than the ceiling
will the lock be taken. In lock release, the scheduler
must again be invoked to lower the priority of the thread to
its original level.

As the admission test to allow a thread to take a lock in
PCP includes complex logic and invocations to the scheduler
to retrieve thread priorities, it does not make sense to alter
the optimistic lock implementation to accommodate PCP. If
PCP is the desired protocol, the pessimistic lock better ac-
commodates it.

4 Experimental Evaluation
We have implemented the proposed algorithms in the

COMPOSITE component-based OS. To test the overhead of
the approaches, we use a 1 Ghz Pentium M processor with
384MB RAM. For all experiments, the machine is quiescent
during experiments. We compare against futexes in Linux
version 2.6.20, and glibc version 2.7 with NPTL. Unless oth-
erwise noted, we repeated measurements 1024 times for each
experiment, reporting the average. We did not notice a signif-
icant change in the results with a higher number of iterations.

In the experiments, we investigate three components, a
client component that relies on the synchronization compo-
nent, that in turn relies on the scheduling (lock) component
(as in Figure 1). These are denoted by c, l, and s. A spe-
cific protection domain configuration between these compo-
nents is denoted by parenthesis. If two components are in the
same set of parenthesis, Mutable Protection Domains is used
to remove the intervening protection boundary, thus increas-
ing performance. For example (c)(l)(s) means that they are
in separate protection domains, and (c)(ls) denotes that the
synchronization and scheduling components are co-located
in the same protection domains.

It might seem dangerous to place both the locking and
client components into the same protection domains as
the scheduler. However, COMPOSITE supports hierarchical
scheduling. This means that a parent scheduler can delegate
scheduling duties of a subset of its threads to specific chil-
dren schedulers. Thus it is possible for every application to
have its own scheduler. In such a case, no security boundary
is violated by placing that scheduler in the same protection
domain as the rest of the application components.

For context, an inter-protection domain invocation in
COMPOSITE takes 0.685 µ-seconds, and an invocation be-
tween components in the protection domain takes 0.009 µ-
seconds. By comparison, an RPC between processes via a
pipe in Linux takes 4.446 µ-seconds. Each value is the aver-
age of 100,000 measurements. A direct comparison to Linux
should not be made as Linux is not optimised for IPC. In-
stead, these values should be compared only for context.

To determine the costs of the discussed synchronization
mechanisms in COMPOSITE, we study the costs of taking and
releasing a lock around an empty critical section. In Figure 3,
the costs of uncontended access are measured for pessimistic
locks (plocks), optimistic locks (olocks), and futexes.
For many workloads, this is the common case where locks

are used to ensure mutual exclusion, but the lock is taken and
released before another thread can contend the lock. Each
value represents the average of 10,000 lock/unlock pairs. For
both the optimistic locks and futexes, the configuration of
protection domains does not effect performance as no in-
vocations are made in the uncontended case. Though the
pessimistic implementation does require invocations of the
lock component, it does not require any thread switches. The
scheduler component is still invoked to provide critical sec-
tions for the lock component. The optimistic implementation
is faster than futexes as it requires only a single atomic oper-
ation whereas futexes must synchronize with the kernel and
are more complicated [5].

Figure 4 plots the latency of the various implementations
when there is contention for the lock. A high priority thread
attempts to take a lock held by another thread. This thread
is immediately switched and it releases the lock, letting the
higher priority thread take it. The latency of this operation is
measured.

When the components are in separate protection domains,
the optimistic locking implementation has a higher over-
head than the pessimistic one. This is due to the invocation
overheads for lock component pretake, and its invo-
cations of the scheduler. Both the optimistic lock, and futexes
require more logic to ensure that the lock really is contested
than the pessimistic case, thus why the (cls) version of the
pessimistic lock is fastest.

The pessimistic lock is more efficient than the optimistic
lock under contention, and the optimistic lock is signifi-
cantly more efficient when there is low contention. This
again motivates the component-based approach which pro-
vides the ability to customize your locking implementa-
tion to the specific workload of your system and applica-
tions. Figure 5 plots the average latency for lock opera-
tions given a variable proportion of uncontended to con-
tended accesses. The x axis denotes this proportion (i.e.
contended accesses/total# accesses). Because of the
low uncontended cost, the optimistic lock implementation is
the more efficient than the pessimistic one up to when 33.5%,
57.7%, and 62.6% of the accesses are uncontended for (cls),
(c)(ls), and (c)(l)(s), respectively. When there are higher
contention rates, the pessimistic implementation is more ef-
ficient.

When compared to a system without customizable lock-
ing policies (Linux with futexes), the optimistic case is faster
when 12.5% or less of accesses are uncontended (for (cls)).
When there is more than 43% contention, the pessimistic
lock implementation has less overhead than futexes (again
for (cls)). The emphasis of this work is to provide customiz-
able synchronization policies with acceptable performance.
As the efficiency is generally in the same magnitude as com-
monly used mechanisms, we consider this a success.

5 Related and Future Work
Many component-based or µ-kernel systems [8, 1, 4] have

attempted to increase the configurabiliy and reliability of
the system by structuring the system around components or

 0.01

 0.1

 1

 10

plock olock futex

M
ic

ro
se

co
nd

s
(cls)

(c)(ls)
(cl)(s)

(c)(l)(s)

no invocations

Figure 3. Uncontended
lock latency (logscale).

 0

 2

 4

 6

 8

 10

plocks olocks futex

M
ic

ro
se

co
nd

s

(cls)
(c)(ls)
(cl)(s)

(c)(l)(s)

Linux

Figure 4. Contended
lock latency.

 0

 2

 4

 6

 8

 10

 12

 0 0.2 0.4 0.6 0.8 1

M
ic

ro
se

co
nd

s

Proportion of contended to total accesses

plock (cls)
plock (c)(ls)

plock (c)(l)(s)
olock (cls)

olock (c)(ls)
olock (c)(l)(s)

futex

Figure 5. Lock latency for proportion of
contended lock access to total

servers. COMPOSITE has increased the degree to which this
is possible by removing scheduling policy from the kernel
and defining it in components [11]. Whereas previous sys-
tems have used a kernel-provided semaphore abstraction, or
thread serialization which are both inflexible and limited by
kernel policies, we seek to define all synchronization via
user-level components. This increases the scope of system
customization by enabling specialization of synchronization
mechanisms.

The implementation strategies we investigate are inspired
by many previous approaches. The pessimistic approach to
locking is similar to distributed algorithms for mutual exclu-
sion whereby a centralized server accepts requests for clients
to enter the critical section, and replies in turn to those that
can access it. We observe that a single client component
shares memory between different synchronizing threads, and
this leads to the optimization of the uncontended case where
all modifications of the lock state are made in the client. This
design was in some ways inspired by futexes [5]. The imple-
mentation differs from futexes in that we do not assume that
a region of memory is shared between the client and the lock-
ing component 6 as such sharing would weaken the reliability
constraints of the system.

In the future, we will consider further improving the per-
formance of these locks. One promising approach to use an
optimistic locking component to provide the necessary criti-
cal sections for a higher-level locking component instead of
using the scheduler critical section. This will remove, in the
common case, most invocations from the lock component to
the scheduler and will significantly improve the access la-
tency for the optimistic lock under contention.

6 Conclusions
We detail the design and implementation of component-

based synchronization protocols in the COMPOSITE
component-based operating system. We show that two
different implementations can optimize for different usage
cases, and describe how they are expanded to include typical
resource sharing protocols. This enables the customization
of system synchronization policies for the requirements of
the environment or the application. We empirically evaluate
these implementations and show that their overhead is on
par with more traditional mechanisms that do not support

6Futexes are mapped both in the kernel and user-level.

customization.
The COMPOSITE source code is available upon request.

References

[1] J. Bruno, J. Brustoloni, E. Gabber, A. Silberschatz, and
C. Small. Pebble: A component-based operating system for
embedded applications. In Proc. USENIX Workshop on Em-
bedded Systems, pages 55–65, 1999.

[2] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.
Microreboot–a technique for cheap recovery. In Proceedings
of the 6th Symposium on Operating Systems Design and Im-
plementation (OSDI), pages 31–44, December 2004.

[3] F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Camp-
bell. Curios: Improving reliability through operating system
structure. In Proceedings of the 8th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’08),
San Diego, CA, December 2008.

[4] J. Fassino, J. Stefani, J. Lawall, and G. Muller. Think: A soft-
ware framework for component-based operating system ker-
nels. In Proceedings of Usenix Annual Technical Conference,
June 2002.

[5] H. Franke, R. Russell, and M. Kirkwood. Fuss, futexes and
furwocks: Fast userlevel locking in linux. In Ottawa Linux
Symposium, 2002.

[6] M. B. Jones. What really happened on mars?, 1997.
[7] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea. Deadlock

Immunity: Enabling Systems To Defend Against Deadlocks.
In Proceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2008.

[8] J. Liedtke. On micro-kernel construction. In Proceedings of
the 15th ACM Symposium on Operating System Principles.
ACM, December 1995.

[9] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a hard real-time environment. JACM, 1973.

[10] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: effi-
cient deterministic multithreading in software. In ASPLOS
’09: Proceeding of the 14th international conference on Ar-
chitectural support for programming languages and operat-
ing systems, pages 97–108, 2009.

[11] G. Parmer and R. West. Predictable interrupt management
and scheduling in the Composite component-based system. In
RTSS ’08: Proceedings of the 29th IEEE International Real-
Time Systems Symposium. IEEE Computer Society, 2008.

[12] G. A. Parmer. Composite: A Component-Based Operating
System for Predictable and Dependable Computing. PhD the-
sis, Boston University, Boston, MA, USA, Aug 2009.

[13] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE
Trans. Comput., 39(9):1175–1185, 1990.

