
Sledge: a Serverless-first, Light-weight Wasm Runtime
for the Edge

Phani Kishore Gadepalli
George Washington University

phanikishoreg@gwu.edu

Sean McBride
George Washington University

seanmcbride@gwu.edu

Gregor Peach
George Washington University

peachg@gwu.edu

Ludmila Cherkasova
Arm Research

lucy.cherkasova@arm.com

Gabriel Parmer
George Washington University

gparmer@gwu.edu

Abstract
Emerging IoT applications with real-time latency constraints
require new data processing systems operating at the Edge.
Serverless computing offers a new compelling paradigm,
where a user can execute a small application without han-
dling the operational issues of server provisioning and re-
sourcemanagement. Despite a variety of existing commercial
and open source serverless platforms (utilizing VMs and con-
tainers), these solutions are too heavy-weight for a resource-
constrained Edge systems (due to large memory footprint
and high invocation time). Moreover, serverless workloads
that focus on per-client, short-running computations are not
an ideal fit for existing general purpose computing systems.

In this paper, we present the design and implementation of
Sledge – a novel and efficient WebAssembly-based serverless
framework for the Edge. Sledge is optimized for supporting
unique properties of serverless workloads: the need for high
density multi-tenancy, low startup time, bursty client re-
quest rates, and short-lived computations. Sledge is designed
for these constraints by offering (i) optimized scheduling
policies and efficient work-distribution for short-lived com-
putations, and (ii) a light-weight function isolation model
implemented using our own WebAssembly-based software
fault isolation infrastructure. These lightweight sandboxes
are designed to support high-density computation: with fast
startup and teardown times to handle high client request
rates. An extensive evaluation of Sledge with varying work-
loads and real-world serverless applications demonstrates
the effectiveness of the designed serverless-first runtime for
the Edge. Sledge supports up to 4 times higher throughput

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Middleware ’20, December 7–11, 2020, Delft, Netherlands
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8153-6/20/12. . . $15.00
https://doi.org/10.1145/3423211.3425680

and 4 times lower latencies compared to Nuclio, one of the
fastest open-source serverless frameworks.
Keywords: Edge computing, WebAssembly, serverless, IoT

1 Introduction
Serverless computing, also known as Function-as-a-Service
(FaaS), has been the fastest-growing type of cloud service
over the two last years [67], achieving 50% year-over-year
growth in 2019 alone. This is in part due to serverless com-
puting’s new event-driven execution model, which enables
users to run small stateless applications without concerns for
server provisioning or resource management issues. Since
the appearance of Amazon Lambda in 2014 [11], numerous
cloud providers have released alternative serverless plat-
forms, including Google Cloud Functions [31], Microsoft
Azure Functions [53], IBM Cloud Functions [37], and Al-
ibaba Cloud Functions [7]. While implementation details
differ, most utilize virtual machines (VMs) or containers
as a sandbox environment for hosting the tenants and ex-
ecuting their functions. These frameworks are somewhat
heavy-weight and not efficient for providing a small mem-
ory footprint or supporting low latencies, especially when
functions are instantiated for the first time. Multiple recent
trends and related technological challenges motivate our
interest in resource-efficient serverless computing at the Edge.
Among them are the following:

Rapid Proliferation of IoT: IoT has introduced an un-
precedented number of low-cost devices that continuously
sense and generate data. The sheer volume of data produced
by IoT networks is overwhelming. Harnessing the full po-
tential of IoT requires new computing approaches along the
entire data processing pipeline.

Novel Applications Relying onReal-Time Services:
The surge of Industrial IoT and next generation technologies
enable a growing number of novel applications relying on
extremely low (10ms) latency processing, such as:
• a smart city with street and traffic lights that communi-
cate with each other to improve the emergency response
time of first responders;

• surveillance drones with real-time monitoring and in-
telligent video processing for diverse set of situations
(latency/time critical in the emergency situations);

265

https://doi.org/10.1145/3423211.3425680

Middleware ’20, December 7–11, 2020, Delft, Netherlands P. K. Gadepalli, S. McBride, G. Peach, L. Cherkasova, G. Parmer

• connected cars and related data services that provide
drivers timely alerts about dangerous road conditions
ahead.

These emerging applications should process a large amount
of data coming from multiple sources in near real-time. They
require data processing systems with new performance char-
acteristics: low latency overhead and high system throughput,
while focusing on spatial and temporal isolation of requests
from multiple tenants.

Importance of Processing at the Edge:While Cloud
computing provides a good solution for applications de-
signed with human perception in mind, it becomes inad-
equate for novel latency-critical applications that rely on
fast, automated decisions made with no human in the loop.
For example, the data analysis and control logic of Indus-
trial Control Systems may require a response time within
10ms [16, 81] – a characteristic that cannot be met by ser-
vices delivered from the Cloud. Many machine learning (ML)
workloads need to run at the very edge of the physical world
(where sensing and data collection take place), but resource
and battery constraints remain a major technological chal-
lenge. To satisfy the performance requirements of such work-
loads, we must augment on-device compute with a new class
of services that can process data closer to the source, i.e.,
Edge computing.

Below we summarize the execution properties and require-
ments for an efficient serverless runtime at the Edge:
• Event-driven, short-lived execution. A prominent charac-
teristic of serverless functions is that they are event-
triggered (for example, in response to a client request)
and short-lived. They are often called stateless as they
are reclaimed and started anew for each client request.
Note, that the existing, traditional systems are optimized
for long-running execution over many client interactions
(e.g., servers and daemons), and they are not well-suited
for this new, atypical execution pattern.

• High density multi-tenancy. The Edge represents a lim-
ited and resource-constrained environment, and therefore
Edge resources need to be carefully shared and managed
between multiple tenants. Given this, multi-tenancy at
the Edge will require high density. While serverless in-
frastructures are often optimized for scalability at the
data-center scale, this paper emphasizes the ability to
efficiently support this high-density on the Edge’s limited
resources.

• Low latency. The proximity of Edge to sensors, IoT, and
networked devices results in low networking latency (en-
abled by avoiding the WAN). Therefore, efficient, low
latency execution of serverless functions at the Edge
gets very important (as normally-hidden computing over-
heads of existing infrastructures might become dominant
ones compared to low network latencies).

• High churn and repeated execution. A very short-lived
execution of serverless functions drastically increases the
churn in the system. The rate of function instantiation and
destruction is proportional to the rate of client requests.
Additionally, the specific code for a function is executed
repeatedly, once for each client request.

These serverless properties define a specific set of require-
ments that are not best provided by existing systems. Though
the serverless execution properties are atypical, these are of-
ten executed on existing systems optimized for long-running
executions (e.g., containers, VMs, servers, and daemons).

Recently, WebAssembly (Wasm) [33] with its light-weight
sandboxing capabilities has emerged as a promising approach
for supporting serverless at the Edge [23, 28, 34, 70]. Since
many existing Wasm runtimes exhibit significant overheads
compared to application native execution [33, 34, 38], we
implement our own LLVM-based ahead-of-time (AoT) Wasm
compiler, called aWsm (pronounced as awesome), which of-
fers configurable sandboxing and optimized for performance.

In this work, we propose a new serverless-first infrastruc-
ture Sledge1 (ServerLess at the Edge runtime) optimized for
properties of low-latency serverless execution at the Edge.
Toward this, we focus on the serverless runtimes for single
host servers ranging from powerful multi-core servers to
low-cost systems like Raspberry Pi. A new runtime Sledge
enables light-weight function instantion and isolation facili-
ties, and uses kernel bypass to enable specialized serverless
function scheduling. The Sledge runtime focuses squarely on
efficiency of serverless functions, and enabling strong spatial
and temporal isolation of multi-tenant function executions.
The efficiency of Sledge is enabled by our aWsm compiler
and serverless runtime with the following mechanisms, sum-
marizing our contributions:
• Light-weight function isolation. Sledge executes functions
in light-weightWasm sandboxes, removing the high over-
heads of traditional runtimes (e.g., VMs and containers),
while still providing strong memory isolation.

• Optimized function startup for high densities. Given the
repeated execution of the same functions across many
tenants, Sledge optimizes function startup by decoupling
the processing (linking and loading) of function binaries
from function instantiation.

• Decouplingwork-distribution from temporal isolation. Sledge
leverages the short-lived execution properties of server-
less to specialize system scheduling by decoupling both
the work-distribution and load balancing across cores for
scalability, from the scheduling logic to maintain fairness
and temporal isolation.

• Serverless execution performance evaluation. We perform
an extensive evaluation of Sledge serverless runtime using
various Edge workloads to show that Sledge provides up
to 4 times better latencies and throughputs compared

1www.github.com/gwsystems/sledge-serverless-framework

266

www.github.com/gwsystems/sledge-serverless-framework

Sledge: a Serverless-first, Light-weight Wasm Runtime for the Edge
Middleware ’20, December 7–11, 2020, Delft, Netherlands

to Nuclio [57], one of the fastest open-source serverless
frameworks. We also evaluate our Sledge Wasm compiler
and its runtime on x86_64 and AArch64 architectures to
show an average performance overhead within 13% of the
native code execution for PolyBench/C [62] benchmarks
and compare its efficiency with various existing LLVM-
and Cranelift-based [19] Wasm compilers and runtimes.
The rest of this paper is organized as follows: Section 2

provides the background on existing serverless technologies
and outlines related work. In Section 3, after introducing
WebAssembly, we present the Sledge compiler and describe
the design of the serverless-first Sledge runtime. Section 4 dis-
cusses the implementation of the Sledge serverless runtime,
while in Section 5, we present the performance evaluation of
the Sledge compiler aWsm and detailed performance assess-
ment of our serverless framework Sledge for various Edge
workloads. Finaly, we make concluding remarks in Section 6.

2 Background and Related Work
There are two traditional approaches for serverless imple-
mentation: VM-based and Container-based frameworks.
VM-Based FaaS: Figure 1(a) reflects a serverless function

execution in a VM environment. All the yellow boxes in Fig-
ure 1(a) constitute a function in a VM environment. A hyper-
visor offers a software layer to abstract the physical hardware
from the guest operating system(s) (VMs) [21]. It logically di-
vides and manages the underlying system resources between
guest VMs. An instance of a function is a combination of its
code, memory (stack and heap), its language runtime and the
library dependencies. Typically, serverless functions are tran-
sient and short-lived. A function footprint is significantly
smaller compared to a size of a provisioned VM (with GBs
of memory). Despite a VM-like isolation being the current
standard for multi-tenant hardware sharing [77], VMs are
too heavy-weight for serverless function execution. There
have been efforts to provide lighter-weight VMs with faster
startup times than traditional VMs by Amazon Firecracker
microVM [26, 27], LightVM [52], and Kata Containers [41].
Amazon Firecracker is a minimalistic VMM that uses Linux
kernel-based virtual machines (KVM) with memory foot-
print of 5MB and startup latency of about 125ms. It is one of
the enabling technology behind the leading serverless cloud
platform AWS Lambda [11].

Container-Based FaaS: Containers provide a standard
way to package the user application’s code, configurations,
and all the dependencies into a single object. They share an
operating system installed on the server hardware as shown
in Figure 1(b). The containers are isolated from each other
using security features such as Linux chroot, control groups
(cgroups), and namespaces. Linux Containers (LXC) [48],
Dockers [20], and Windows Containers [83] are different
container runtimes, which containerize the applications into
processes with a dedicated filesystem, providing a full ex-
ecution environment, while sharing the host binaries and

libraries, where appropriate. Many leading cloud providers
like Amazon, Google, Microsoft, IBM and others use this tech-
nology as an enabling platform for FaaS [36, 39, 77, 82, 84].
Figure 1(b) depicts a serverless function execution in a

containerized environment. Each function (white boxes) is
packaged into a container image with the language runtime
and dependencies including libraries (yellow boxes, which
are not even shared between containers of a single function),
thereby impacting the memory footprint and startup laten-
cies of each function. The blue layers are shared between
different functions, and the underlying OS controls contain-
er/function scheduling in this framework. The container
manager controls creation, deletion, starting, and stopping
containers in the serverless environment. Despite the effi-
ciency gains of using containers over VMs, isolating each
function in its own container still implies a significant over-
head.

Figure 1(c) depicts the next evolution step in implementing
the serverless infrastructures by using a process per function,
while maintaining a container per tenant, such as the latest
Nuclio [57] and OpenFaaS [60] runtimes. This represents an
interesting design point: a process created per function iso-
lates functions from each other, while allowing them to share
the container resources. By allocating a container per tenant,
this approach supports CPU, memory, and namespace isola-
tion between tenants. We will show later that our solution
Sledge shown in Figure 1(d) is able to accommodate much
of the serverless runtime safely into the same processes as
functions to minimize redundant resource consumption and
customize policies for function execution. Given that the
Nuclio platform [57] demonstrates the best results among
the Kubernetes-based serverless solutions considered in [46],
we choose Nuclio as the baseline against which we compare
performance of Sledge.

Serverless Performance Challenges: The startup la-
tency for initiating a function instance in a FaaS platform can
vary significantly: from a fewmilliseconds to several seconds.
A function execution might be a “warm-start", reusing a VM
or container from the previous event of the same function, or
it might be a “cold-start", where a new VM/container has to
be launched. Cold-start latency depends on many additional
factors: the language used for programming the function,
the number and types of libraries, their dependencies, etc.
While many of these factors are under a developer’s control
and considered for optimization [9, 49, 54, 58, 73, 86], one
can achieve only a limited reduction of the cold-start latency.

The other challenging issue is selecting the right amount of
resources (memory and compute) for executing the function.
Requesting the “right" amount of compute is not always pos-
sible in the serverless frameworks. For example, currently in
AWS Lambda, the user can only provide a memory setting.
The minimum allocated memory is 128MB, with 64MB in-
crements. Once a user selects a memory size, AWS allocates
the CPU quota proportionally. Multiple papers [1, 2, 42, 77]

267

Middleware ’20, December 7–11, 2020, Delft, Netherlands P. K. Gadepalli, S. McBride, G. Peach, L. Cherkasova, G. Parmer

LANGUAGELIBRARIES

SCHED MEM DEV

GUEST KERNEL

VIRTUAL HW

VM

MANAGER

SERVERLESS

MANAGEMENT

SCHED MEM DEV

HYPERVISOR

HW

VIRTUAL MACHINE

Fn

(a)

LANGUAGELIBRARIES

CONTAINER

MANAGER

SERVERLESS

MANAGEMENT

KERNEL

HW

(Req. Fwd /

CONTAINER

Fn

SCHED MEM DEV

(b)

Fn

LANGUAGE

LIBRARIES

CONTAINER MANAGER

KERNEL

HW

SERVERLESS

MANAGEMENT

CONTAINER

PROCESS

SCHED MEM DEV

(c)

KERNEL

HW

LANGUAGELIBRARIES

SINGLE PROCESS

SERVERLESS

MANAGEMENT

SCHEDULING

Sledge RUNTIME

SCHED MEM DEV

(d)

Fn
Function without
boilerplate software

Load Bal)
(Req. Fwd /
Load Bal)

(Req. Fwd /
Load Bal)

(Req. Fwd / Load Bal)

WORK
DISTRIBUTION

SANDBOX

Fn
(a.so)

SANDBOX

Fn
(b.so)

Figure 1. (a) VM-based Serverless (e.g., AWS Lambda using Firecrackers, Microsoft Azure Functions using Hyper-V, etc.), (b) Container-
based Serverless (e.g., OpenWhisk, Google Cloud Functions, etc.), (c) Container + Processes-based Serverless (e.g., Nuclio, OpenFaaS),
(d) Sledge Approach for Serverless at the Edge.

show that, while typically, function performance correlates
with a memory size, it often exhibits inconsistent behavior.

Novel Approaches for Serverless Platforms: The re-
cent popularity of serverless functions and the goal of opti-
mizing the execution of multi-tenant workloads, brought a
renewed attention to Linux kernel’s abstractions [24, 43, 65].
Unikernels comprise a minimal operating system and a single
application, making them a natural fit for serverless func-
tions. In [43], the authors show that bypassing the kernel
with unikernels can yield at least a factor of 6 better latency
and throughput. In our Sledge design, we pursue a similar
opportunity: bypassing the Linux kernel for efficiency, opti-
mized latency, and a customized function scheduler.
With the advancement of IoT and novel applications re-

quiring near real-time processing, there is a need to effi-
ciently support a large number of serverless functions using
limited hardware resources at the Edge, while delivering
fast response. The latest novel approaches, aiming to sup-
port these requirements, leverageWebAssembly (Wasm) [33].
Wasm provides a light-weight sandboxing capabilities which
can be utilized by running serverless functions at the Edge as
shown by newly introduced commercial products (in 2019)
from Cloudflare [70, 75] and Fastly [3, 4, 23], and research
publications [14, 28, 34, 87].
Zhang, et al [87] describe Shredder, a low-latency multi-

tenant cloud store that allows small units of computation
(a la serverless functions) to be performed directly within
storage nodes, using Javascript or WebAssembly programs
in V8 for light-weight function isolation. Boucher, et al [14]
suggest a novel design for serverless platforms that runs user-
submitted microservices within shared processes. The paper
advocates in favor of language-based (Rust) isolation, which
could provide micro-second scale invocation latencies for
lightweight, short-lived tasks. Hall, et al [34] demonstrate the
potential of a Wasm-based approach to significantly decrease

the cold-start latencies (under 30 ms in their implementation),
while Fastly has announced that Lucet [4] (Fastly’s native
WebAssembly compiler and runtime) can instantiate Wasm
modules in under 50 𝜇sec [3].
In our earlier paper [28], we discuss a set of open chal-

lenges and promising opportuinities for serverless comput-
ing at the Edge. This earlier paper outlines the initial princi-
ples of the aWsm compiler and the related serverless runtime.
Our current paper offers a comprehensive design of a fully
functional system, capable of interfacing with clients. We
provide the implementation details of the aWsm compiler
and its thorough evaluation with a detailed comparison to
other existing Wasm compilers. We introduce our serverless
runtime implementation Sledge, detailing all its novel aspects
and comparing its performance against the best currently
existing serverless infrastructures.

Another approach with an aim to provide stateful server-
less computing, Faasm [69], for big-data applications, lever-
ages Wasm for light-weight memory isolation, and Linux’s
cgroups to provide CPU isolation for function instances
executing in dedicated system-level threads. The Faasm run-
time’s average function initialization time is 10ms, and it
relies on function snapshots, warm faaslets, and Linux kernel
for execution performance. In our paper, the serverless-first
Sledge runtime enables the optimized 𝜇-second level function
startup times by decoupling the function linking and loading
from function creation and provides near real-time function
execution latencies using kernel bypass.
Hall, et al [34] highlights the performance challenges re-

lated to a Wasm execution overhead compared to native ap-
plication performance. Three applications used in the paper
had 2-6 times higher Wasm execution overhead compared
to their native execution.

A number of latest papers [33, 38] (written over period of
three years) are devoted to optimize Wasm compilers and

268

Sledge: a Serverless-first, Light-weight Wasm Runtime for the Edge
Middleware ’20, December 7–11, 2020, Delft, Netherlands

performance of the resulting code. In 2017, only 7 out of 30
PolyBench/C [62] benchmarks performed within 1.1 times
of native execution [33]. While by May 2019, 13 benchmarks
out of 30 could perform within 1.1 times of native [38] due
to improved Wasm compilers. In our paper, though the focus
is on the Sledge serverless runtime, we demonstrate that
our aWsm compiler performs within 1.1 times of the native
execution for 24 out of 30 PolyBench/C benchmarks.

3 Serverless-First Runtime Design
This section presents the design of the Sledge serverless
execution framework for the Edge. It leverages lightweight
Wasm sandboxes to enable the execution of multi-tenant
serverless functions with high-churn and microsecond-level
latency on the resource-constrained Edge systems.

3.1 WebAssembly Background
Serverless computing at the Edge requires low-latency, high-
density, a support for high-churn, and strong isolation. In
order to support these requirements, the serverless-first run-
time needs new means for a processes abstraction and novel
fault isolation techniques.
WebAssembly (Wasm) [33] provides a strong foundation

that enables a run-time to address these goals. It provides a
memory-light sandbox for untrusted execution based on soft-
ware fault isolation [76] and control flow integrity [5]. This
sandbox enables Sledge to move serverless and OS services
into a light-weight runtime that utilizes user-level sched-
uling, efficient work distribution, and asynchronous I/O to
optimize for efficiency and low-latency.

Wasm is a portable, language-agnostic, low-level bytecode.
Despite being driven by web standards bodies, the specifi-
cation has been designed to work outside the browser as
well, and there are numerous implementatons [4, 78, 79] that
provide embeddings for non-Web environments.

Importantly, Wasm is a low-level language that is a compi-
lation target for existing compilers like LLVM, that does not
prescribe garbage collection. Thus, even unsafe languages
such as C and C++ can compile to Wasm and execute safely.
The two components of safe execution of unsafe languages
are memory safety and control-flow integrity.
Memory-safety. In contrast to language runtimes like the
JVM that rely on type-safety for safe program execution,
WebAssembly (Wasm) [33] uses memory-safety that simply
limits Wasm code to native loads and stores within a con-
tiguous “linear memory”. The Wasm sandbox ensures that
logic within the runtime cannot maliciously or accidentally
corrupt memory or control outside of the sandbox. Each Wasm
memory access addresses linear memory at an offset from
the linear memory base. Accessing bytes beyond the linear
memory’s size generates a sandbox violation exception. The
Wasm runtime is responsible for bounds checking and the
translation of linear memory accesses into the hardware’s
virtual addresses.

Control-flow integrity. Sandboxing untrusted execution
requires control-flow integrity (CFI) [5], which constrains
execution to the safe control flow graph considered by the
compiler. Wasm achieves this by using the following two
techniques.

First, the C execution stack holds return addresses that can
be corrupted to hijack control flow using a buffer overflow.
Thus, the Wasm execution stack must be outside of linear
memory, thus inaccessible to loads and stores fromwithin the
sandbox. However, this complicates passing pointers to stack-
allocated variables. Therefore, Wasm separates the execution
stack into two separate stacks: (1) a stack external to linear
memory, and (2) a stack within linear memory containing
stack-allocated variables.
Second, Wasm requires that function pointers (including

C++ vtable dispatch) cannot be de-referenced directly. In-
stead, calling a function pointer is translated into an activa-
tion of a function in a runtime (safe, pre-calculated) table of
valid entry points and types. The runtime mediates function
pointer invocations by (1) validating that they point to valid
function addresses, and (2) validating that the type of the
caller matches those of the function. Similarly, the entry-
points into sandbox and runtime functions (that the sandbox
can invoke) are indexed into the runtime function pointer
table.
Wasm promises to provide the strongly sandboxed safety

of the execution of unsafe code by appropriately constraining
memory accesses and control flow.

3.2 Managing Lightweight Function Isolation and
Churn using Wasm Sandboxing

The Sledge system leverages the Wasm security model to
enable execution of multiple untrusted modules in the same
process, thereby providing significantly lighter-weight isola-
tion compared to VMs and containers for multi-tenant server-
less execution. A Wasm runtime aims to maintain memory
safety and control-flow integrity (CFI) by efficiently perform-
ing linear memory access bounds checks, stack operations,
and function pointer invocations. The security model of
Wasm allows for implicit enforcement of CFI through struc-
tured control-flow [80], thus protecting the Wasm modules
from a variety of control-flow hijacking attacks including
stack smashing, and return-oriented programming. However,
many of the existing Wasm runtimes [35, 38] can exhibit sig-
nificant overhead in properly sandboxing code. Motivated by
this, we designed an ahead-of-time (AoT) compiler for Wasm
to LLVM [50] bytecode and enabled configurable mecha-
nisms for bounds checking that leverage varying levels of
hardware support. We use an existing compiler (LLVM) to
compile source code (e.g., C/C++) to Wasm binary format.
The compiled Wasm binary file is then input to our Sledge

269

Middleware ’20, December 7–11, 2020, Delft, Netherlands P. K. Gadepalli, S. McBride, G. Peach, L. Cherkasova, G. Parmer

compiler aWsm2, generating LLVM intermediate representa-
tion (bytecode). The Sledge compiler is implemented in Rust
and is 4,500 lines of code. We rely on LLVM to optimize for
the target architecture.
Using the compilation of native C/C++ code into a sand-

boxed binary for Sledge as an example, Figure 2 demonstrates
our compilation and runtime pipeline.

Sledge RUNTIME

L
I
N
E
A
R

S
T
A
C
K

(wasm)
FnA

sandbox

Indirect
fn Table

L
I
N
E
A
R

S
T
A
C
K

(wasm)
FnB

sandbox

Indirect
fn Table

(Memory safety) (Control-flow integrity)

CONFIGURABLE HW/SW SANDBOXING

FnA
wasm

.so
Native
Shared

Object (.so)
Dynamic
Loading

Heavyweight
Linking & Loading

get_func(typ_id, idx)load(off)
store(off,val)

Optimized
Fn Startup

FnB
wasm

.so

Figure 2. Sledge compiler aWsm and runtime for memory safety
and control-flow integrity of Wasm functions. "Heavyweight Link-
ing and Loading" warms up functions without function sandbox
creation/instantation ("Optimized Fn Startup" in the figure).

The Sledge compiler, aWsm, and a runtime together enable
the decoupling of process linking and loading, which is ex-
pensive, from the function instantiation, which is optimized
for function startup times (Figure 2). aWsm compiles code
for a function into an elf dynamic library (.so) that includes
the necessary Wasm safety checks. To load in a new func-
tion, the Sledge runtime dynamically loads a function’s .so.
When a function execution is triggered, Sledge allocates and
populates linear memory for the execution of the already
linked and loaded Wasm module. By avoiding heavy-weight
linking and loading, this approach supports faster function
startup time.
Figure 2 helps to demonstrate the ability of Sledge com-

piler and runtime to provide configurable mechanisms for
memory and function invocation bounds checks. Software
conditional bounds checks for Wasm linear memory rep-
resent the most obvious overheads over native code. Such
safety checks (“load” and “store” in Figure 2) transform native
loads/stores into an addition (from the linear memory base),
and a branch (for the bounds check) as shown in Figure 2. We
implement these safety checks in the runtime, thus enabling
their customization and implementation in C libraries.

We investigate multiple bounds check configurations:
• No explicit bounds checks onWasm loads and stores. Though
this configuration is fastest, it does not provide mem-
ory safety (thus breaking the sandbox). This is useful for
studying the overheads of bounds checking.

• Software-based bounds checks that make sure that the load
and store offsets are indeed within the linear memory
size of the sandbox. This configuration could limit per-
formance in some systems as it increases the overhead of

2www.github.com/gwsystems/awsm

each load and store. Note, that LLVM optimizations might
lift and remove some redundant checks.

• Hardware-based bounds checks using features such as seg-
mentation andMPX [55, 59]. Many processors today have
security features that enable pointer validation with lim-
ited performance impact on the applications [8, 55, 85].

• An architecture-based optimization [33] that elides bounds
checks by running the 32-bitWasm sandbox’s linearmem-
ory in a separate, aligned 4GB virtual span of address
space. Non-overlapping sandboxes ensure memory safety,
while virtual memory faults trap illegal accesses.

The Sledge runtime also implements software-based safety
checks on function pointer invocations to ensure CFI (see
“get_func” in Figure 2) by checking that a Wasmmodule only
invokes its accessible functions with valid argument types.

The Sledge compiler aWsm allows configuring the method
for bounds checks at runtime (as shown in Figure 2). This
feature enables the runtime to leverage different hardware
and software capabilities for bounds check management,
while also allowing the edge provider to make performance
tradeoffs.

3.3 Single Process Runtime and
Resource Management

Existing serverless frameworks for Edge computing, based
on VMs and containers, often have a number of special
software components spread across separate containers/pro-
cesses. For example, a “serverless management” component
shown in Figures 1 (a)-(c) is essential for request routing
and load-balancing across functions in VMs, containers, or
processes. However, this approach incurs significant over-
head in inter-process communication (IPC) between these
components, when crossing protection domains, and there-
fore, impacting the end-to-end latencies and throughput of
executed serverless functions.

The serverless functions are ephemeral and stateless. They
often rely on networked storage for persistanse. However,
in the existing serverless frameworks, the function isolation
boundaries are enforced via strong isolation of VMs and
containers (that are inherently heavy-weight). Moreover, the
function language runtime and libraries are isolated and
replicated as well (see Figures 1 (a)-(c)), thereby increasing
the memory footprint of these functions.

The Sledge serverless runtime uses a single process and
leverages Wasm for sandboxing. This design enables a multi-
tenant function execution within a single protection domain
as shown in Figure 1 (d).
Serverless function resource management. Figure 3 de-
picts the major components of the Sledge runtime for func-
tion request processing at the Edge. As it shows, the lan-
guage runtime and libraries are shared by all the functions
executing in the Sledge runtime. This approach minimizes

270

www.github.com/gwsystems/awsm

Sledge: a Serverless-first, Light-weight Wasm Runtime for the Edge
Middleware ’20, December 7–11, 2020, Delft, Netherlands

the memory footprint of each function and enables efficient
resource utilization.

HARDWARE

SCHED MEM DEV

OPERATING SYSTEM

Sledge RUNTIME

REQUEST FORWARDING

LOAD BALANCING (Fn REQUESTS)

Fn SANDBOX SCHEDULING

WORKER CORE

LANG LIBS

HEAD TAIL

Fn INFO (DYN LOAD)

FnA()

HTTP

FnB()

HTTP

FnZ()

HTTP

A B Z{

{ }

Li
g

h
tw

ei
g

h
t

fu
n

ct
io

n
 is

o
la

ti
o

n
 a

n
d

o
p

ti
m

iz
ed

 f
u

n
ct

io
n

 s
ta

rt
u

p

D
ec

o
u

p
lin

g
 w

o
rk

-d
is

tr
ib

u
ti

o
n

fr
o

m
 t

em
p

o
ra

l i
so

la
ti

o
n

}

Figure 3. Layers in the serverless-first, Sledge framework.

Serverless infrastructure must support request forwarding
and function instantiation to demultiplex the requests. In
Sledge, this determines a function to be executed in response
to a request (based on the connection information and HTTP
request). Then the corresponding sandboxes are created for
functions execution (shown as FnA() - FnZ() in Figure 3). The
Sledge runtime decouples the heavy-weight function linking
and loading process from function instantiation process. This
enables the Sledge runtime to support the startup latencies
of functions at the 𝜇-second level. Each sandbox (with the
function request) is then sent to system’s cores for the exe-
cution. These requests are load balanced between the cores.
Though existing serverless architectures also include these
components, Sledge incorporates them into a single UNIX
process to remove the additional system overheads.

The APIs from a function to the surrounding environment
(including the reply to the client and communication with
cloud storage services) are limited to HTTP requests and
replies.

3.4 Serverless-First Function Scheduling
The existing serverless frameworks predominantly run func-
tions in VMs and Linux-based containers. While scheduling
and load balancing of threads across cores is generally a
difficult problem [51], the growing complexity of the Linux
kernel [43] can significantly impact every system interaction
in a multi-core system [29]. The Linux kernel’s scheduling
subsystem uses shared runqueues and provides the runqueue
synchronization through shared locks. The Inter-Processor
Interrupts (IPI) are used to coordinate many aspects in Linux
kernel, e.g., scheduling runqueue balancing, work-queues,
and TLB coherence. The multi-tenant serverless frameworks
suffer from reduced performance due to high context switch

overheads and frequent inter-core migrations for enabling
temporal isolation.
The serverless executions that are short-lived and event-

driven (as described in Section 1) incur significant overheads
in the existing systems as the new requests are directly added
to the kernel scheduler runqueues and require expensive
thread migrations for balancing work. This has motivated
a number of systems [12, 40, 63] to bypass the Linux kernel
for task scheduling and improved scalability.
To scale and efficiently execute functions, Sledge revisits

system scheduling to explicitly decouple work distribution
from temporal safety (per-function progress). The Sledge run-
time’s design incorporates all functionality in a single pro-
cess to provide low latencies, while enabling high-churn. In
doing so, Sledge uses its own facilities for memory isolation,
serverless-specific load-balancing, and user-level scheduling
of function execution.

The current Sledge user-level scheduling is based on:
• preemptive round-robin (RR) scheduling to minimize
overheads while also providing the temporal isolation
necessary for multi-tenancy;

• a scalable work-stealing deque to shuffle requests be-
tween cores, while integrating the dequeueing of new
requests into the idle loop of scheduling.

While the user-level scheduling in Sledge is much more effi-
cient (by avoiding system calls), it has to address the tradi-
tional challenges and issues, such as:
• blockingwithin the kernel causes that all user-level threads
are blocked;

• cooperative scheduling is not resilient to the untrusted
computationswith potentially unbounded execution times.

To address these issues, Sledge leverages timer signals on
each core as a means to provide preemptive scheduling, in-
tegration with an event-driven library for I/O that avoids
blocking, and cooperative yields (in the runtime) when the
output from system calls is not immediately available.
The Sledge runtime is inspired by task-based parallelism

frameworks such asOpenMP [61], Cilk [13] and Intel TBB [72]
focusing on efficient work distribution of run-to-completion
serverless functions or tasks. The Sledge runtime also special-
izes the management of new client requests to avoid head-
of-line blocking. When shuffling requests between cores,
Sledge must enable work-conservation, i.e., a worker core
should only go idle if there are no pending requests, and it
must scalably balance work. While a global queue is work-
conserving, it is not scalable, and while a separate queue
per core is scalable, it does not provide work-conservation.
Therefore, the Sledge runtime leverages a lock-free, work-
stealing deque [15, 45]) to shuffle requests between cores.
Each runtime thread on each core dequeues pending requests
to maintain work-conservation, as shown in Figure 3.
Once a function begins execution in a Wasm sandbox,

per-core runqueue scheduling is leveraged at the user-level

271

Middleware ’20, December 7–11, 2020, Delft, Netherlands P. K. Gadepalli, S. McBride, G. Peach, L. Cherkasova, G. Parmer

by providing quantum-based CPU allocation along with pre-
emptive round-robin scheduling. As function instances are
user-level sandbox contexts, cooperative switches between
them avoid mode changes and hardware protection domain
switches. This has a significant impact on the end-to-end
function latencies, while enabling a multi-tenant isolation at
the Edge.

3.5 Request/Response Serverless Processing
We focus the Sledge design around request/response server-
less computation3. This is motivated by the Sledge’s focus on
the Edge interaction with IoT and embedded devices, where
providing a timely response will best utilize Edge proxim-
ity to devices. Matching this motivation, Sledge uses HTTP
POST requests to pass the arguments (e.g., an image to be
classified) to the function for processing. The function’s out-
come is formatted as the HTTP response. As standards for
request/reply processing at the Edge stabilize, this modular
mechanism for interacting with a function can be replaced
or refined.

The outlined Sledge design enables a single node runtime
to cater to the execution requirements of serverless at the
Edge while optimizing the efficiency and system resource
usage of a multi-core system.

The existing C/C++ programs compiled to Wasm leverage
POSIX layer without modifications, and Sledge currently pro-
vides access to this POSIX layer functionality using asynchro-
nous I/O. WebAssembly System Interface (WASI) support is
in our roadmap but is out of scope of this paper.
We believe that the multi-server serverless frameworks

could be built on top of these fundamental mechanisms to
enable higher densities and lower latencies than the existing
VM and container-based serverless frameworks.

4 Implementation
Function Management: Figure 4 depicts a single process
or address space Sledge system, designed to enable multi-
tenant serverless functions and efficiently utilize the resource
constrained Edge systems. The Sledge runtime leverages
ahead-of-time (AoT) compiled Wasm modules (as described
in Figure 2), loading them at the startup to decouple the
heavy-weight function linking and loading from function
instantiation. The Wasm modules are loaded using dlopen
and obtaining the address of the exported main function in
the module using dlsym. Then the runtime creates a TCP
socket on a fixed port, defined in a JSON-based configuration
file.
A single “listener thread” is pinned to a dedicated core

(called a “listener core”). It uses epoll to listen to incom-
ing connections on loaded module ports. The “listener core”
handles request forwarding by listening to incoming requests

3Some alternative frameworks (e.g., Google’s Firebase [25]) trigger server-
less functions execution in response to Cloud storage updates.

Sledge RUNTIME
(Single Process)

LOAD BALANCING
(WORK STEALING DEQUE)TAIL HEAD

STEAL
Fn REQUEST

SIGALRM

LI
S

T
E
N

E
R

C
O

R
E

REQUEST
FORWARDING
(TCP sockets)

KERNEL

A B Z

Create & SCHEDULE
Fn SANDBOXes

FnA FnB FnZ

R
U
N

Q
U
E
U
E

HTTP REQ

HTTP REQ

Fn ()
LIBUV

(Async I/O)EPOLL

PUSH
Fn REQUEST

W
O

R
K

E
R

C
O

R
E

W
O

R
K

E
R

C
O

R
E

1

2

3

5

6

5'

4

Figure 4. Sledge single process serverless runtime. Circled num-
bers are labels used for explanation of the system functionality flow
described and referred in the text.

(labelled 1 in Figure 4) and instantiating function sand-
boxes for each request to available functions in the runtime.
The decoupled function startup enables optimized function
sandbox creation, which only involves allocation of required
linear memory, a dedicated stack, and a user-level context
(tracking ip, sp, and mcontext_t) for user-level scheduling
(similar to green threads [32]).

Function Distribution for Load Balancing: The load
balancer is decoupled from the temporal isolation scheduling
and is implemented using a common task queueing data-
structure (a global work-stealing deque) to balance sand-
boxes between “worker cores” [15, 45] as shown in Figure 4.
The function sandboxes are pushed on to the load balancer
for scaling concurrent requests onto a number of cores (la-
belled 2 in Figure 4). Each “worker core” steals a sandbox
from the global work-stealing deque and appends it to the
local scheduling runqueue for execution (labelled 3 in Fig-
ure 4), thus achieving work-conservation. The data-structure
tracking modules, the worker thread pthread_ts (which
are read-only for the lifetime of the Sledge runtime after cre-
ation), and the global work-stealing deque are the only global
data-structures in the runtime. This enables Sledge runtime
to support predictable latencies for function executions in a
multi-core Edge node.

Function Scheduling forTemporal Isolation:Tomain-
tain the fairness and temporal isolation required by the multi-
tenant function executions, Sledge implements preemptive-
scheduing on each core, decoupled from load balancer for
work-distribution. The Sledge runtime spawns N “worker
threads”, each pinned to a separate core and having a core-
local function scheduling runqueue (with other data-structures
implemented using thread-local storage) depicted as 4 in
Figure 4. Each “worker thread” unmasks SIGALRM (with the

272

Sledge: a Serverless-first, Light-weight Wasm Runtime for the Edge
Middleware ’20, December 7–11, 2020, Delft, Netherlands

remaining threads keeping it masked by default). This en-
sures that the software interrupts or signals are always de-
livered to one of the “worker threads”.

Each “worker core” implements a local, preemptive round-
robin scheduling for the sandboxes on its run queue, with
a time slice set to 5 milliseconds. When the kernel trig-
gers a SIGALRM, the “worker core” that receives it, prop-
agates it to the other “worker cores” using pthread_kill
to enable preemption on multi-core systems (“SIGALRM”
or 6 in Figure 4). On each core, preemption causes the
mcontext_t from the signal handler to be saved to the cur-
rently executing sandbox’s context, which can only be re-
stored through a signal execution context (as it requires
restoring all registers of the sandbox context). A context
switch to a preempted thread incurs additional overheads,
as it requires a signal execution context, achieved using
a pthread_kill(pthread_self(), SIGUSR1) to restore
all its registers from a previously saved mcontext_t. This
significantly increases the sandbox context switch costs to
be on the orders of the OS thread switch in Linux. Therefore,
the time slice in scheduling has strong control over sandbox-
ing preemptions and scheduling overheads, which impact
the function’s end-to-end latencies.

Function Sandbox Execution: Each function sandbox
starts by executing the main function inside the Wasm mod-
ule, reading the HTTP request body as stdin (labelled 5
in Figure 4). The stdout from the sandbox is then used for
HTTP response formation by Sledge runtime. Each “worker
core” tears down the sandbox memories (stack and linear
memory) of each completed sandbox on their local runqueue.

HTTP and Asynchronous Function I/O: Wasm mod-
ules, loaded by Sledge execute I/O via the system POSIX
interface, which includes some system calls that block until
completion (e.g., open, read, write, recv, send, etc).
To enable strong temporal isolation between multi-tenant
function executions, the Sledge runtime leverages the asyn-
chronous, event-driven I/O using libuv [47] (“libuv (Async
I/O)” or 5’ in Figure 4). libuv is a multi-platform support li-
brary with a focus on asynchronous I/O based on event loops
(uv_loop_t). It was primarily designed for use in Node.js
but is also used by many other projects.

Each “worker core” has a core-local libuv event loop (in its
thread-local storage). The functions (executing in that thread)
queue the I/O requests in the core-local event loop and use
cooperative sandbox scheduling to block on I/O. The function
scheduling in each “worker core” checks for pending I/O
before scheduling the function sandboxes from the runqueue,
enabling the scheduler to control the number of events to
process. Event-driven I/O is provided by registered libuv
callbacks, which wake the sandboxes up and make them
runnable by appending them to the core-local runqueue.

5 Evaluation
First, we evaluate our Sledge compiler aWsm and runtime on
x86_64 and AArch64 architectures using two systems:
• Dell Precision 7820 workstation with 16 cores Intel Xeon
Silver 4216 2.1 GHz processor and 16 GB memory;

• Raspberry Pi 4Model Bwith Quad-core Cortex-A72 (ARM
v8) 64-bit SoC at 1.5GHz having 4 GB physical memory.

We use a Ubuntu 18.04 64bit OS, and clang / LLVM com-
piler version 8.0.

Then by using various Edge workloads, we analyze Sledge
serverless runtime performance on x86_64 and compare it
to Nuclio [57], the open-source serverless framework.

5.1 WebAssembly Performance
By providing a mechanism for lightweight isolation, the
Wasm sandbox enables Sledge to run functions with high
churn and low latency. This is paired with thememory-safety
and control-flow integrity properties discussed in §3.1.

Given the centrality of Wasm to promise near-native exe-
cution performance while enabling strong, yet, lightweight
isolation, we designed an experiment to evaluate the execu-
tion times of PolyBench/C 4.2.1 applications (as in [33]) on
Sledge using our aWsm compiler and several popular Wasm
runtimes.

The runtimes that we evaluate are:
• Wasmer v0.12.0 [78], a just-in-time (JIT) compilation
runtime that uses Cranelift [19] as its default compiler
(LLVM and single-pass are supported) and allows caching
of JIT compiled objects to improve performance of further
executions. We evaluate performance for Cranelift based
compilation with enabled caching of JIT compiled objects.

• WAVM v0.0.0-prerelease [79], a JIT compilation runtime
that compiles Wasm objects using the LLVM compiler
with the caching of JIT compiled objects enabled.

• Node.js v12.9.1 [56], which executesWasmobjects within
the V8 runtime.Emscripten v1.39.5 [22] compiler (LLVM-
based) is used to generate JavaScript wrappers.

• Lucet v0.4.1 [4] native Wasm compiler and runtime. The
lucetc ahead-of-time (AoT) compiler leverages Cranelift
for compilation of Wasm objects and generates native
shared objects. The lucet-wasi runtime loads a single
shared object and executes it in a sandboxed environment.

• Sledge+aWsm, a native, AoT-generated executable cre-
ated by the aWsm compiler and dynamically loaded as
a shared object and executed as a single sandbox in the
Sledge runtime. The aWsm compiler generates LLVM IR
from Wasm bytecode and outputs a native shared object
as discussed in §3.2. This runtime is configured to use vir-
tual memory based bounds management (isolating 32-bit
Wasm sandboxes into 4GiB regions) and we refer to this
simply as Sledge+aWsm in Figure 5.

• Sledge+aWsm-mpx, a native executable generated by
the aWsm compiler with a Sledge runtime configured

273

Middleware ’20, December 7–11, 2020, Delft, Netherlands P. K. Gadepalli, S. McBride, G. Peach, L. Cherkasova, G. Parmer

 0

 1

 2

co
rr

el
at

io
n

co
va

ri
an

ce ad
i

gr
am

sc
hm

id
t

de
ri
ch

e

tr
m

m

se
id

el
-2

d

m
vt

sy
m

m

lu
dc

m
p

sy
r2

k lu

tr
is

ol
v

nu
ss

in
ov

do
itg

en

2m
m

ge
su

m
m

v

bi
cg

ge
m

ve
r

ch
ol

es
ky

3m
m

at
ax

sy
rk

flo
yd

-w
ar

sh
al

l

du
rb

in

he
at

-3
d

fd
td

-2
d

ja
co

bi
-2

d

ja
co

bi
-1

d

ge
m

m

 N

o
rm

a
liz

e
d

 (
v
s

N
a
ti

v
e
)

B
e
n
ch

 T
im

e

XXX

 2

 4

 6

 8 Sledge+aWsm
WAVM

Sledge+aWsm-bounds-chk
Sledge+aWsm-mpx

Node.js+Emscripten
Lucet

Wasmer

9.1

Figure 5. PolyBench/C benchmarks on different WebAssembly runtimes normalized to native benchmark time on x86_64. "x" mark on
x-axis indicates failure to execute benchmark on a runtime. Node.js+Emscripten failed for gemm and symm. Lucet failed for gemm.

x86_64 Raspberry Pi (ARM v8)
Wasm Wasmer WAVM Node.js+ Lucet Sledge+aWsm- Sledge+ Sledge+ Sledge+aWsm- Sledge+aWsm-
Runtime Emscripten bounds-chk mpx aWsm bounds-chk-rpi rpi
Slowdown (AM) 149.8% 28.1% 84.0% 92.8% 62.7% 75.1% 13.4% 36.7% 6.74%
Slowdown (GM) 101.6% 20.5% 62.3% 68.9% 38.4% 51.6% 9.9% 26.86% 5.0%
SD 194.09 53.09 107.84 117.25 116.14 113.41 34.65 60.3 19.38

Table 1. Arithmetic mean (Slowdown (AM)) and geometric mean (Slowdown (GM)) of % slowdowns, and the standard deviations (SD)
for arithmetic mean in different Wasm runtimes. The x86_64 results summarize the results from Figure 5. For brevity, we only include
summarized results for AArch64 on Raspberry Pi in the right-most columns of the table (systems with -rpi suffix).

with Intel MPX [55, 59] hardware-based bounds checks
for memory safety.

• Sledge+aWsm-bounds-chk, a native executable gener-
ated by the aWsm compiler with a Sledge runtime config-
ured with naive software-based bounds checks for mem-
ory safety discussed in §3.2.

• Sledge+aWsm-rpi, a native executable generated by the
aWsm compiler for AArch64 on Raspberry Pi with a
Sledge runtime configured with virtual memory based
bounds management similar to Sledge.

• Sledge+aWsm-bounds-chk-rpi, a native executable gen-
erated by the aWsm compiler for for AArch64 on Rasp-
berry Pi with a Sledge runtime configured with software-
based bounds checks similar to Sledge-bounds-chk.

• Native executable compiled with clang -O3 for base-
line.
Figure 5 presents the normalized to native execution time

of PolyBench/C benchmarks, averaged over 15 iterations
for different Wasm runtimes on x86_64 system. To match
the methodology used in [33], we used 15 iterations in this
experiment. Table 1 (left side, that represents x86_64 results)
shows the arithmetic and geometric means of PolyBench/C
benchmarks as a percentage slowdown compared to native
and the standard deviations for different Wasm runtimes of
different benchmarks on x86_64 system.
Discussion. As shown in Figure 5, the Cranelift-based run-
times show a significant slowdown compared to native (149.8%
in Wasmer and 92.8% in Lucet), reflecting Cranelift’s empha-
sis on fast compilation times [6]. WAVM, a JIT compiler
runtime that leverages LLVM for code generation, shows
a relatively smaller 28.1% slowdown. Node.js+Emscripten

performance show the sub 10% slowdown for a subset of
7 applications (as also discussed in [33]), which however
grows to 84% across all applications.
The aWsm compiler and Sledge runtime is 13.4% slower

(on average) than native and at least 14.7% faster than the
fastest Wasm runtimes (WAVM) as shown in Slowdown
(AM) of Table 1. The naive software-based bounds checks in
Sledge+aWsm-bounds-chk require linear memory offset and
bounds checks (which LLVM might optimize), which adds
overhead to each load and store, in the worst case. This gener-
ates additional slowdown over that of Sledge+aWsm, which
uses virtual memory-based bounds management to maintain
memory isolation and avoids bounds check overheads.
Sledge+aWsm-mpx with Intel MPX hardware-based sup-

port is counter-intuitively 12.4% slower than Sledge+aWsm-
bounds-chk with software-based bounds checks, and it is
61.7% slower than Sledge, reflecting the expensive opera-
tions [59] required in storing and loading of the bounds.
We also evaluated the Sledge+aWsm performance with

static compilation without any bounds checks mechanism to
compare the overheads and we observed that the arithmetic
mean was 0.3% faster than Sledge+aWsm. The geometric
slowdown (Slowdown (GM) in Table 1) also confirms that
Sledge+aWsm performs better than other LLVM-based and
significantly better than the Cranelift-based runtimes. These
results show that the Wasm sandboxing in Sledge+aWsm
is efficient and offers a good foundation for isolation in a
serverless runtime.
Sledge+aWsm on Raspberry Pi. Lately, the ARM v8 pro-
cessors have gained significant traction in the Cloud and
Edge computing worlds for their performance characteris-
tics [10, 64]. The Raspberry Pi devices, based on ARM v8, are

274

Sledge: a Serverless-first, Light-weight Wasm Runtime for the Edge
Middleware ’20, December 7–11, 2020, Delft, Netherlands

powerful enough to support Edge computing, with attractive
form-factor and cost. We ported our aWsm compiler and
the Sledge serverless runtime to AArch64 to evaluate their
performance for ARM-based Edge systems. Table 1 (right
part) presents the arithmetic means of % slowdown com-
pared to native code execution and their standard deviation
for Sledge+aWsm running native executables on AArch64.
The Sledge runtime with software-based bounds checks

(Sledge+aWsm-bounds-chk-rpi) is 36.7% slower than native,
as it incurs software overheads in bounds checks similar
to (Sledge+aWsm-bounds-chk) on x86_64. More importantly,
the Sledge+aWsm-rpiwith virtual memory based sandboxing
shows only 6.7% slowdown compared to native on ARM
AArch64, thus, demonstrating that Wasm performance on
ARM v8 processor is close to native.
Memory footprint. The memory footprint of functions has
a significant impact on “cold-start” performance and scala-
bility at the resource-constrained Edge. The single-process
Sledge runtime binary size is 359 KB. Moreover, it enables
functions to share the library dependencies, while provid-
ing a strong spatial and temporal isolation for multi-tenant
functions executions. The AoT compiled shared object sizes
are between 108 KB-112 KB, which is significantly smaller
than VM- and container-based function isolation (often in
10s to 100s of MBs [18, 68]).

5.2 Serverless Function Performance
Nuclio [57] is a serverless framework (shown in Figure 1 (c))
that provides more performant low-latency processing by
using containers for multi-tenant isolation, while concur-
rently executing functions in separate processes within those
containers. Nuclio allows serverless functions to be invoked
directly from a client. Therefore, Nuclio can be deployed as
a single node without load balancers or function-request-
forwarding subsystems. These characteristics make Nuclio
one of the most attractive open-source serverless solutions
for the Edge [46]. Given that Nuclio is one of the fastest ex-
isting serverless solutions [46], we evaluate and compare
the latency and throughput of serverless functions executed
on Sledge and Nuclio platforms. The Nuclio framework does
not yet support Raspberry Pi, and therefore, we perform our
experiments only on x86_64 processor.
Nuclio Setup We deployed Nuclio (version 1.3.3) as a sin-
gle node without any of the optional components to sup-
port larger, distributed, multi-node, serverless deployments.
We use the shell based function processor (version 0.7.1) to
run native binaries on the Nuclio serverless framework. The
function processor containers in Nuclio, when deployed, are
96.4MBs in size, which includes the Nuclio shell runtime,
HTTP event listener and the native executable of the func-
tion in each experiment. The Nuclio function processor is
configured with a maxWorker value, which determines the
maximum number of concurrent worker processes that can

be spawned. Given the varied performance characteristics
of different benchmarks (I/O intensive vs CPU intensive),
we tuned this to optimize the throughput of a basic ping
function, which performs no computation and only replies
with a single byte. We observed the optimal throughput with
a worker count between 16 and 19, and therefore use 16
workers to match the 16 cores in our server machine.
Sledge Setup The Sledge serverless runtime uses virtual
memory based bounds management for function sandbox
memory isolation (similar to “Sledge+aWsm" in Figure 5).
The runtime has 15 worker cores for function instantiation
and scheduling, and a listener core for request forwarding
and load balancing (as discussed in Section 4 and Figure 4).

The client and server machines both use a 10Gtek 10GbE
PCI-E X8 Network Card X540-10G-2T connected via a NET-
GEAR 8-Port 10G Ethernet Smart Managed Plus Switch
(XS708E). On the client-side, we use Apache Bench (ver-
sion 2.3) in all serverless experiments. We observed that the
minimum average round-trip network latency exhibited by
different serverless experiments regardless of the workload
is 0.122𝑚𝑠 . We measure this by running a simple web server
on the server machine and measured the latency for 10k
requests using ab on the client machine. In all the experi-
ments below, we have measured the throughput in Kbps for
different executions in Sledge and Nuclio, and verified that
the network bandwidth is not a bottleneck.
Varying concurrency. We first evaluate the latency and
throughput properties of Sledge with a simple ping func-
tionality, with increasing concurrency. Figure 6 shows the
throughput and average latencies for Sledge and Nuclio.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

T
h
ro

u
g

h
p

u
t

(T
h
o
u
sa

n
d

 R
e
q

u
e
st

s/
se

c)

 Concurrency
(a)

Sledge
Nuclio

 0

 2

 4

 6

 8

0 20 40 60 80 100

 L
a
te

n
cy

 (
m

ill
is

e
co

n
d

s)

(b)

 0

 2

 4

 6

 8

0 20 40 60 80 100

 L
a
te

n
cy

 (
m

ill
is

e
co

n
d

s)

(b)

 10

 20

 30

 10

 20

 30
Sledge
Nuclio

Figure 6. (a) Throughput and (b) Latency of a Ping serverless
function with varying concurrency. (Solid and empty bars indicate
average and 99%-tile latencies respectively, for 10k iterations.)
Discussion. The Sledge serverless runtime shows consis-
tently high throughput – about 3 times Nuclio – across var-
ied concurrency levels in Figure 6(a) and significantly lower
average and 99%-tile latencies compared to Nuclio in Fig-
ure 6(b). The multi-process Nuclio runtime, executing native
function binaries, incurs IPC, context switch, and scheduling
overheads of traditional system scheduling, in addition to the
overheads in function instantiation (using fork + exec). In
contrast, our serverless-first Sledge framework that leverages
light-weight Wasm sandboxing and decouples (1) function

275

Middleware ’20, December 7–11, 2020, Delft, Netherlands P. K. Gadepalli, S. McBride, G. Peach, L. Cherkasova, G. Parmer

linking and loading from function instantiation, and (2) work-
distribution from user-level sandboxing scheduling for tem-
poral isolation, avoids many of these overheads (in spite of
the Wasm slowdown compared to native). Sledge demon-
strates promising ultra-low latencies and high throughputs.
Varying payload sizes. Edge functions often have strict
latency and data processing requirements. It is necessary for
the serverless runtimes to provide high throughput, while
enabling low end-to-end latencies with varying payload
sizes for data processing. Next, we evaluate the latency and
throughput of Sledge with a network-intensive workload.

Figure 7 presents the throughput and average latencies for
Sledge andNuclio systems for network I/O intensive function.
This function receives a payload (from 1KB to 1MB), which
it copies into a buffer, and then writes back out to stdout,
which is sent as the HTTP response body.

 0

 2

 4

 6

 8

 10

 12

 14

1KB 10KB 100KB 1MB

T
h
ro

u
g

h
p

u
t

(T
h
o
u
sa

n
d

 R
e
q

u
e
st

s/
se

c)

 Payload Size
(a)

Sledge
Nuclio

 0
 5

 10
 15
 20
 25
 30
 35

1KB 10KB 100KB 1MB

 L
a
te

n
cy

 (
m

ill
is

e
co

n
d

s)

(b)

 0
 5

 10
 15
 20
 25
 30
 35

1KB 10KB 100KB 1MB

 L
a
te

n
cy

 (
m

ill
is

e
co

n
d

s)

(b)

 50

 150

 250

 50

 150

 250
Sledge
Nuclio

Figure 7. (a) Throughput and (b) Latency of a network-transfer
serverless function with 100 concurrent conn. (Solid bars indicate
avg. latencies at 10k iterations, empty bars indicate p99 latencies.)
Discussion. The Sledge runtime has approximately 2.8 times
higher throughput than Nuclio as shown in Figure 7(a) and
approximately 2.8 times lower latencies in Sledge (Figure 7(b))
for 1KB and 10KB request and response sizes. With larger
transfer sizes, the costs of copying data (for example, through
POSIX read and write APIs) dominates the execution, and
Sledge performance approaches that of Nuclio. We believe
that given a limited bandwidth and power of IoT and smart
devices, utilizing the serverless Edge for real-time functional-
ity and data processing, will mostly use the small request/re-
sponse sizes.
We additionally run experiments (not shown) with CPU-

bound functions of various computation times. As functions
become increasingly CPU-bound, the performance of Sledge
gets closer to Nuclio. Though many functions may be CPU-
bound, we believe that a typical use case for the real-time
Edge will be light-weight functions aiming at fast responses.
Application study. Next, we study the performance of real-
world Edge applications that perform a mix of network trans-
fers and computations. Since IoT and smart devices are often
resource constrained, they might rely on Edge systems to
support compute-intensive functions from Neural Network
libraries, image recognition and manipulation, and other
object detection functionality.

The applications we evaluate are:
• Arm’s CMSIS-NN [17] for CIFAR10 [44]: Reads a 1.9 KB
32x32 PNG image of an airplane from stdin, executes
a classifier of 10 classes (airplanes, cars, birds, cats, deer,
dogs, frogs, horses, ships, and trucks), and writes the
number associated with the resulting class to stdout.

• GOCR [30]: An Optical Character Recognition (OCR) ap-
plication that reads a portable-bitmap format (PBM) im-
age from stdin and writes the ASCII text recognized
from the image to stdout.

• SOD [71] RESIZE: Reads a 28.9 KB flower JPEG from
stdin, resizes it by half, and outputs as PNG to stdout.

• SOD [71] License Plate Detection (LPD): Reads a 96.6 KB
JPEG containing a license plate from stdin, generates
a bounding box around the license plate, and outputs a
96.6 KB JPEG image with a box drawn.

• GPS with TinyEKF [74]: Reads Global Positioning System
(GPS) state and input position matrices from stdin, uses
TinyEKF, a simple Extended Kalman Filter [66], to predict
a future position, which it writes to stdout. Given EKF’s
need for a state from the previous executions, it returns
to the client that state, and relies on it to pass it along
with each request.

 0

 1

 2

G
PS

-E
KF

G
O

C
R

C
IF

A
R
10

R
ES

IZ
E

LP
D

T
h
ro

u
g

h
p

u
t

 (

T
h
o
u
sa

n
d

 R
e
q

u
e
st

s/
se

c)

(a)

0
.1

9
8

0
.3

4
4

0
.0

5
7

0
.1

2
5

 3

 6

 9

 12

 15

Sledge
Nuclio

 0

 25

 50

 75

 100

G
PS

-E
KF

G
O

C
R

C
IF

A
R
10

R
ES

IZ
E

LP
D

La
te

n
cy

 (
m

ill
is

e
co

n
d

s)

(b)

 0

 25

 50

 75

 100

G
PS

-E
KF

G
O

C
R

C
IF

A
R
10

R
ES

IZ
E

LP
D

La
te

n
cy

 (
m

ill
is

e
co

n
d

s)

(b)

 500

 1000

 1500
 1750
 2000

 500

 1000

 1500
 1750
 2000

Figure 8. (a) Throughput and (b) Latency of real-world serverless
functions at 100 concurrent connections. (Solid bars indicate avg.
latencies for 10k iterations, empty bars indicate 99%-tile latencies.)

Native Sledge
Avg 99% Avg (norm) 99% (norm)

GPS-EKF 27𝜇s 32𝜇s 30𝜇s (1.09) 33𝜇s (1.03)
GOCR 623𝜇s 704𝜇s 924𝜇s (1.48) 1015𝜇s (1.44)
CIFAR10 5.54ms 6.46ms 8.31ms (1.49) 9.27ms (1.43)
RESIZE 36.1ms 37.4ms 53ms (1.46) 55ms (1.46)
LPD 96.3ms 99.3ms 176.3ms (1.83) 180ms (1.81)

Table 2. Execution time of real-world serverless functions in
Sledge and native code execution. (Averaged over 1k iterations).

Figure 8 presents throughput and average latencies in
Sledge andNuclio systems processing real-world applications.
To provide an insight into Wasm execution performance
and possible overhead, Table 2 provides the runtimes of the
same functions, executed outside of serverless framework.

276

Sledge: a Serverless-first, Light-weight Wasm Runtime for the Edge
Middleware ’20, December 7–11, 2020, Delft, Netherlands

These demonstrate the Wasm versus native performance
disparities.
Discussion.With the exception of GPS-EKF, the executed
applications are approx. 45% slower than native code due
to Wasm overhead, as shown in Table 2. In spite of this, the
serverless-first approach (redesigned from the ground up) en-
ables Sledge runtime to provide high throughput and low la-
tencies for all applications (except those that are significantly
computation-bound: RESIZE and LPD). The throughput of
GPS-EKF application in Sledge is 4 times higher than Nuclio
in Figure 8(a) and its average latency in Sledge is 4 times
faster than Nuclio in Figure 8(b). Similarly, the throughput of
GOCR application in Sledge is 2.9 times higher than Nuclio
and the average latency in Sledge is 2.9 times faster than
Nuclio and for CIFAR10, the throughput is 1.36 times higher
and the average latency is 1.36 times faster than Nuclio.
This demonstrates the efficiency of the Sledge design,

which is especially pronounced and strongly manifests itself
for less heavy computational functions. It also shows that fur-
ther work on optimizing Wasm compilers will be beneficial.
The Sledge runtime is optimized for short computations at the
Edge. It might under-perform for CPU intensive functions
(due to Wasm-related overheads compared to their native
execution). Wasm-based executions of RESIZE is 46% slower
and LPD is 81% slower than native as shown in Table 2. This
explains the lower throughput and higher latencies of these
applications in Sledge runtime compared to their processing
in Nuclio.
Function creation latencies and churn. Driven by data
processing from IoT and smart devices, the Edge comput-
ing systems will require to handle high request rates due
to reduced network latency between mobile IoT devices
and the servers at the Edge (e.g., 5G stations). The exist-
ing serverless frameworks, based on VMs and containers,
exhibit high “cold-start” latencies (discussed in §2), thus hin-
dering the high churn required by these devices. The Nu-
clio serverless framework enables the function processors
(containers) to be persistent. The serverless management
within the container forks a process for each invocation,
thus incurring only the cold-start latency of process creation.

99% Avg.
fork + exec + wait 588𝜇s 487𝜇s
Sledge Sandbox 146𝜇s 61𝜇s

Table 3. Churn benchmarks (𝜇s) for
GPS-EKF in a Sledge Sandbox and us-
ing fork + exec + wait on native.
(Averaged over 10k iterations)

To evaluate the Sledge
runtime’s ability to
support a high churn
of requests and to
compare it against
Nuclio serverless frame-
work, we measure
the latency of the
GPS-EKF application, using fork + exec on native system
and the sandbox execution in Sledge.
Table 3 shows the latency of process creation in a Sledge

standalone sandbox and fork+exec+wait in native system.

Discussion. The optimized function instantiation in Sledge
is significantly faster than native fork + exec, because it
does not need to track and replicate the kernel state such as
files and signals, and it avoids overheads of creating and im-
mediately overwriting the newly created address space (e.g.,
fork then exec). More importantly, despite copy-on-write,
the costs of fork and exec depend on the size of the running
process and executable being execed, which can be signifi-
cantly higher for large runtimes and functions. Therefore, de-
coupling the function linking and loading from the function
instantiation in Sledge enables significantly lighter-weight
(30𝜇s) function startup times, and efficiently managing a
high churn of request rates in the Edge systems.

6 Conclusion
The current surge of novel applications for IoT, autonomous
vehicles, and pervasive surveillance motivates the need of
time-critical, high bandwidth processing of sensor data at the
Edge. To maintain low-latencies while scaling multi-tenancy
within the Edge restricted resources, this paper presents a
serverless-first runtime designed to optimize for the short-
lived and event-driven properties of serverless functions. The
Sledge compiler and runtime enable light-weight function
isolation by leveraging the sandboxing properties of Wasm.
Results show that serverless-first Sledge runtime enables

low-latency serverless execution, while efficiently managing
concurrency and work distribution. For the most latency-
sensitive Edge applications with fast runtimes, Sledge has la-
tencies 4x lower than Nuclio (a high-performance, container-
based serverless infrastructure), with a 4x higher through-
put. We also show that Sledge’s compiler aWsm generates
sandboxed code that executes within 1.1 times compared
to native code for 24 out of 30 PolyBench/C benchmarks.
We believe this demonstrates that a serverless runtime, opti-
mized by leveraging light-weight Wasm-based isolation and
scheduling bypass of traditional kernel scheduling, holds a
significant promise for strict requirements of future Edge
architectures. The proposed framework opens up a set of
interesting opportunities for customized performance man-
agement of users’ serverless functions, which we plan to
investigate in our future work.

7 Acknowledgements
We would like to thank the anonymous reviewers and our
shepherd Christof Fetzer for a valuable feedback and help
in improving the paper presentation. This work was par-
tially completed during P. K. Gadepalli’s summer internship
in 2019 at Arm Research. We would like to thank the sup-
port from the NSF through awards CNS-1815690 and CPS-
1837382, and from Arm and SRC through Task 2911.001. The
views of this paper does not necessarily reflect those of NSF
nor SRC.

277

Middleware ’20, December 7–11, 2020, Delft, Netherlands P. K. Gadepalli, S. McBride, G. Peach, L. Cherkasova, G. Parmer

References
[1] 2018. Choosing the right amount of memory for your AWS

Lambda Function: https://blog.symphonia.io/the-occasional-chaos-of-
aws-lambda-runtime-performance-880773620a7e .

[2] 2018. The Occasional Chaos of AWS Lambda Runtime Perfor-
mance: https://medium.com/@raupach/choosing-the-right-amount-
of-memory-for-your-aws-lambda-function-99615ddf75dd.

[3] 2019. Announcing Lucet: Fastly’s native WebAssembly compiler
and runtime. https://www.fastly.com/blog/announcing-lucet-fastly-
native-webassembly-compiler-runtime

[4] 2019. Lucet: https://github.com/fastly/lucet.
[5] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005.

Control-Flow Integrity. In Proc. of the 12th ACM Conference on Com-
puter and Communications Security (CCS).

[6] Syrus Akbary. 2019. A WebAssembly Compiler Tale,
https://medium.com/wasmer/a-webassembly-compiler-tale-
9ef37aa3b537.

[7] Alibaba Cloud Functions 2019. Alibaba Function Compute:
https://www.alibabacloud.com/products/function-compute.

[8] Arm 2019. Armv8.5-A Memory Tagging Extension,
https://semiengineering.com/a-memory-tagging-extension/.

[9] Gabriel Aumala, Edwin F. Boza, Luis Ortiz-Avilés, Gustavo Totoy,
and Cristina Abad. [n.d.]. Beyond Load Balancing: Package-Aware
Scheduling for Serverless Platforms. In 19th IEEE/ACM Intl. Symposium
on Cluster, Cloud and Grid Computing, CCGRID 2019.

[10] AWS Goes All In On Arm-Based Graviton2 Processors 2019. AWS
Goes All In On Arm-Based Graviton2 Processors With EC2 6th Gen In-
stances, https://www.forbes.com/sites/moorinsights/2019/12/03/aws-
goes-all-in-on-arm-based-graviton2-processors-with-ec2-6th-gen-
instances/.

[11] AWS Lambda 2019. AWS Lambda: https://aws.amazon.com/lambda/.
[12] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Chris-

tos Kozyrakis, and Edouard Bugnion. 2014. IX: A Protected Dataplane
Operating System for High Throughput and Low Latency. In Proceed-
ings of the 11th USENIX Conference on Operating Systems Design and
Implementation (OSDI).

[13] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. 1995. Cilk:
An Efficient Multithreaded Runtime System. In Proceedings of the Fifth
ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP). 207–216.

[14] Sol Boucher, Anuj Kalia, David G. Andersen, and Michael Kaminsky.
2018. Putting the "Micro" Back in Microservice. In Proc. of the 2018
Usenix Annual Technical Conference (Boston, MA, USA) (USENIX ATC
’18).

[15] David Chase and Yossi Lev. 2005. Dynamic Circular Work-Stealing
Deque. In SPAA ’05: Proceedings of the seventeenth annual ACM sym-
posium on Parallelism in algorithms and architectures.

[16] Y. Chen, Q. Feng, and W. Shi. 2018. An Industrial Robot System Based
on Edge Computing: An Early Experience. In USENIX Workshop on
Hot Topics in Edge Computing (HotEdge 18).

[17] CMSIS NN 2019. CMSIS NN Software Library, https://arm-
software.github.io/CMSIS_5/NN/html/index.html.

[18] Containers vs Virtual Machines 2019. What is a Container?: A stan-
dardized unit of software, https://www.docker.com/resources/what-
container.

[19] Cranelift 2019. Cranelift Code Generator,
https://cranelift.readthedocs.io/en/latest/.

[20] Docker 2018. Docker: https://www.docker.com/.
[21] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield, P.

Barham, and R. Neugebauer. 2003. Xen and the Art of Virtualization.
In Proc. of the ACM Symposium on Operating Systems Principles (SOSP).

[22] Emscripten 2019. Emscripten: https://emscripten.org/index.html.

[23] fastly-serverless 2019. Fastly Expands Serverless Capabilities With
the Launch of Compute@Edge, https://www.fastly.com/press/press-
releases/fastly-expands-serverless-capabilities-launch-compute-
edge.

[24] Henrique Fingler, Amogh Akshintala, and Christopher J. Rossbach.
2019. USETL: Unikernels for Serverless Extract Transform and Load
Why Should You Settle for Less? (APSys’19).

[25] Firebase 2019. Firebase helps mobile and web app teams succeed.
https://firebase.google.com/.

[26] Firecracker 2019. Firecracker: https://firecracker-microvm.github.io/.
[27] Firecracker-Barr [n.d.]. Jeff Barr: “Firecracker -

Lightweight Virtualization for Serverless Computing.”
https://aws.amazon.com/blogs/aws/firecracker-lightweight-
virtualization-for-serverless-computing, November 2018.

[28] P. K. Gadepalli, G. Peach, L. Cherkasova, R. Aitken, and G. Parmer.
2019. Challenges and Opportunities for Efficient Serverless Computing
at the Edge. In 37th IEEE Symp. on Reliable Distributed Systems (SRDS).

[29] Phani Kishore Gadepalli, Gregor Peach, Gabriel Parmer, Joseph Espy,
and Zach Day. 2019. Chaos: a System for Criticality-Aware, Multi-core
Coordination. In 25th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS).

[30] GOCR 2019. GOCR: open-source character recognition,
http://jocr.sourceforge.net/index.html.

[31] Google Cloud Functions 2019. Google Cloud Functions:
https://cloud.google.com/functions/.

[32] Green Threads 2019. Many-to-One / Green Threads:
https://docs.oracle.com/cd/E19455-01/806-3461/6jck06gqe/.

[33] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer,
Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF
Bastien. 2017. Bringing the Web Up to Speed with WebAssembly. In
Proc. of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’17).

[34] AdamHall and Umakishore Ramachandran. 2019. An ExecutionModel
for Serverless Functions at the Edge. In Proceedings of the International
Conference on Internet of Things Design and Implementation (IoTDI ’19).

[35] AdamHall and Umakishore Ramachandran. 2019. An ExecutionModel
for Serverless Functions at the Edge. In IoTDI.

[36] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran
Venkataramani, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. 2016. Serverless Computation with OpenLambda. In 8th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud ’16).

[37] IBM Cloud Functions 2019. IBM Cloud Functions:
https://cloud.ibm.com/functions.

[38] Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun Guha.
2019. Not So Fast: Analyzing the Performance of WebAssembly vs.
Native Code. In USENIX Annual Technical Conference (ATC 19).

[39] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Menezes Car-
reira, Karl Krauth, Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada
Popa, Ion Stoica, and David A. Patterson. 2019. Cloud Programming
Simplified: A Berkeley View on Serverless Computing. (2019). http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html

[40] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Mazières, and Christos Kozyrakis. 2019. Shinjuku: Preemptive
Scheduling for 𝜇 second-scale Tail Latency. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19).

[41] Kata Container 2019. Kata Containers: https://katacontainers.io/.
[42] Jeongchul Kim and Kuyngyong Lee. 2019. FunctionBench: A Suite of

Workloads for Serverless Cloud Function Service. In Proceedings of the
IEEE International Conference on Cloud Computing.

[43] Ricardo Koller and Dan Williams. 2017. Will Serverless End the Dom-
inance of Linux in the Cloud?. In Proc. of the 16th Workshop on Hot
Topics in Operating Systems (HotOS ’17).

278

https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html

Sledge: a Serverless-first, Light-weight Wasm Runtime for the Edge
Middleware ’20, December 7–11, 2020, Delft, Netherlands

[44] Alex Krizhevsky. 2010. Convolutional deep belief networks on cifar-10,
https://www.cs.toronto.edu/ kriz/conv-cifar10-aug2010.pdf.

[45] Nhat Minh Lê, Antoniu Pop, Albert Cohen, and Francesco
Zappa Nardelli. 2013. Correct and Efficient Work-stealing for Weak
Memory Models. In Principles and Practice of Parallel Programming
(PPoPP ’13).

[46] Junfeng Li, Sameer G. Kulkarni, K. K. Ramakrishnan, and Dan Li. 2019.
Understanding Open Source Serverless Platforms: Design Considera-
tions and Performance. In Proc. of the 5th Intl. Workshop on Serverless
Computing (WOSC ’19).

[47] libuv 2012. libuv: Asynchronous I/O made simple, http://libuv.org/.
[48] Linux Containers 2019. Linux Containers:

https://linuxcontainers.org/.
[49] Wes Lloyd, Shruti Ramesh, Swetha Chinthalapati, Lan Ly, and Shrideep

Pallickara. 2018. Serverless Computing: An Investigation of Factors
Influencing Microservice Performance. In IEEE Intl. Conference on
Cloud Engineering (IC2E).

[50] LLVM 2019. The LLVM Compiler Infrastructure, https://llvm.org/.
[51] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien

Quéma, and Alexandra Fedorova. 2016. The Linux Scheduler: A Decade
of Wasted Cores. In Proceedings of the Eleventh European Conference
on Computer Systems (Eurosys ’16).

[52] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-
zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017.
My VM is Lighter (and Safer) Than Your Container. In Proceedings of
the 26th Symposium on Operating Systems Principles (SOSP).

[53] Microsoft Azure Functions 2019. Microsoft Azure Functions:
https://azure.microsoft.com/en-us/services/functions/.

[54] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti,
Naren Nayak, and Vadim Sukhomlinov. 2019. Agile Cold Starts for
Scalable Serverless. In Proc. of the 11th USENIX Conference on Hot Topics
in Cloud Computing.

[55] MPX 2013. Introduction to Intel Memory Protection Exten-
sions, https://software.intel.com/en-us/articles/introduction-to-intel-
memory-protection-extensions.

[56] Node.js 2019. Node.js: Node.js is a JavaScript runtime built on Chrome’s
V8 JavaScript engine. https://nodejs.org/en/.

[57] nuclio 2019. Nuclio: Automate the Data Science Pipeline with Server-
less Functions, https://nuclio.io.

[58] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK:
Rapid Task Provisioning with Serverless-Optimized Containers. In
2018 USENIX Annual Technical Conference (USENIX ATC 18).

[59] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber,
and Christof Fetzer. 2018. Intel MPX Explained: A Cross-layer Analysis
of the Intel MPX System Stack. Proc. of the ACM on Measurement and
Analysis of Computing Systems (2018).

[60] OpenFaaS 2019. OpenFaaS: Serverless Functions, Made Simple.
https://openfaas.com.

[61] openmp [n.d.]. OpenMP: http://www.openmp.org, retrieved 9/21/12.
[62] PolyBench/C 2019. PolyBench/C: the Polyhedral Benchmark suite,

https://web.cse.ohio-state.edu/ pouchet.2/software/polybench/.
[63] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS:

Achieving Low Tail Latency for Microsecond-Scale Networked Tasks.
In Proc. of the 26th Symposium on Operating Systems Principles.

[64] Qualcomm New Model for Computing Built on Arm 2017. Qual-
comm is Bringing an Exciting New Model for Computing, and
It’s Built on Arm, https://community.arm.com/developer/ip-
products/processors/b/processors-ip-blog/posts/qualcomm-bringing-
exciting-new-model-for-computing-built-on-arm.

[65] Ali Raza, Parul Sohal, James Cadden, Jonathan Appavoo, Ulrich Drep-
per, Richard Jones, Orran Krieger, Renato Mancuso, and Larry Wood-
man. 2019. Unikernels: The Next Stage of Linux’s Dominance. In Proc.
of the Workshop on Hot Topics in Operating Systems (HotOS ’19).

[66] Maria Isabel Ribeiro. 2004. Kalman and extended kalman filters: Con-
cept, derivation and properties. (2004).

[67] serverless [n.d.]. State of the Cloud Report 2019,
http://www.rightscale.com/lp/state-of-the-cloud.

[68] Serverless 2019. Virtual Machines vs Containers vs
Serverless Computing: Everything You Need to Know,
https://dotcms.com/blog/post/virtual-machines-vs-containers-
vs-serverless-computing-everything-you-need-to-know.

[69] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight Isolation
for Efficient Stateful Serverless Computing.

[70] Snoyman 2019. Michael Snoyman: "Serverless Rust using WASM and
Cloudflare", https://tech.fpcomplete.com/blog/serverless-rust-wasm-
cloudflare.

[71] SOD 2019. SOD - An Embedded Computer Vision and Machine Learn-
ing Library, https://sod.pixlab.io/index.html.

[72] tbb [n.d.]. Intel Thread Building Blocks:
http://threadingbuildingblocks.org/, retrieved 9/21/12.

[73] Jörg Thalheim, Pramod Bhatotia, Pedro Fonseca, and Baris Kasikci.
2018. Cntr: Lightweight OS Containers. In USENIX Annual Technical
Conference (USENIX ATC.

[74] TinyEKF 2019. TinyEKF: Lightweight C/C++ Ex-
tended Kalman Filter with Python for prototyping,
https://github.com/simondlevy/TinyEKF.git.

[75] Varda October 1, 2018. Kenton Varda: "WebAssembly on
Cloudflare Workers", https://blog.cloudflare.com/webassembly-on-
cloudflare-workers/.

[76] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Gra-
ham. 1993. Efficient Software-Based Fault Isolation. In Proc. of the 14th
ACM Symposium on Operating Systems Principles (SOSP).

[77] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking Behind the Curtains of Serverless Plat-
forms. In USENIX Annual Technical Conference (USENIX ATC 18).

[78] Wasmer 2019. Wasmer: Run any code on any client. With WebAssem-
bly and Wasmer. https://wasmer.io/.

[79] WAVM 2019. WAVM: WAVM is a WebAssembly virtual machine,
designed for use in non-web applications. https://wavm.github.io/.

[80] WebAssembly Security 2020. WebAssembly Security,
https://webassembly.org/docs/security/.

[81] White Paper 2017. White Paper of Edge Computing Consortium,
https://www.iotaustralia.org.au/wp-content/uploads/2017/01/White-
Paper-of-Edge-Computing-Consortium.pdf.

[82] White Paper 2019. Security Overview of AWS Lambda. https://d1.
awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf

[83] Windows Containers 2019. Windows
Containers: https://docs.microsoft.com/en-
us/virtualization/windowscontainers/about/.

[84] William Wong. 2017. VM, Containers, and Serverless Pro-
gramming for Embedded Developers. (2017). https:
//www.electronicdesign.com/embedded-revolution/vm-containers-
and-serverless-programming-embedded-developers

[85] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W.
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neu-
mann, Robert Norton, and Michael Roe. 2014. The CHERI Capability
Model: Revisiting RISC in an Age of Risk. In Proceeding of the 41st
Annual International Symposium on Computer Architecuture.

[86] Cui Yan. 2017. How does language, memory and package size affect
cold starts of AWS Lambda? 2017, https://read.acloud.guru/does-
coding-language-memory-orpackage-size-affect-cold-starts-of-aws-
lambda-a15e26d12c76.

[87] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. 2019. Narrowing
the Gap Between Serverless and Its State with Storage Functions. In
Proc. of the ACM Symposium on Cloud Computing (Santa Cruz, CA,
USA) (SoCC ’19).

279

https://d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf
https://d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf
https://www.electronicdesign.com/embedded-revolution/vm-containers-and-serverless-programming-embedded-developers
https://www.electronicdesign.com/embedded-revolution/vm-containers-and-serverless-programming-embedded-developers
https://www.electronicdesign.com/embedded-revolution/vm-containers-and-serverless-programming-embedded-developers

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Serverless-First Runtime Design
	3.1 WebAssembly Background
	3.2 Managing Lightweight Function Isolation and Churn using Wasm Sandboxing
	3.3 Single Process Runtime and Resource Management
	3.4 Serverless-First Function Scheduling
	3.5 Request/Response Serverless Processing

	4 Implementation
	5 Evaluation
	5.1 WebAssembly Performance
	5.2 Serverless Function Performance

	6 Conclusion
	7 Acknowledgements
	References

