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Abstract—Three of Linux’s greatest assets, especially in em-
bedded systems, are its extensive corpus of device drivers, its
hardware compatibility layer that spans many architectures and
platforms, and the broad spectrum of applications ported to it.
This paper outlines an OS design that enables the co-location
of both the Linux kernel, and other real-time operating system
kernels on the same system. In executing other operating systems
in this manner, they receive the advantage of Linux’s assets, while
also enabling the benefits of running other OSes with alternate
structures and goals.

This paper specifically focuses on the design and implemen-
tation of the compatibility layer with Linux that enables the co-
located OS to selectively use specific Linux functionalities. The
technique does not require modifications to the Linux kernel, and
supports co-located kernels that provide user-level execution. An
emphasis is on maintaining native performance and predictability
of all co-located OSes. We detail the use of this technique to
co-locate with Linux the COMPOSITE component-based OS –
a real-time OS with a very different design. In doing so, we
discuss the points of friction where COMPOSITE is adapted to
ensure system correctness, or to avoid sacrifices in performance
or predictability. We provide a preliminary evaluation of the
system with specific emphasis on different means for the co-
located OS to access the device drivers and applications of Linux.
We believe this evaluation demonstrates the possibilities for such
an approach, while introducing a new way to use the Linux
code-base, and motivates further research. We present this to
the Linux community to engender feedback, and gauge interest.

I. INTRODUCTION

Real-time and embedded systems are often very specialized
around a specific set of tasks, and many operating systems
exist to cater to these requirements. Linux is appealing for
embedded systems due to its extensive development tools,
its large application-base, its broad hardware portability, and
extensive support for different devices.

This paper does a preliminary investigation of the possibility
of using co-location of operating systems to achieve the
benefits of both a specialized operating system with a different
design, and the generality of Linux. We introduce HIJACKCOS

LINUX

that inserts itself as a layer between the hardware and each
OS (thus hijacking the system) that multiplexes the hardware
between them.

HIJACKCOS
LINUX does not place both operating systems on equal

footing, and instead requiring one, the host OS, to manage
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resources that cannot be shared such as device drivers. Though
another OS could be used to provide co-location facilities, for
the purposes of this work, we focus on Linux due its extensive
device-driver support, strong hardware abstraction layer, and
source availability. We refer to the OS that is co-located with
the host as the appendage operating system or the AOS. In
this paper we use the COMPOSITE[1] component-based OS
as a case-study AOS for OS co-location with HIJACKCOS

LINUX.
COMPOSITE is a research operating system focused on relia-
bility, predictability, and configurability. It has a very different
structure than Linux in that all system policies and most
abstractions are implemented as user-level components that
export functions through interfaces that other components
invoke to access their functionality. This capability to run
COMPOSITE (or COS) on Linux, thus the name HIJACKCOS

LINUX.
Figure 1 depicts both a normal Linux system and

HIJACKCOS
LINUX supporting an AOS. A HIJACKCOS

LINUX Linux mod-
ule interposes on hardware events, and routes them to the
proper OS while enabling the AOS to communicate with and
harness the host (Linux). To enable both OSes to share the
system processor, the entire AOS is executed within a single
host thread (with the exception of interrupt execution). When
the host wishes to switch away from the AOS, it can do so
by saving the thread’s state as normal, and returning later. If
the AOS wants predictable execution, it can be executed at the
host’s highest priority. As we will see, the AOS can harness
host functions to manipulate the page tables associated with
it’s thread.

In providing facilities for OS co-location, we summarize the
goals of HIJACKCOS

LINUX here.
G1. The HIJACKCOS

LINUX mechanisms should be transparent to
the user-level environments in both the host and the AOS.

G2. The modifications to the AOS should be isolated from
the core logic of the OS.

G3. The impact on the host source to support HIJACKCOS
LINUX

should be minimal.
G4. The communication between host and AOS should be

predictable and not impose additional latency compared
to traditional forms of IPC.

G5. The host and AOS should be able to share I/O devices.
They should both be able to issue relatively low-level
commands to the devices.

Where we have not met these goals in the current prototype,
we make specific note. In this paper, we wish to show the
viability of the approach, and motivate further research.

In contrast to existing systems such as RTLinux [2] and
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Fig. 1. (a) A normal Linux system in which interrupts from devices, exceptions, and process system calls are directly processed by the
kernel. (b) HIJACKCOS

LINUX that interposes at kernel entry points, and multiplexes hardware events to either Linux or the AOS. HIJACKCOS
LINUX

provides abstractions for the co-located OSes to communicate, and for the AOS to access peripherals through the Linux drivers. The AOS
hosts multiple user-level protection domains while Linux sees all AOS execution as a single Linux process.

RTAI [3], we do not attempt to reduce the response time or
predictability properties of Linux. Instead the response time
and execution bounds on operations is limited by both Linux
and the AOS. Linux has made great strides in decreasing
worst-case response time through the Linux-RT patches [4].
Instead, we focus on the orthogonal problem of providing the
co-location of both OSes, while enabling them each to main-
tain the power to define possibly very divergent abstractions
for user-level execution.

Contributions. The main contributions of this paper in-
clude 1) a discussion of the design and implementation of
HIJACKCOS

LINUX, a system for co-locating OSes, 2) the application
of this system to the COMPOSITE component-based OS, a
system with a very different structure than the host, 3) the
implementation of this support in Linux as a kernel module,
and 4) and a preliminary evaluation of the basic mechanisms
for sharing. Though we consider HIJACKCOS

LINUX an existence
proof demonstrating the feasibility of this approach, we believe
that more research is warranted to determine the full promise
of OS co-location.

This paper is organized as follows: Section II discusses
how Linux provides the facilities for OS co-location, while
Section III discusses our technique for dynamically over-
riding low-level hardware-triggered execution paths to enable
co-located OS execution, and IV discusses our COMPOSITE
implementation using this system. Section VI provides an
evaluation of the system and Section VII discusses previous
work that is related to HIJACKCOS

LINUX. Section VIII concludes
and discusses future work.

II. THE HIJACK HOST ABSTRACTION LAYER:
HAL REPLACEMENT FOR AOSES

The AOS must have access to hardware features required
for kernel execution, but the AOS cannot directly access these
features as the hardware must be multiplexed with Linux. To
mediate hardware access, we present the the Hijack Hardware
Abstraction Layer, or H2AL, which is a replacement for the
Hardware Abstraction Layer (HAL) of the AOS.

The H2AL functionality is provided as a set of functions
that are compiled with the AOS and inserted into the Linux
kernel via the module interface. Consequently, HIJACKCOS

LINUX

does not require kernel modifications, thus satisfying G3. We
discuss the most notable functionality in the H2AL here.

• Page-table management. Functionality is included for creat-
ing, walking, allocating, and switching between page-tables.
Switching between AOS page-tables not only includes
rewriting the cr3 register, but also changing the page-table
pointer in the mm_struct for the Linux task devoted to
the AOS.

• Physical-memory management. The AOS must receive
physical memory to use for its own allocations. This
memory is used to map into page-tables. Additionally, this
includes the translation between physical and virtual ad-
dresses (backed by Linux’s __va and __pa). If contiguous
physical pages are not required, then the physical frames
provided to the AOS can be allocated using kmalloc with
the GFP_KERNEL flag. In this case, the H2AL maintains
a mapping between an AOS frame number, and actual
physical page.

• Kernel-memory allocation. Though the AOS could use its
own physical memory for its structures, in COMPOSITE
these structures are so rare, that we provide functions within
the H2AL for kernel memory allocation and deallocation
for convenience.

• Saved register access. Linux saves the registers of the
current thread on the stack during interrupts and exceptions.
The H2AL provides functionality to access these registers
so that the AOS can save and change them if a thread
switch is required. Additionally, if an interrupt handled by
the AOS occurs while in the context of a non-AOS thread,
these functions will provide a reference to registers stored
within the AOS’s Linux thread. Thus, when that thread is
dispatched to, the proper state of the AOS system is loaded.
This is an essential step is decoupling the scheduling of the
AOS and that of Linux.

• Kernel stack. The H2AL provides facilities for tracking and



providing kernel stacks for the AOS. By default, the AOS
always executes on the kernel stack of the Linux thread
devoted to the AOS. More advanced functionality might
enable the AOS to allocate its own kernel stacks, and the
H2AL would simply keep the current kernel stack for the
AOS Linux thread consistent with the currently active AOS
stack.

• Timer interrupts. The H2AL provides facilities to retrieve
information about the timer interrupts (e.g. frequency), and
program the callback that is invoked each time a timer
interrupt occurs. The H2AL layer reprograms a Linux timer
upon reception of a timer event so as to trigger the H2AL
every timer tick. This periodic reprogramming of the timer
would have ill effects with notick, and there is certainly
room for the H2AL layer to improve.

• AOS idle notification. The H2AL provides functionality
that can be used by the AOS to notify Linux that there is no
current activity. If the AOS’s Linux thread is executed at the
highest real-time priority, the idle notifications signify the
only times that Linux processes are able to execute. AOS
idling is implemented using typical Linux wait queues –
when the AOS is idle it is blocked, and it is only woken
up when it is receives an interrupt.

• Hardware entry point abstraction. Instead of directly pro-
gramming the hardware to use AOS entry points for system
calls, exceptions, and interrupts, the H2AL provides func-
tionality to activate the proper AOS handlers corresponding
to specific hardware events. Section III contains the details
about the requisite interposition and multiplexing between
Linux and the AOS.
Additionally, we provide a couple of more specialized

H2AL features for accessing I/O of a specific type (e.g.
network), and for communication with Linux processes (via
the TRANSLATOR), discussed in Section V. These additions
do not closely mimic hardware features and provide higher-
level functionality, thus they likely require explicit integration
into the AOS. These additions are closer to device drivers than
they are a traditional hardware abstraction layer.

III. HARDWARE ENTRY POINT INTERPOSITION FOR
OS CO-LOCATION

AOSes define their own system calls, exceptions, and inter-
rupts. HIJACKCOS

LINUX must multiplex the raw hardware events
between Linux and the AOS. This function is performed in
the HIJACKCOS

LINUX module by reprogramming the hardware to
activate HIJACKCOS

LINUX logic that will jump appropriately to
either Linux or the AOS in response to each event.

To provide OS co-location services via the interception of
hardware entry points, we identify a number of implementation
requirements.
R1. Code must be interposed on all target hardware entry

points (including traps, interrupts, exceptions).
R2. Interposition code must determine the target OS to service

the request, and forward execution to its handler.
R3. Establish a stack for kernel execution of the target OS.

R4. In the case of interrupts, complications must be resolved
involving the execution of an AOS’s interrupt handler
while not in the context of the AOS thread. The H2AL
functions for saved register access are invaluable here.

The following subsections describe how these requirements
are satisfied for a number of hardware entry points.

A. Case Study: System Calls
Our implementation focuses on x86-32, though many

of the techniques are more broadly applicable (a x86-
64 port is in progress). The primary mechanism for sys-
tem calls is the sysenter/sysexit pair that tend to
demonstrate significantly higher performance than using a
system trap via int 0x80 and iret. Hardware entry-
point level interposition (R1) is done by simply writing the
handler address to the appropriate model-specific register
(wrmsr(MSR_IA32_SYSENTER_EIP,...)).

The system call handler must demultiplex the system call
hardware event to a specific target OS (R2). Though this could
be achieved easily by dispatching to the AOS system call
handler when a specific flag value is set in the task structure
of the current thread, or by checking if the current thread is
amongst a set of threads managed by the AOS. For system
calls, we decided against this approach as the overheads of
retrieving the thread structure impacted a critical path for the
AOS (IPC). Instead, we removed some transparency in the
AOS (and weaken G1) and require the system call number
(usually passed in eax) have a specific format. Specifically,
when a user-level process makes a system call, the system
call number of is offset by a bit count. Thus numerical values
above this shift are AOS system calls to be dispatched to
the AOS system call handler, and those lower than that are
for normal Linux system calls. In both cases, a lazy check
is made to ensure that AOS processes aren’t trying to make
Linux system calls, or that Linux processes aren’t trying to
make AOS system calls.

H2AL uses the Linux-allocated kernel stack for the current
Linux thread (for R3) for system call execution. We choose
to use this stack even for the AOS as the Linux mechanisms
for retrieving it (referencing the stack pointer field in the TSS
on x86-32, and using segmentation on x86-64) are already
low-overhead, convenient, and accessible from assembly.

After the system call is directed to the proper OS, the
conventions of that OS for register and stack layout are
enabled. Section II discusses how OSes additionally have
control over the currently active address space through the
H2ALṪhe combination of control over the registers and active
address space enable context switches between threads, and
processes.
KMUX: System call demultiplexing between kernels. We
have investigated a general mechanism for executing multiple
pluggable “kernels” in a single “host” OS – Linux in this case.
Each process’ kernel invocations are handled by configurable
kernels that provide sandboxing, and system call filtering. We
call this system the kernel multiplexer, or KMUX[5]. We find
that the overheads of such interposition for kernel compiles



is negligible [6]. KMUX provides an ioctl interface for
controlling kernels, and mapping kernels to processes they
control. In this paper, we focus on a less general mechanism
for multiplexing system calls, and instead investigate the po-
tential for effective, and predictable co-location of cooperating
kernels.

B. Case Study: Page-Faults

Interposition for interrupts, exceptions, and other system
traps is not significantly more difficult than for system calls.
Interposition (R1) is provided by copying and modify the
interrupt descriptor table, and using sidt to change the
interrupt vector table to be the one referencing the interposition
handlers. As this is a less performance-centric path that system
calls, the interposition code explicitly checks if the current
thread is the AOS thread, and correspondingly executes it’s
handlers (R2). The stack is assigned from the stack pointer in
the TSS (via the semantics of x86-32), and is therefore the
one that Linux has allocated for the task (R2).

However, providing HIJACKCOS
LINUX interposition on the page-

fault handler is significantly more difficult. These difficulties
derive from a combination of practical factors in Linux:
1) Module code is paged into address spaces on demand (i.e.
it is effectively vmalloced instead of kmalloced). 2) The
Linux page fault handler is responsible for paging in these
lazily-loaded kernel pages. If page-faults are interposed and
multiplexed in the same way as system calls, the following
string of events is likely: 1) the page fault handler is redefined
to be the interposition code in the module, 2) an address space
is switched to that does not have valid mappings in its page
tables for the module, 3) a page fault occurs for any reason,
4) this activates the handler at an address in the module. This
situation causes a double fault as the page fault handler is not
present in the mappings of the current address space.

To enable module-defined page-fault handlers for
HIJACKCOS

LINUX interposition, we separate the page fault
handler into two stages. The first is a trampoline that is
accessible in any address space (i.e. in kmalloced memory),
and dispatches to Linux if the fault is in the kernel. The
second does the normal dispatch between co-located OS
page-fault handlers and is only executed if the fault is outside
of the kernel.
Page-fault trampoline. The page-fault trampoline is written
in assembly, and crafted to only reference memory addresses
using relative addressing within a page. This page contains
pointers to both the default Linux page-fault handler, and the
AOS handler. When the HIJACKCOS

LINUX module is inserted, it
finds the normal kernel address of the trampoline page (via
translation from the page-tables). This address is accessible
from within any address space, and the IDT entry is set point
to it. This trampoline simply checks the x86 error code to
determine if the fault occurred within kernel-level, in which
case it invokes the Linux handler. Otherwise, the normal
interposition code is invoked. This avoids the double fault
problem described above, and enables module-defined page-
fault handlers.

Page-fault multiplexing. The HIJACKCOS
LINUX page-fault interpo-

sition code (post-trampoline) must decide if the fault should
be vectored to the AOS, or to Linux. This is done by first
checking if the current thread is the AOS thread. If so, it then
checks if a virtual memory area exists for the Linux process
for the fault address. If not, then the page fault is routed to
the AOS. This choice has some implications: when initially
creating the user-level environment, Linux memory facilities
such as mmap can be harnessed, and virtual mappings can be
shared between Linux and the AOS. However, it does imply
that any such mappings should not share virtual addresses
with other AOS mappings. Our AOS, COMPOSITE, is a single-
address space OS [7], so this guarantee is provided by design.
Other co-located systems could require explicit programming
to provide this guarantee.

C. Case Study: I/O Events

We have not found a need to interpose at the hardware
layer on I/O events. Linux provides an extensive corpus of
device drivers and HIJACKCOS

LINUX seeks to share these devices
effectively, rather than partition the I/O devices across OSes.
Specifically, we wish to enable Linux to manage the I/O
devices with it’s standard device drivers, and to harness the I/O
devices via communication between the AOS and Linux. Here
we outline how HIJACKCOS

LINUX exposes I/O events to the AOS
by focusing on one type of I/O: the timer. Network packet
reception will be discussed in Section V.
Receiving timer interrupts in the AOS. Instead of manually
reprogramming the local timer device, and interposing on its
interrupts, HIJACKCOS

LINUX simply uses Linux’s timer abstraction
layer. The timer event handler from the AOS is invoked
from a timer event triggered by Linux that reprograms the
timer on each timer tick to also trigger the next tick. This
policy, though simple, is wasteful and disables the processor
from going to sleep for long periods as would be the case
with hrtimers and notick. We foresee closer integration
with these features as a productive step forward. The current
HIJACKCOS

LINUX design does impose a latency on timer tick
delivery to AOS proportional to the timer-delivery code in
Linux. However, where this latency is acceptable, the AOS is
able to harness the device abstractions of Linux.

It is often necessary to context switch between threads and
address spaces when a timer interrupt is triggered. A high-level
timer interrupt handler executes at user-level in COMPOSITE,
requiring it to be dispatched when a timer occurs. Part of the
H2AL is a set of functions for saved register access for the
AOS Linux task. If the current Linux thread preempted by
the timer interrupt is the AOS thread, the registers are located
on the stack as pt_regs. Otherwise, the context switch is
finished by locating the registers within the AOS’s task and
modifying them. When the AOS thread returns to user-level,
it will restore those registers, completing the AOS context
switch.

Note that the current HIJACKCOS
LINUX implementation assumes

a single kernel-level stack for all AOS execution. This implies
that AOSes are implemented in an event-driven style [8] where



preemptions are disabled. This enables execution for all user-
level threads to be multiplexed onto a single kernel-level stack.
This happens to be a good fit for HIJACKCOS

LINUX where all
execution for the AOS occurs in the context of a single Linux
thread; all AOS user threads execute on the shared kernel stack
provided by the Linux task. Though kernels implemented in
this style do require non-preemptibility, it has been shown
that response times can still be reasonable if the systems are
simple [9], [10].

IV. COMPOSITE IN HIJACKCOS
LINUX

Though the focus of this paper is on effective OS co-
location, here we give a background of COMPOSITE for
context. The COMPOSITE component-based OS is a research
operating system focused on reliability, predictability, and
configurability. A functional system is composed of a set of
user-level components; each component encapsulates both data
and code, and provides some specific functionality, exports an
interface through which that functionality can be harnessed
by other components, and includes a set of dependencies on
other interfaces required to provide the functionality. Each
component executes in an isolated protection domain. The
COMPOSITE kernel includes no policy, and instead relies on
user-level components to define core system functions such
as scheduling [11], memory management and mapping [12],
[13], and synchronization [14]. Resource management can
be arranged hierarchically [15] to provide fine-grained, ex-
pressive management policies, and heightened isolation that
can provide finer-grained resource isolation properties than
virtualization. Minimal systems with few components can
focus on low memory usage and simplicity, while more com-
plicated systems include web-servers with over 25 components
that have performance competitive or better than conventional
alternatives [16].
Optimized IPC. COMPOSITE requires an optimized IPC path
for the invocation of functions in a component’s interface. This
operation involves two system calls and switching between two
protection domains, and back. A challenge for HIJACKCOS

LINUX is
to maintain the efficiency and predictability [17] of this key
path. The invocation path is accessed using a system call,
thus our system call interposition discussed in Section III
must be comparably efficient. The overheads imposed by
HIJACKCOS

LINUX on this key path are, first, the multiplexing at
system call entry between Linux and COMPOSITE, and second,
the overhead of updating the current Linux task’s page-table
pointer when the invocation results in a protection domain
switch in COMPOSITE. The former cost is minimal as we lay
out the assembly to optimize static branch prediction to choose
the COMPOSITE path. The latter cost includes touching data-
structures with associated costs for cache-line and TLB access.
It should be noted that changing the Linux task’s page table
pointer is only necessary if the COMPOSITE thread is ever
switched away from. Thus if COMPOSITE runs at the highest
Linux priority, this cost can be avoided.
CPU Management. The COMPOSITE kernel does not in-
clude a scheduler, instead implementing policies for thread

scheduling in user-level components. The kernel provides on
simple means for dispatching between COMPOSITE threads.
As COMPOSITE is an interrupt-driven kernel [8], the kernel
does not maintain a stack or continuations [18], thus most
thread state (excluding a small kernel structure including
the thread’s saved registers) is in user-level components, and
unaffected by the HIJACKCOS

LINUX co-location.
The most significant difficulty in scheduling thread execu-

tion in COMPOSITE is the scheduling of interrupt execution.
As in the Linux-RT patch-set, COMPOSITE executes signif-
icant interrupt processing in dedicated, schedulable threads.
Though the efficient and predictable user-level scheduling of
interrupt threads is of interest [11], we focus here on the use of
the HIJACKCOS

LINUX support discussed in Section III-C. To switch
COMPOSITE threads upon interrupt reception, the registers to
be restored upon interrupt return are accessible to COMPOSITE
through the H2AL, and are used effect the thread switch. The
support for switching page tables is also used if the interrupt
thread is activated in a new protection domain.
Memory Management. Physical memory is retrieved from
Linux upon insertion of the COMPOSITE module. The H2AL
functions are used to manipulate page-tables through a very
simple COMPOSITE system call interface that enables a spe-
cific physical frame to be mapped at a specific (virtual address,
page-table) pair. Specific components are given restricted
access to physical frames, and provide higher-level memory
mapping operations through their interface [15]. Page faults
are routed to COMPOSITE by the hardware interposition layer,
and COMPOSITE converts these faults into invocations to
components equipped with logic to appropriately handle the
faults.

A. Booting COMPOSITE

COMPOSITE components must be linked and loaded man-
ually into their corresponding locations in the virtual address
space. We have written a linker that will take all components
and a ramdisk that we wish to load into COMPOSITE, and
using the bfd library, it will link the components and generate
their memory images accordingly. The thread and Linux
protection domain for this linker process are used for the
COMPOSITE system as a whole. Thus the linker adjusts its
priority if we wish to execute COMPOSITE with the highest
priority in the system, scheduled with SCHED_RR. The linker
also uses the rlimit API to ensure that we can use 100% of
the CPU. While executing at the highest priority, with access to
all CPU bandwidth, the co-located OS effectively has control
of the processor with the exception of interrupts (that can be
interposed on).

Once this is complete, a loader component will be loaded
into Linux-allocated memory, and all component images are
copied into its memory-space. This loader is executed im-
mediately when COMPOSITE begins execution, and it creates
the component protection domains (using COMPOSITE system
calls), and loads the rest of the components.

Currently, this entire process requires root permissions.
Though it is likely possible to avoid requiring root permis-



sions, the interposition module’s API would require a thorough
security audit.

V. LINUX/COMPOSITE COORDINATION

COMPOSITE requires access to I/O to provide useful func-
tionality. As Linux is used as the host system, it has access
to all I/O devices. We wish to avoid a strict partitioning of
the I/O devices between the two OSes, and instead provide
multiple mechanisms for device access by both the AOS and
Linux. These range from a specific technique that extends
the H2AL abstraction for a specific I/O device that gets
native performance, to a generic mechanism for accessing I/O
through specialized Linux processes that can be used to access
any Linux I/O with the additional cost of IPC between this
process and the AOS. Both of these mechanisms require that
specialized components be provided in the AOS to interface
with the I/O.

aOS

translator

events

shared
memory

LinuxaOS
Dev
Driver

cosnet
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Fig. 2. (a) Using the cosnet pseudo-device to access the network.
(b) Communication between the AOS and Linux via the translator
that provides shared memory, and event channels.

Figure 2 depicts the two styles of interaction between the
AOS and Linux. In the first, a pseudo-device driver is inserted
into the kernel (here cosnet) that interacts closely with the
device driver to vector events to the AOS. In the second, a
general module for communication between a Linux process
and the AOS called the TRANSLATOR is provided. The AOS
accesses any Linux services through the proxy Linux process.

A. Linux Interface Extension: Access to Devices

Network packet reception in the AOS. Networking drivers
can be quite complicated, and wireless drivers even more so.
We investigate multiple approaches for packet reception. The
option with the least overhead is to mimic the approach of
the timer, and simply harness low-level Linux APIs to access
the device drivers. We note that tun devices satisfy this
requirement as they bypass all transport-layer processing, yet
still permit differentiation via IP addresses between packets
that arrive for Linux, and those that arrive for the AOS. We
modify a tun device to provide cosnet. This pseudo-device
interfaces with the Linux kernel identically to a tun device
(with a different major number), but provides an interface to

an AOS closer to that of a device driver. Namely, received
packets are written into a ring buffer shared with a user-level
virtual NIC, and the AOS network reception handler is called.
As with the timer interrupt, this might cause task switches
within the AOS that are controlled with direct access to the
registers that will be activated upon return to user-level.

When sending packets, the AOS user-level virtual NIC again
writes packets to transmit into a ring buffer, and makes a
system call that uses the H2AL to transmit the packet via
cosnet.

Though this technique requires a Linux module per I/O
type, and an addition to COMPOSITE to interface with it,
this technique is able to achieve native delivery latencies,
providing reasonable response-time bounds. We still rely on at
least the low-level Linux processing of the device driver, thus
any advances made in lowering bounds on response times in
Linux-RT are necessary the AOS as well.

B. The Translator: Linux Process and COMPOSITE Commu-
nication

The previous technique for interfacing COMPOSITE with I/O
relies on specialized code both in a Linux module for the I/O
type, and in COMPOSITE. HIJACKCOS

LINUX provides a TRANS-
LATOR framework for direct communication between a Linux
process, and a TRANSLATOR component in COMPOSITE. The
translator process and component can send events to each other
that designate that data has been added to a shared memory
region shared by both. Figure 2 depicts the TRANSLATOR and
how it arbitrates communication between the co-located OSes.

TRANSLATOR Linux Process. A HIJACKCOS
LINUX Linux module

provides the /dev/translator device. A process can
read and write to the device which will block waiting for
an event, and send an event, respectively. The process mmaps
the device to create a shared region of memory that is used
to transfer data between the OSes. This is managed as a wait-
free ring buffer. In many situations it is reasonable for the
Linux process to have a high static priority (higher than the
COMPOSITE thread) as this process’ response time impacts
that of any components in COMPOSITE attempting I/O.

TRANSLATOR COMPOSITE component. COMPOSITE is ex-
tended to include a component that interfaces with custom
system calls to both map the shared memory region previous
created by the Linux process, and to send and receive events.
A system call is provided to send events to wake a blocked
Linux process. Events are received in COMPOSITE by trig-
gering a virtual interrupt when the Linux process writes to
the TRANSLATOR file. This interrupt activates a COMPOSITE
interrupt thread to handle the event. This thread can then read
data out of the shared memory ring-buffer.

In this paper, we focus on using the TRANSLATORto
interface with I/O. However, it can be used for general
communication between Linux processes and COMPOSITE to
enable a system to be split between two operating systems,
yet have them cooperate even at the application level.



VI. EVALUATION

All results in this section are run on an Intel i7-2600 CPU
clocked at 3.4 Ghz, and statistics are reported over 1000
measurements. Unless otherwise specified, the threads running
the tests execute at the highest real-time priority. We use a
vanilla Linux version 2.6.33. Though we don’t apply the real-
time patches, we only compare to naive Linux latency. If this
decreased, we’d expect a comparable decrease in HIJACKCOS

LINUX

overheads.

A. HIJACKCOS
LINUX Overhead

Method Latency
COMPOSITE: invocation 0.24 (0.00)

COMPOSITE: invocation w/o host pgtbl update 0.23 (0.00)
Hardware overhead: 2 syscall 0.08 (0.00)

Hardware overhead: 2 pgtbl switch 0.08 (0.00)
Hardware overhead: percent of invocation 69.85%

Linux: Pipe RPC 1.68 (0.68)
HIJACKCOS

LINUX : Kernel Compile 5m52.25s
Vanilla: Kernel Compile 5m51.96s

TABLE I
LATENCY (AVG(STDDEV) IN µSECS), UNLESS OTHERWISE NOTED.

HIJACKCOS
LINUX imposes some overheads due to the multiplex-

ing of hardware entry points, and due to the H2AL page-table
switching operations that update the Linux task’s page-table
pointer. The invocation (IPC) path in COMPOSITE is optimized
and its performance and predictability is fundamental to the
system. Table I shows the costs of an invocations (switching
to another component, executing a null function at user-level,
and returning to the previous component), the hardware costs
of two system calls, and two page-table switches. The cost that
software execution imposes on the invocation path in is 30% of
the total execution time, thus most time is spent on hardware-
limited operations. We also show the invocation cost without
the H2AL overhead of updating the Linux AOS thread’s page-
table pointer. This cost could be removed if the AOS always
executed at highest Linux priority. This cost adds 26 cycles to
an invocation which we believe is an acceptable overhead. For
context, Table I shows the cost of an RPC between threads via
pipes. A direct comparison should not be made as Linux is
not designed around optimized IPC. Importantly, we note that
the cost of the invocation is close to the raw hardware costs
(including two system calls, and two page-table switches).

To evaluate the costs of HIJACKCOS
LINUX on normal Linux

execution, we do a kernel compile with and without the
hardware interposition support, and find that the overhead is
insignificant (< 1 second).

B. Translator Performance

The TRANSLATOR facilitates communication between
Linux and COMPOSITE. The event notification it provides on
both ends bounds the response time for access to I/O and on
any collaboration between OSes. Table II shows the latencies
between when a message is sent from user-level in one OS,
and received in user-level in the other. We compare versus the

Method Latency
Pipe 0.90 (0.64)

Translator: cos→ Process 0.51 (0.08)
Translator: Process → cos 0.73 (0.46)

TABLE II
IPC LATENCY (AVG(STDDEV) IN µSECS)

one-way latency for communication between two threads in
the same process over a pipe.

These results demonstrate that the TRANSLATOR does not
impose significant overheads, and in fact that the TRANSLA-
TOR module decreases latency in both cases. This demon-
strates the possibility of having effective communication be-
tween AOS and host (thus satisfying G4). We believe this
is due to the fact that there is a very simple interface for
event delivery in COMPOSITE as opposed to the general VFS
interface that the events for pipes use. We interpret these
results as showing the promise of the TRANSLATOR for co-
located OS communication.

C. COMPOSITE I/O Response Time

The response time of a system to an I/O event is an
important factor in assessing if it can be used in a specific real-
time environment. Here we assess the response time overheads
of the different means for COMPOSITE to interface with I/O.
We measure the latency between when an interrupt is triggered
for an incoming UDP network packet, and when it is delivered
for processing. We compare four different methods:
• A Linux process receiving the packets using sockets.
• A Linux process receiving packets via a TUN device.
• COMPOSITE using cosnet for direct reception.
• COMPOSITE receiving packets via the TRANSLATOR and a

Linux process that in turn accesses the network via a TUN
device.
To measure the latency between interrupt reception and

packet delivery for processing, use the cycle-granularity time
stamp counter (via rdtsc). All background tasks are run
within the time-sharing priority band, and a medium priority,
real-time task spins in a tight loop taking time stamp readings
and writing them to a volatile variable shared with a higher
priority thread that receives the packets. The high-priority
thread blocks waiting for packets, and when awakened, it
takes a time stamp reading, and compares that value to
the medium priority thread’s counter to retrieve the latency
between when the interrupt preempted the medium priority
thread, and delivered the packet to the high-priority thread.
In the COMPOSITE systems, the high-priority thread is an
interrupt thread. 16 byte UDP packets are sent at a low rate to
the system under test, and we observe no nested interrupts. We
report results both for normal sockets and for TUN in Linux.
We report both as cosnet is more similar to TUN, while
normal sockets are more widely used.

Table III shows the average and standard deviation of the
response times for each method. These results show that the



Method Latency
Linux: UDP 10.30 (0.50)
Linux: TUN 10.94 (5.13)

HIJACKCOS
LINUX: cosnet 9.69 (0.36)

HIJACKCOS
LINUX: translator 11.4 (0.59)

TABLE III
RESPONSE TIMES (AVG(STDDEV) IN µSECS)

latency for delivery to the AOS is within the same magni-
tude as Linux user-level access response times. Even using
the TRANSLATOR, the kernel-level processing overheads of
handling the interrupts, softirq execution, and other kernel
operations overwhelms the translator overhead. We believe
this shows that it is feasible to utilize the Linux support for
a large number of device drivers, and architectures, without
debilitating overheads or latencies, thus satisfying G5.

Note that oddly the TUN latency is larger than that for
a process using sockets. This situation is reversed using
the default Ubuntu 10.04 LTS, 2.6.32 kernel. We have not
identified the reason, but note that they are both in the same
overhead range as the HIJACKCOS

LINUX methods.

VII. RELATED WORK

OS co-location for Real-Time. The most notable real-time
OS co-location techniques are RTAI [3], and RTLinux [2].
Both attempt to provide an operating environment below
Linux for hard real-time execution. In doing so, they require
that devices be partition between the systems, and that only
limited communication occur between the systems. We take a
different approach by recognizing that Linux with the real-time
patches [4] has acceptable response time for many application
domains, and that we want to utilize the assets of Linux in a
novel way.

OS virtualization. In contrast to virtualization and paravirtual-
ization techniques such as Xen [19], L4Linux [20], Nova [21],
and KVM [22], the entire guest operating system does not
execute outside of the kernel in HIJACKCOS

LINUX. This simplifies
the system, and enables native response times and efficiency,
along with simplified collaboration with Linux. Virtualization
has additionally been used to provide device-driver reuse[23],
a goal shared with HIJACKCOS

LINUX, though the approach is
quite different. The closest technique to this work provides
a virtualization environment on commodity systems while
also requiring only a module. I/O is conducted via helper
processes [24]. This work does not focus on virtualization,
and instead providing a kernel-level execution environment for
AOSes.

VIII. CONCLUSIONS AND FUTURE WORK

We believe this is a significant potential to harness the
quality of the Linux code base, its significant support for
architectures and device drivers, and its advances in real-time
performance by providing co-location facilities for the exe-
cution of specialized execution environments, including other
OSes. The paper makes the argument that such techniques are

technically feasible, and that more research is required in the
area.

Future work involves considering the many factors we have
simplified in this design. Certainly the co-management of
system-wide CPU state is difficult. This includes power-state
management and processor frequency. In the current prototype,
we simply let Linux manage all power-related functionality
for us. Whereas a normal OS would could go into an idle
state when there are no tasks to execute, we switch out of the
COMPOSITE process, and allow other Linux threads to run.
Additionally, we are actively investigating how multiple cores
can be used in HIJACKCOS

LINUX.
Links to the git repository, and documentation for the system

can be found on the COMPOSITE webpage at composite.seas.
gwu.edu.
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