
Mutable Protection Domains: Towards a Component-based System for
Dependable and Predictable Computing ∗

Gabriel Parmer and Richard West

Computer Science Department
Boston University
Boston, MA 02215

{gabep1, richwest}@cs.bu.edu

Abstract

The increasing complexity of software poses significant
challenges for real-time and embedded systems beyond
those based purely on timeliness. With embedded sys-
tems and applications running on everything from mobile
phones, PDAs, to automobiles, aircraft and beyond, an
emerging challenge is to ensure both the functional and tim-
ing correctness of complex software. We argue that static
analysis of software is insufficient to verify the safety of all
possible control flow interactions. Likewise, a static sys-
tem structure upon which software can be isolated in sepa-
rate protection domains, thereby defining immutable bound-
aries between system and application-level code, is too in-
flexible to the challenges faced by real-time applications
with explicit timing requirements. This paper, therefore, in-
vestigates a concept called ”mutable protection domains”
that supports the notion of hardware-adaptable isolation
boundaries between software components. In this way, a
system can be dynamically reconfigured to maximize soft-
ware fault isolation, increasing dependability, while guar-
anteeing various tasks are executed according to specific
time constraints. Using a series of simulations on multi-
dimensional, multiple-choice knapsack problems, we show
how various heuristics compare in their ability to rapidly
reorganize the fault isolation boundaries of a component-
based system, to ensure resource constraints while simulta-
neously maximizing isolation benefit. Our ssh oneshot
algorithm offers a promising approach to address system
dynamics, including changing component invocation pat-
terns, changing execution times, and mispredictions in iso-
lation costs due to factors such as caching.

∗This material is based upon work supported by the National Science
Foundation under Grant Numbers 0615153 and 0720464. Any opinions,
findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

1 Introduction

As the complexity of emerging real-time and embedded
software systems increases, new challenges beyond those
focusing solely on timeliness guarantees are becoming in-
creasingly significant. In particular, it is expected that em-
bedded devices such as mobile phones and personal digital
assistants will support tens of millions of lines of code in
the foreseeable future. Web services, video-on-demand and
multimedia databases are already appearing on hand-held
devices and so it makes sense that software complexity will
only increase over time. Consequently, it will be impossible
to entirely verify the correctness of a large software system
statically. For example, run-time interactions between var-
ious threads of execution, asynchronous events (e.g., inter-
rupts from I/O devices), and various dynamically-generated
references to memory locations make it impossible to guar-
antee the behavioral correctness of a body of software at
compile-time. From a CPU protection perspective, deter-
mining whether a thread will terminate is, in general, unde-
cidable. We are therefore faced with the challenge of limit-
ing the scope of potentially misbehaving, or faulty, software
on overall system functionality.

The above argues that static verification of software cor-
rectness is a daunting challenge, and in many cases insuffi-
cient for complex software systems. It makes sense to lever-
age, where appropriate, hardware and software-based fault
isolation (i.e., protection) mechanisms [16, 4, 18, 8], to limit
the scope of adverse side-effects caused by errant software.
Fault isolation overheads (e.g., due to page-table manage-
ment, or run-time software safety checks) impact the granu-
larity at which they can be imposed. They in turn impact the
predictability of software execution, because factors such as
TLB/cache misses, page replacement policies, garbage col-
lection, and memory-bounds checks impose variable costs.

Fault isolation provisions of modern systems are typi-
cally limited to coarse-grained entities, such as segments

that separate user-space from kernel-level, and processes
that encapsulate system and application functionality. For
example, systems such as Linux simply separate user-space
from a monolithic kernel address space. Micro-kernels
provide finer-grained isolation between higher-level system
services, often at the cost of increased communication over-
heads. Common to all these system designs is a static struc-
ture, that is inflexible to changes in the granularity at which
fault isolation can be applied.

For the purposes of ensuring behavioral correctness of a
complex software system, it is desirable to provide fault iso-
lation techniques at the smallest granularity possible, while
still ensuring predictable software execution. For exam-
ple, while it may be desirable to assign the functional com-
ponents of various system services to separate protection
domains, the communication costs may be prohibitive in
a real-time setting. That is, the costs of marshaling and
unmarshaling message exchanges between component ser-
vices, the scheduling and dispatching of separate address
spaces and the impacts on cache hierarchies (amongst other
overheads) may be unacceptable in situations where dead-
lines must be met. Conversely, multiple component services
mapped to a single protection domain experience minimal
communication overheads but lose the benefits of isolation
from one another.

Given the above, this paper investigates the design of a
system with “mutable protection domains” (MPDs), that is
flexible in its placement of fault isolation boundaries around
various application and system components. Where pos-
sible, we attempt to maximize fault isolation, by mapping
fine-grained software components to separate hardware pro-
tection domains, at the expense of increased communica-
tion overheads. In situations where such fine-grained iso-
lation violates the acceptable end-to-end communication
costs through a series of component services that are re-
quired to meet specific deadlines, we strategically increase
the isolation granularity. By allowing dynamic changes to
system structure, we are able to consider diverse hardware
capabilities of numerous embedded computing platforms
upon which systems software is deployed. Our system de-
sign assumes that certain isolation boundaries have prefer-
ence over others. Using a combination of isolation benefit
values applied to the boundaries between components, and
the communication costs between components, we show
how to dynamically restructure a component-based system
to maximize isolation utility while maintaining timeliness.

The rest of the paper is organized as follows. Section 2
provides an overview of the system under consideration,
and formally defines the problem being addressed. System
dynamics and proposed solutions to the problem are then
described. Section 3 then briefly describes an implementa-
tion of a system with mutable protection domains. An ex-
perimental evaluation is covered in Section 4, followed by

related work in Section 5. Finally, conclusions and future
work are discussed in Section 6.

2 System Overview

With mutable protection domains, isolation between
components is increased when there is a resource surplus,
and is decreased when there is a resource shortage. Such
a system, comprising fine-grained components or services,
can be described by a directed acyclic graph (DAG), where
each node in the graph is a component, and each edge rep-
resents inter-component communication (with the direction
of the edge representing control flow). Represented in this
fashion, a functional hierarchy becomes explicit in the sys-
tem construction. Multiple application tasks can be repre-
sented as subsets of the system graph, that rely on lower-
level components to manage system resources. Component-
based systems enable system and application construction
via composition and have many benefits, specifically to em-
bedded systems. They allow application-specific system
construction, encourages reuse, and facilitates quick devel-
opment. Tasks within the system are defined by execution
paths through a set of components.

A natural challenge in component-based systems is to
define where protection domains should be placed. Ideally,
the system should maximize component isolation (thereby
increasing system dependability in a beneficial manner)
while meeting constraints on application tasks. Task con-
straints can vary from throughput goals to memory usage,
to predictable execution within a worst-case execution time
(WCET). A task’s WCET is formulated assuming a min-
imal amount of fault isolation present within the system.
A schedule is then constructed assuming this WCET, and
the implicit requirement placed on the system is that the
task must complete execution within its allotted CPU share.
In most cases, the actual execution time of tasks is sig-
nificantly lower than the pessimistic worst case. This sur-
plus processing time within a task’s CPU allocation can be
used to increase the isolation between components (inter-
component communication can use the surplus CPU time).

In general, task constraints on a system with mutable
protection domains can be defined in terms of multiple dif-
ferent resources. We focus on timeliness constraints of
tasks in this paper, and consider only a single resource
(i.e., CPU time) for communication between, and execu-
tion of, components. For n tasks in a system, each task,
τk, has a corresponding target resource requirement, RTk,
which is proportional to its worst-case execution time. The
measured resource usage, RMk, is the amount of τk’s re-
source share utilized by its computation. Similarly, the re-
source surplus for τk is RSk, where RSk = RTk − RMk.
For n tasks the resource surplus is represented as a vector,
~RS = 〈RS1, . . . , RSn〉.

Component 1

Component 2

Stack

Protection Domains

Figure 1. Example Isolation Levels.

In response to resource surpluses, different levels of iso-
lation can be placed at the boundaries between compo-
nents, depending upon their inter-component communica-
tion overheads. Three possible isolation levels are depicted
in Figure 1. On the left, we see complete hardware iso-
lation, equivalent to process-level protection in UNIX-type
systems, which incurs costs in terms of context switching
between protection domains. In the center, we have no iso-
lation, equivalent to how libraries are linked into the ad-
dress space of code that uses them. Such a lack of isolation
implies only function-call overheads for inter-component
communication. Finally, the right-hand side of Figure 1
depicts an asymmetric form of isolation, whereby compo-
nent 1 is inside the protection domain of component 2 but
not vice versa. This isolation scheme is equivalent to that
found in many monolithic OSes such as Linux, which sepa-
rate the kernel from user-space but not vice versa. It is also
similar to the scheme used in our User-Level Sandboxing
approach [20].
Problem Definition: By adapting isolation levels, which in
turn affects inter-component communication costs, we at-
tempt to increase the robustness of a software system while
maintaining its timely execution. The problem, then, is to
find a system configuration that maximizes the benefit of
fault isolation, while respecting task execution (and, hence,
resource) constraints. Using a DAG to represent compo-
nent interactions, let E = {e1, . . . , em} be the set of edges
within the system, such that each edge, ei ∈ E, defines an
isolation boundary, or instance, between component pairs.
For each edge, ei, there are Ni possible isolation levels,
where Nmax = max∀ei∈E(Ni). Where isolation is re-
quired and immutable for security reasons, there might exist
only one available isolation level (Ni = 1), so that secu-
rity is never compromised. Isolation level j for isolation in-
stance, ei, is denoted eij . The overhead, or resource cost, of
eij is ~cij , where cijk ∈ ~cij , ∀RSk ∈ ~RS. Conversely, each
isolation level provides a certain benefit to the system, bij .
We assume that the costs are always lower for lower isola-
tion levels and that the benefit is always higher for higher
isolation levels. Finally, ~s denotes a solution vector, where
isolation level si ∈ {1, · · · , Ni} is chosen for isolation in-
stance ei. The solution vector defines a system isolation

configuration (or system configuration for short).
More formally, the problem of finding an optimal system

configuration is as follows:

maximize Σ
i<m

bisi

subject to Σ
i<m

cisik ≤ RSk , ∀RSk ∈ ~RS

si ∈ {1, . . . ,Ni}, ∀ei ∈ E

(1)

Represented in this manner, we have a multi-
dimensional, multiple-choice knapsack problem (MMKP).
Though this problem is NP-Hard, approximations exist [9,
10, 2, 15]. Specifically heuristics proposed in these papers
attempt to solve the objective function:

O(E, ~RS) = max
0<j≤Ni

{O(E\ei, ~RS − ~cij) + bij | ei ∈ E}

2.1 System Dynamics

Previous approaches to the MMKP for QoS attempt to
solve a resource-constrained problem off-line, to maximize
system utility. After a solution is found, actual system re-
sources are then allocated. In our case, we wish to alter
an existing system configuration on-line, in response to re-
source surpluses or deficits that change over time. The dy-
namics of the system that introduce changes in resource
availability and isolation costs include: (i) threads chang-
ing their invocation patterns across specific isolation bound-
aries, thus changing the overhead of isolation instances
throughout the system, (ii) threads altering their computa-
tion time within components, using more or less resources,
thus changing ~RS, and (iii) misprediction in the cost of iso-
lation. Thus, heuristics to calculate system configurations to
maximize beneficial isolation over time must adapt to such
system dynamics.

It is difficult to compensate for these dynamic effects
as the measurements that can be taken directly from the
system do not yield complete information. Specifically, at
each reconfiguration, the system can measure resource us-
age, ~RM , but explicit information regarding the overhead
of isolation is not in the general case observable. For exam-
ple, the isolation costs between two components mapped to
separate protection domains might include context-switch
overheads, which in turn have secondary costs on caches,
including translation look-aside buffers (TLBs). Such sec-
ondary costs are difficult to extract from the total runtime
of a task. Section 2.6 discusses the impact of mispredicting
isolation costs on system behavior.

2.2 Dynamic Programming Solution

Given that our problem can be defined as a multi-
dimensional, multiple-choice knapsack problem, there are

known optimal dynamic programming solutions, For com-
parison, we describe one such approach similar to that
in [10].

DP [i, j, ~RS] =

8

>

>

>

>

<

>

>

>

>

:

max(−∞, DP [i, j − 1, ~RS]) if ∀
RSk∈ ~RS

cijk > RSk

bij if i = 1

take(i, 1, ~RS) if j = 1

max(take(i, j, ~RS), DP [i, j − 1, ~RS]) otherwise

take(i, j, ~RS) ≡ bij + DP [i − 1, Ni−1, ~RS − ~cij]

Figure 2. Dynamic programming solution.

Figure 2 shows the dynamic programming solu-
tion DP . The algorithm is initially invoked with
DP [|E|, N|E|, 〈RS1, . . . , RSn〉]. For the lowest isolation
level (level 1) of an edge, we assume the sum of the minimal
isolation levels is always within the resource consumption
limits. That is, ∀k,

∑
ei∈E ci1k ≤ RSk.

The recurrence keeps track of the current resource usage
and iterates through all isolation levels for a given instance,
choosing that which provides the best benefit given its re-
source cost. The base cases are when we have run out of
resources or reached the last isolation instance (i = 1).

The complexity of the algorithm reflects the memory
structure used: O(|E| · Nmax · RS1 · . . . · RSn). Because
of the memory and execution time requirements, this algo-
rithm is impractical for on-line use, but is useful for com-
parison.

2.3 HEU

HEU is a heuristic solution first proposed in [9] that is
summarized here. HEU is a popular comparison case in the
MMKP literature and is competitive in terms of quality of
solution. Previous algorithms, HEU included, assume that
the knapsack is initially empty and choose items to place in
it from there. This algorithm’s general strategy is to weight
isolation benefits versus their costs to choose which isola-
tion level to increase. It uses Toyoda’s notion of an aggre-
gate resource cost [17] to collapse multiple constraint di-
mensions into one by penalizing those dimensions that are
more scarce. Then, HEU uses a greedy algorithm based on
benefit density to choose the isolation level that will yield
the highest benefit for the least resource usage. This chosen
isolation level is added to the system configuration. This
process is repeated, new aggregate resource costs are cho-
sen and that isolation level with the best benefit density is
chosen until the resources are expended. Because the ag-
gregate resource cost is recomputed or refined when choos-
ing each edge, we will refer to this algorithm as using fine-
grained refinement. The asymptotic time complexity of this
algorithm is O(|E|2 · N2

max · | ~RS|).

2.4 Computing Aggregate Resource Costs

Aggregate resource costs should have higher contribu-
tions from resources that are scarce, thereby factoring in
the cost per unit resource. Inaccurate aggregate costs will
lead to a system that does not evenly distribute resource
usage across its task constraint dimensions. The approach
we take to computing costs is similar to that in [10]. First,
we compute an initial penalty vector which normalizes the
total resource costs across all isolation instances and lev-
els, ~cij , by the vector of available resources, ~RS. This is
shown in Equation 2 and will be subsequently referred to as
init penalty vect, ~p.

~p = 〈p1, · · · , pn〉 | pk ∈ ~p =

P

∀ei∈E

P

j≤Ni
cijk

RSk

(2)

pk =
(
P

∀ei∈E cisik)p′k

(
P

∀ei∈E cisik) + RSk

| pk ∈ ~p, p′k ∈ ~p′ (3)

Equation 3 is used to refine the penalty vector, taking
into account the success of the previous value, ~p′. Re-
call from Section 2 that si is the chosen isolation level
for isolation instance ei, while cisik is the cost in terms
of resource constraint RSk. We will subsequently refer to
the updated penalty vector calculated from Equation 3 as
update penalty vect. Finally, Equation 4 defines the
aggregate resource cost, c∗ij , using the most recent penalty
vector, ~p.

c∗ij =
X

∀RSk∈ ~RS

(cijk − cisik)(pk) (4)

2.5 Successive State Heuristic

Our approach to solving the multi-dimensional,
multiple-choice knapsack problem differs from traditional
approaches, in that we adapt a system configuration from
the current state. By contrast, past approaches ignore the
current state and recompute an entirely new configuration,
starting with an empty knapsack. In effect, this is equivalent
to solving our problem with a system initially in a state
with minimal component isolation.

Our solution, which we term the successive state heuris-
tic (ssh), successively mutates the current system configu-
ration. ssh assumes that the aggregate resource cost, c∗ij ,
for all isolation levels and all instances has already been
computed, as in Section 2.4. Edges are initially divided into
two sets: set H comprises edges with higher isolation levels
than those in use for the corresponding isolation instances
in the current system configuration, while set L comprises
edges at correspondingly lower isolation levels. Specifi-
cally, eij ∈ H, ∀j > si and eij ∈ L, ∀j < si. Each of the

edges in these sets are sorted with respect to their change
in benefit density, (bij − bisi

)/c∗ij . Edges in L are sorted
in increasing order with respect to their change in benefit
density, while those in H are sorted in decreasing order. A
summary of the ssh algorithm follows (see Algorithm 1
for details):

(i) While there is a deficit of resources, edges are re-
moved from the head of set L to replace the correspond-
ing edges in the current configuration. The procedure stops
when enough edges in L have been considered to account
for the resource deficit.

(ii) While there is a surplus of resources, each edge in H
is considered in turn as a replacement for the corresponding
edge in the current configuration. If eij ∈ H increases the
system benefit density and does not yield a resource deficit,
it replaces eisi

, otherwise it is added to a dropped list, D.
The procedure stops when an edge is reached that yields a
resource deficit.

(iii) At this point, we have a valid system configuration,
but it may be the case that some of the edges in H could lead
to higher benefit if isolation were lessened elsewhere. Thus,
the algorithm attempts to concurrently add edges from the
remaining edges in both H and L. A new configuration is
only accepted if it does not produce a resource deficit and
heightens system benefit.

(iv) If there is a resource surplus, edges from the
dropped list, D, are considered as replacements for the cor-
responding edges in the current configuration.

The cost of this algorithm is O(|E| · Nmax log(|E| ·
Nmax)), which is bounded by the time to sort edges. The
ssh algorithm itself is invoked via:

(1) Algorithm 2. Here, only an initial penalty vector
based on Equation 2 is used to derive the aggregate resource
cost, c∗ij . The cost of computing the penalty vector and,
hence, aggregate resource cost is captured within O(| ~RS| ·
|E| · Nmax). However, in most practical cases the edge
sorting cost of the base ssh algorithm dominates the time
complexity. We call this algorithm ssh oneshot as the
aggregate resource cost is computed only once.

(2) Algorithm 3. This is similar to Algorithm 2, but
uses Equation 3 to continuously refine the aggregate re-
source cost given deficiencies in its previous value. The
refinement in this algorithm is conducted after an entire
configuration has been found, thus we say it uses coarse-
grained refinement. This is in contrast to the fine-grained
refinement in Section 2.3 that adjusts the aggregate resource
cost after each isolation level is found. We found that refin-
ing the aggregate resource cost more than 10 times, rarely
increased the benefit of the solution. This algorithm has the
same time complexity as ssh oneshot, but does add a
larger constant overhead in practice.

Algorithm 1: ssh: Successive State Heuristic
Input: ~s: current isolation levels, ~RS: resource surplus
b∗ij = (bij − bisi

)/c∗ij ,∀i, j // benefit density change1
// sorted list of lower isolation levels
L = sort by b∗({∀eij |ei ∈ E ∧ j < si})2
// sorted list of higher isolation levels
H = sort by b∗({∀eij |ei ∈ E ∧ j > si})3
D = φ // dropped set (initially empty)4
while ∃k,RSk < 0 ∧ L 6= φ do // lower isolation5

eij = remove head(L)6
if c∗ij < c∗isi

then7
~RS = ~RS + ~cisi

− ~cij8
si = j9

end10
eij = remove head(H)11
while (@k, RSk + cisik − cijk < 0 ∨ b∗ij ≤ b∗isi

) ∧ eij do12
// raise isolation greedily

if b∗ij > b∗isi
then // improve benefit?13

~RS = ~RS + ~cisi
− ~cij14

si = j15
else D = D ∪ eij16
eij = remove head(H)17

end18
replace head(eij ,H)19

// refine isolation considering both lists
~s′ = ~s20
while H 6= φ ∧ L 6= φ do21

repeat // expend resources22
eij = remove head(H)23
if b∗ij > b∗

is′
i

then // improve benefit?24
~RS = ~RS + ~cis′

i
− ~cij25

s′i = j26
else D = D ∪ eij27

until ∃k,RSk < 0 ∨ H 6= φ28
while ∃k,RSk < 0 ∨ L 6= φ do // lower isolation29

eij = remove head(L)30
if c∗ij < c∗

is′
i

then31
~RS = ~RS + ~cis′

i
− ~cij32

s′i = j33
end34
// found a solution with higher benefit?
if

P

∀i bis′
i

>
P

∀i bisi
∧ @k,Rk < 0 then ~s = ~s′35

end36

while D 6= φ do // add dropped isolation levels37
eij = remove head(D)38
if j > si ∧ @k,RSk + cisik − cijk < 0 then39

~RS = ~RS + ~cisi
− ~cij40

si = j41
end42
return ~s43

2.6 Misprediction of Isolation Overheads

The proposed system can measure the number of com-
ponent invocations across specific isolation boundaries to
estimate communication costs. However, it is difficult to
measure the cost of a single invocation. This can be due
to many factors including secondary costs of cache misses,

Algorithm 2: ssh oneshot
Input: ~RS: resource surplus, ~s solution vector
~p = init penalty vect(~RS, ~s)1
c∗ij = aggregate resource(~p, ~cij), ∀i, j2
~s = ssh(~s, ~RS)3
return ~s4

Algorithm 3: ssh coarse
Input: ~RS: resource surplus, ~s solution vector
~p = init penalty vect(~RS, ~s)1
i = 02
// refine penalty vector
while i < 10 do3

c∗ij = aggregate resource(~p, ~cij), ∀i, j4
~s′ = ssh(~s, ~RS)5
~p = update penalty vect(~RS, ~p, ~s′)6
if

P

∀i bis′
i

>
P

∀i bisi
then7

~s = ~s′ // found better solution8
i++9

end10
return ~s11

which can be significant [18]. Given that the cost of a sin-
gle invocation can be mispredicted, it is essential to guar-
antee such errors do not prevent the system converging on
a target resource usage. We assume that the average es-
timate of isolation costs for each resource constraint, or
task, k, across all edges has an error factor of xk , i.e.,
estimate = xk ∗ actual overhead. Values of xk < 1
lead to heuristics underestimating the isolation overhead,
while values of xk > 1 lead to an overestimation of over-
heads. Consequently, for successive invocations of MMKP
algorithms, the resource surplus is mis-factored into the ad-
justment of resource usage. As an algorithm tries to use
all surplus resources to converge upon a target resource
value, the measured resource usage at successive steps in
time, RMk(t), will in turn miss the target by a function
of xk. Equation 5 defines the recurrence relationship be-
tween successive adjustments to the measured resource us-
age, RMk(t), at time steps, t = 0, 1, When xk > 0.5 for
the misprediction factor, the system converges to the target
resource usage, RTk. This recurrence relationship applies
to heuristics such as ssh that adjust resource usage from
the current system configuration.

RMk(0) = resource consumption at t = 0

RMk(t + 1) = RMk(t) + x−1

k
RSk(t) | RSk(t) = RTk − RMk(t)

= x−1

k
RTk + (1 − x−1

k
)RMk(t)

RMk(t) = x−1

k
RTk(

Pt−1

i=0
(1 − x−1

k
)i) + (1 − x−1

k
)tRMk(0)

RMk(∞) =

RTk if xk > 0.5
∞ otherwise

(5)

For algorithms that do not adapt the current system con-
figuration, they must first calculate an initial resource us-
age in which there are no isolation costs between com-
ponents. However, at the time such algorithms are in-
voked they may only have available information about the
resource usage for the current system configuration (i.e.,
RMk(t)). Using RMk(t), the resource usage for a con-
figuration with zero isolation costs between components
(call it RUk) must be estimated. RUk simply represents
the resource cost of threads executing within components.
Equation 6 defines the recurrence relationship between suc-
cessive adjustments to the measured resource usage, given
the need to estimate RUk. In the equation, αk(t) repre-
sents an estimate of RUk, which is derived from the mea-
sured resource usage in the current configuration, RMk(t),
and an estimate of the total isolation costs at time t (i.e.,
xk(

∑
∀i cisi

) | RMk(t) − RUk =
∑

∀i cisi
).

RMk(0) = resource consumption at t = 0
αk(t) = RMk(t) − xk(RMk(t) − RUk)

RMk(t + 1) = RUk + x−1

k
(RTk − αk(t))

= x−1

k
RTk + (1 − x−1

k
)RMk(t)

(6)

Given that Equation 6 and 5 reduce to the same solu-
tion, heuristics that reconfigure a system based on the cur-
rent configuration and those that start with no component
isolation both converge on a solution when xk > 0.5. Equa-
tion 7 allows the system to estimate the misprediction factor
for total isolation costs. This equation assumes that over-
heads unrelated to isolation hold constant in the system.

xk = RMk(n−1)−RTk

RMk(n−1)−RMk(n)

= RSk(n−1)
RSk(n−1)−RSk(n)

(7)

3 MPD System Implementation

In this paper, we focus on the resource management and
algorithmic aspects of mutable protection domains (MPDs).
In this section we briefly outline key design elements of the
component-based system we are building to support MPDs.
We have added the ability to interpose component services
on the service requests of other components using a version
of Hijack [14]. An overview of the architecture can be seen
in Figure 3.

The challenge is supporting both direct functional in-
vocation with little overhead when no isolation is present,
and inter-component communication with argument mar-
shaling though the kernel when isolation is required. To
this end, every function that can be invoked across a com-
ponent boundary is paired with a capability and its user-
level shadow (KCap and UCap in the figure). The capabil-
ity exists within the trusted kernel and bestows permission

client
stub

server
stub

UCap

KCap

user−level
kernel

Component 1 Component 2
server_fnclient_fn

(a)

(b)

Figure 3. MPD Inter-component invocation.

to make a functional invocation across a component bound-
ary. The capability contains information regarding the cur-
rently configured isolation level between the components.
The shadow of the capability at user-level exists so that cur-
rent configuration information can be easily accessed from
user-level.

Specifically, the method by which a call from
client fn in component 1 to server fn in compo-
nent 2 depends on the isolation level between the two com-
ponents. Functionality linked into component 1 examines
UCap directly. Specifically, a function address is retrieved
from the capability and invoked. In the case where no isola-
tion is present, this invocation calls server fn directly as
in (a). The server fn returns directly to where it was
invoked in client fn. In the case that fault isolation ex-
ists between the components, stub code specific to the func-
tion is invoked to marshal arguments as in (b), and the
kernel is invoked. The existence of the kernel-level invoca-
tion capability, KCap, is verified and the appropriate hard-
ware modifications are made for the current isolation level
(e.g. switching protection domains). An upcall to a stub
in component 2 then unmarshals the arguments and calls
server fn. Returning from the server fn reverses this
process. Each invocation increments a counter in the appro-
priate capability. These counters ease estimation of com-
munication costs across specific isolation boundaries.

The user capability provides discretionary access con-
trol, but the kernel capability in conjunction with hard-
ware protection enforces mandatory memory access control
when isolation is required. For example, if the user capa-
bility is manipulated to reference the server fn directly
when a higher level of isolation is present, an invocation of
that function would yield a hardware memory access fault.

To alter the isolation level between components, the
function pointer in the UCap, and the isolation level within
the KCap have to be updated for each inter-component in-
vokable function. Additionally, the page tables for compo-
nents must be updated to represent the desired configuration
which usually entails two data-cache accesses. Altering the
isolation level for a given isolation instance therefore has
predictable overhead.

In our prototype implementation on a Pentium 4 2.4 Ghz

machine, invocations using (a) take 55 cycles averaged
over 10,000 runs. This is in contrast to 18 cycles for a vir-
tual function call. An invocation using (b) to a function
with no arguments takes 1510 cycles (0.63 µsec), 75% of
which is incurred by hardware overheads. These numbers
are competitive but may be improved with future optimiza-
tions.

4 Experimental Evaluation

This section describes a series of simulations involving
single-threaded tasks on an Intel Core2 quadcore 2.66 Ghz
machine with 4GB of RAM. For all the following cases, iso-
lation benefit for each isolation instance is chosen uniformly
at random in the range [0, 255] 1 for the highest isolation
level, and linearly decreases to 0 for the lowest level. Unless
otherwise noted, the results reported are averaged across 25
randomly generated system configurations, with 3 isolation
levels (∀i, Ni = 3), and 3 task constraints (i.e., 1≤k≤3).
With the exception of the results in Figures 6 and 7, the sur-
plus resource capacity of the knapsack is 50% of the total
resource cost of the system with maximum isolation. The
total resource cost with maximum isolation is 10000 2.

4.1 MMKP Solution Characteristics

In this section we investigate the characteristics of each
of the MMKP heuristics. The dynamic programming so-
lution is used where possible as an optimal baseline. We
study both the quality of solution in terms of benefit the
system accrues and the amount of run-time each heuristic
requires. The efficiency of the heuristics is important as
they will be run either periodically to optimize isolation, or
on demand to lower the costs of isolation when application
constraints are not met. In the first experiment, the sys-
tem configuration is as follows: |E| = 50 and the resource
costs for each edge are chosen uniformly at random such
that ∀i, k, ciNik ∈ [0, 6]. Numerically lower isolation levels
have non-increasing random costs, and the lowest isolation
level has ∀i, k, ci1k = 0.

Figure 4(a) shows the normalized benefit of each heuris-
tic with respect to the dynamic programming optimal. The
x-axis represents the fraction of the maximal usable re-
source surplus used as the knapsack capacity. The ks
fine approach uses the heuristic defined in Section 2.3.
Heuristics prefixed with max start with maximum compo-
nent isolation, while those prefixed with min start with min-
imal isolation. Generally, the ks fine algorithm achieves

1Isolation benefit has no units but is chosen to represent the relative im-
portance of one isolation level to another in a range of [0..255], in the same
way that POSIX allows the relative importance of tasks to be represented
by real-time priorities.

2Resource costs have no units but since we focus on CPU time in this
paper, such costs could represent CPU cycles.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.4 0.7
Fraction of Resources Available

No
rm

al
ize

d
Be

ne
fit

min ssh oneshot
min ssh coarse
max ssh oneshot
max ssh coarse
ks fine

1

10

100

1000

10000

100000

1000000

100 500 1500 3000

Number of Isolation Instances

Ru
nt

im
e

(m
icr

os
ec

on
ds

)

ssh oneshot
ssh coarse
ks fine

Figure 4. MMKP solution characteristics: (a) MMKP benefit, and (b) heuristic run-times.
high benefit regardless of knapsack capacity. The other al-
gorithms achieve a lower percentage of the optimal when
they must alter many isolation levels, but the coarse re-
finement versions always achieve higher benefit relative to
the oneshot approaches. Altering the number of edges
does not affect the results significantly, except for very a
small number of edges, so we omit those graphs.

Figure 4(b) plots the execution times of each heuristic
while varying the number of edges in the system. The
dynamic programming solution does not scale past 50
edges for 3 task constraints, so is not included here. The
oneshot algorithms’ run-times are dominated by sorting,
while all coarse algorithms demonstrate a higher constant
overhead. Contrarily, the ks fine refinement heuristic
takes significantly longer to complete because of its higher
asymptotic complexity.

4.2 System Dynamics

In the following experiments, unless otherwise noted, a
system configuration is generated where |E| = 200. Re-
source costs are chosen uniformly at random as follows:
∀i, k, ci3k ∈ [0, 100), ci2k ∈ [0, ci3k], and ci1k = 0. Note
that using resource costs chosen from a bi-modal distribu-
tion to model a critical path (i.e., much communication over
some isolation boundaries, and little over most others) yield
similar results.

Dynamic Communication Patterns: The first dynamic
system behavior we investigate is the effect of changing
communication patterns between components within the
system. Altering the amount of functional invocations
across component boundaries affects the resource costs for
that isolation instance. Thus, we altered 10% of the iso-
lation instance (i.e., edge) costs after each reconfiguration
by assigning a new random cost. All algorithms are able to
maintain approximately the same benefit over time. Table 1
shows the percentage of isolation instances that have their
isolation weakened, averaged over 100 trials.

Misprediction of Communication Costs: As previ-
ously discussed in Section 2.6, misprediction of the cost of

Algorithm Isolation Instances with Weakened Isolation
ks oneshot 3.4%
ks coarse 4.2%
ssh oneshot 2%
ssh coarse 2.5%
ks fine 3%

Table 1. Effects of changing communication
costs.

communication over isolation boundaries can lead to slow
convergence on the target resource availability, or even in-
stability. We use the analytical model in Section 2.6 to pre-
dict and, hence, correct isolation costs. This is done conser-
vatively, as Equation 7 assumes that overheads unrelated to
isolation hold constant. However, in a real system, factors
such as different execution paths within components cause
variability in resource usage. This in turn affects the accu-
racy of Equation 7. Given this, we (1) place more emphasis
on predictions made where the difference between the pre-
vious and the current resource surpluses is large, to avoid
potentially large misprediction estimates due to very small
denominators in Equation 7, and (2) correct mispredictions
by at most a factor of 0.3, to avoid over-compensating for
errors. These two actions have the side-effect of slowing
the convergence on the target resource usage, but provide
stability when there are changes in resource availability.

Figure 5(a) shows the resources used for isolation by
the ssh oneshot policy, when misprediction in isola-
tion costs is considered. Other policies behave similarly.
In Figure 5(b), the initial misprediction factor, x, is cor-
rected using the techniques discussed previously. The sys-
tem stabilizes in situations where it does not in Figure 5(a).
Moreover, stability is reached faster with misprediction cor-
rections than without.

Dynamic Resource Availability: In Figure 6(a), the
light dotted line denotes a simulated resource availability
for task τk | k = 1. The resources available to τ2 devi-
ate by half as much as those for τ1 around the base case
of 5000. Finally, resource availability for τ3 remains con-
stant at 5000. This variability is chosen to stress the ag-
gregate resource cost computation. Henceforth, traditional

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 1 2 3 4 5 6 7 8 9

Re
so

ur
ce

s
Us

ed
 F

or
 Is

ol
at

io
n

Reconfiguration Number

ssh oneshot, x=4
ssh oneshot, x=0.6
ssh oneshot, x=0.5

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 1 2 3 4 5 6 7 8 9

Re
so

ur
ce

s
Us

ed
 F

or
 Is

ol
at

io
n

Reconfiguration Number

ssh oneshot, x=4
ssh oneshot, x=0.6
ssh oneshot, x=0.5

Figure 5. Resources used (a) without correction, and (b) with correction for misprediction costs.

 0

 2000

 4000

 6000

 8000

 10000

 0 5 10 15 20 25 30 35 40 45 50 55

Re
so

ur
ce

s
Us

ed
 F

or
 Is

ol
at

io
n

(T
as

k
1)

Reconfiguration Number

ks oneshot
ks coarse

ssh oneshot
ssh coarse

ks fine
Available Resources

0

5000

10000

15000

20000

25000

17 24 30 36

Reconfiguration Number

Be
ne

fit
ks oneshot
ks coarse
ssh oneshot
ssh coarse
ks fine

Figure 6. Dynamic resource availability: (a) resources consumed by τ1, and (b) system benefit.

knapsack solutions that start with minimal isolation will
be denoted by ks. Consequently, we introduce the ks
oneshot and ks coarse heuristics that behave as in Al-
gorithms 2 and 3, respectively, but compute a system con-
figuration based on an initially minimal isolation state. We
can see from the graph that those algorithms based on ssh
and ks coarse are able to consume more resources than
the others, because of a more accurate computation of ag-
gregate resource cost. Importantly, all algorithms adapt to
resource pressure predictably. Figure 6(b) shows the total
benefit that each algorithm achieves. We only plot recon-
figurations of interest where there is meager resource avail-
ability for τ1 (in reconfiguration 17), excess resource avail-
ability for τ1 (in 24), a negative change in resource avail-
ability (in 30), and a positive change in resource availability
(in 36). Generally, those algorithms based on ssh yield the
highest system benefits, closely followed by ks fine.

Combining all Dynamic Effects: Having observed the
behaviors of the different algorithms under each individual
system dynamic, we now consider the effects of them com-
bined together. Here, we change the cost of 10% of the
isolation instances in the system, while the resource avail-
ability is changed dynamically in a manner identical to the
previous experiment. We assume an initial misprediction
factor of x = 0.6. Additionally, we employ a conservative

policy in which the algorithms only attempt to use 30% of
all surplus resources for each reconfiguration.

Figure 7(a) presents the resource usage of task τ3. Re-
source availability is again denoted with the light dotted
line. Figure 7(b) presents the resource usage for τ1. Due to
space constraints, we omit τ2. In both cases, the ssh algo-
rithms are able to use the most available resource, followed
closely by ks coarse. The key point of these graphs
is that all heuristics stay within available resource bounds,
except in a few instances when the resource usage of the
current system configuration briefly lags behind the change
in available resources. Figure 7(c) plots the system bene-
fit for the different algorithms. As in Figure 6(b), we plot
only reconfigurations of interest. In most cases, algorithms
based on ssh perform best, followed by ks fine. Of no-
table interest, the ssh oneshot algorithm generally pro-
vides comparable benefit to ssh coarse, which has an
order of magnitude longer run-time. Figure 7(d) shows the
amount of reconfigurations the different algorithms make,
that lessen isolation in the system. Although we only show
results for several reconfigurations, ssh oneshot per-
forms relatively well considering its lower run-time costs.

Next, the feasibility of mutable protection domains is
demonstrated by using resource usage traces for a blob-
detection application, which could be used for real-time

 0

 2000

 4000

 6000

 8000

 10000

 0 5 10 15 20 25 30 35 40 45 50 55

Re
so

ur
ce

s
Us

ed
 F

or
 Is

ol
at

io
n

(T
as

k
3)

(a) Reconfiguration Number

ks oneshot
ks coarse

ssh oneshot
ssh coarse

ks fine
Available Resources

 0

 2000

 4000

 6000

 8000

 10000

 0 5 10 15 20 25 30 35 40 45 50 55

Re
so

ur
ce

s
Us

ed
 F

or
 Is

ol
at

io
n

(T
as

k
1)

(b) Reconfiguration Number

0

5000

10000

15000

20000

25000

17 24 30 36

(c) Reconfiguration Number

Be
ne

fit

ks oneshot
ks coarse
ssh oneshot
ssh coarse
ks fine

0

2

4

6

8

10

12

14

16

18

17 24 30 36

(d) Reconfiguration Number

Nu
m

be
r o

f D
ec

re
as

es
 in

 Is
ol

at
io

n

ks oneshot
ks coarse
ssh oneshot
ssh coarse
ks fine

Figure 7. Solution characteristics given all system dynamics.
vision-based tracking. The application, built using the
opencv library [13] is run 100 times. For each run, the
corresponding execution trace is converted to a resource
surplus profile normalized over the range used in all prior
experiments: [0,10000]. We omit graphical results due
to space constraints. 17.75% of components maintain the
same fault isolation for all 100 system reconfigurations,
while 50% maintain the same isolation for at least 15 con-
secutive system reconfigurations. This is an important ob-
servation, because not all isolation instances between com-
ponents need to be changed at every system reconfigura-
tion. On average, 86% of available resources for isolation
are used to increase system benefit. Over the 100 applica-
tion trials, task constraints are met 75% of the time. 97%
of the time, resource usage exceeds task constraints by no
more than 10% of the maximum available for isolation.

5 Related Work

The multi-dimensional multiple choice knapsack prob-
lem (MMKP) has been addressed by others [9, 15, 2]. Sim-
ilarly, the work on QRAM proposes solutions to the multi-
resource discrete QoS problem to maximize some notion of
system utility [10]. In other related work, QoS architec-
tures have been developed for the purposes of meeting the

needs of real-time and multimedia applications [1, 19, 3].
A key characteristic of our work is the adaptation of system
structure, in response to changing resource availability, to
maximize isolation benefit while meeting task constraints.
A novel aspect covered by our work is the method of ad-
dressing mispredictions in the costs of isolation and, hence,
communication between components due to e.g. caching.

OS-provided fault isolation has been studied extensively
in past research. µ-kernels isolate all but the most funda-
mental services at user-level, and use efficient IPC to com-
municate between protection domains [11]. Component-
based systems such as Pebble [7] focus on reducing IPC
overheads between fine-grained components, while others
map components to the same protection domain [12], or
support a statically configurable system structure [6, 5].
Other research has produced mechanisms that enhance
fault-isolation in monolithic systems [4, 20]. In contrast,
this paper proposes an approach that allows the structure
of a system to change according to application constraints,
with the objective of maximizing fault isolation benefit.

6 Conclusions and Future Work

This paper describes a component-based system support-
ing mutable protection domains (or MPDs). Using MPDs,

a system is able to adapt the fault isolation between soft-
ware components, thereby increasing its dependability at
the potential cost of increased inter-component communi-
cation overheads. Such overheads impact a number of re-
sources, including CPU cycles, thereby affecting the pre-
dictability of a system. We show how such a system can be
represented as a multi-dimensional multiple choice knap-
sack problem (MMKP). Although prior solutions exist for
MMKPs, they either require expensive off-line calculations
or assume knapsacks are initially empty when deriving a so-
lution. Such empty knapsacks correspond to a system with
no (or the lowest level of) component isolation. However,
for a practical system to support the notion of mutable pro-
tection domains, it would be beneficial to make the fewest
possible changes from the current system configuration to
ensure resource constraints are being met, while isolation
benefit is maximized.

We compare several MMKP approaches, including our
own successive state heuristic (ssh) algorithms. Due pri-
marily to its lower run-time overheads, the ssh oneshot
algorithm appears to be the most effective in a dynamic sys-
tem with changing component invocation patterns, chang-
ing computation times within components, and mispredic-
tion of isolation costs. The misprediction of isolation costs
is, in particular, a novel aspect of this work. In practice, it
is difficult to measure precisely the inter-component com-
munication (or isolation) overheads, due to factors such as
caching. Using a recurrence relationship that considers mis-
prediction costs, we show how to compensate for errors in
estimated overheads, to ensure a system converges to a tar-
get resource usage, while maximizing isolation benefit. We
are currently building a system using MPDs and future work
will focus on the use of various hardware techniques to vary
isolation between components.

References

[1] T. F. Abdelzaher and K. G. Shin. End-host architecture for
QoS-adaptive communication. In Proceedings of the IEEE
Real-Time Technology and Applications Symposium, Den-
ver, Colorado, June 1998.

[2] M. M. Akbar, E. G. Manning, G. C. Shoja, and S. Khan.
Heuristic solutions for the multiple-choice multi-dimension
knapsack problem. In ICCS ’01: Proceedings of the Interna-
tional Conference on Computational Science-Part II, pages
659–668, London, UK, 2001. Springer-Verlag.

[3] C. Aurrecoechea, A. Campbell, and L. Hauw. A survey of
QoS architectures. Multimedia Systems Journal, Special Is-
sue on QoS Architecture, 1997.

[4] T. Chiueh, G. Venkitachalam, and P. Pradhan. Integrating
segmentation and paging protection for safe, efficient and
transparent software extensions. In Symposium on Operat-
ing Systems Principles, pages 140–153, 1999.

[5] J. Fassino, J. Stefani, J. Lawall, and G. Muller. Think: A
software framework for component-based operating system

kernels. In Proceedings of Usenix Annual Technical Confer-
ence, June 2002.

[6] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and
O. Shivers. The Flux OSKit: A substrate for kernel and lan-
guage research. In Symposium on Operating Systems Prin-
ciples, pages 38–51, 1997.

[7] E. Gabber, C. Small, J. Bruno, J. Brustoloni, and A. Silber-
schatz. The Pebble component-based operating system. In
Proceedings of Usenix Annual Technical Conference, pages
267–282, June 2002.

[8] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and
J. Wolter. The performance of µ-kernel-based systems. In
Proceedings of the Sixteenth Symposium on Operating Sys-
tems Principles. ACM, October 1997.

[9] M. S. Khan. Quality adaptation in a multisession multime-
dia system: model, algorithms, and architecture. PhD thesis,
University of Victoria, 1998. Advisers: Kin F. Li and Eric
G. Manning.

[10] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and
J. Hansen. A scalable solution to the multi-resource QoS
problem. In RTSS ’99: Proceedings of the 20th IEEE Real-
Time Systems Symposium, page 315, Washington, DC, USA,
1999. IEEE Computer Society.

[11] J. Liedtke. On micro-kernel construction. In Proceedings of
the 15th ACM Symposium on Operating System Principles.
ACM, December 1995.

[12] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The
Click modular router. In Symposium on Operating Systems
Principles (SOSP), pages 217–231, 1999.

[13] OpenCV: http://opencvlibrary.sourceforge.net/.
[14] G. Parmer and R. West. Hijack: Taking control of COTS

systems for real-time user-level services. In Proceedings
of the 13th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS 2007), April 2007.

[15] R. Parra-Hernandez and N. J. Dimopoulos. A new heuris-
tic for solving the multichoice multidimensional knapsack
problem. IEEE Transactions on Systems, Man, and Cyber-
netics, Part A, 35(5):708–717, 2005.

[16] T. A. R. Wahbe, S. Lucco and S. Graham. Software-based
fault isolation. In Proceedings of the 14th SOSP, Asheville,
NC, USA, December 1993.

[17] Y. Toyoda. A simplified algorithm for obtaining approxi-
mate solutions to zero-one programming problems. Man-
agement Science, 21:1417–1427, 1975.

[18] V. Uhlig, U. Dannowski, E. Skoglund, A. Haeberlen, and
G. Heiser. Performance of address-space multiplexing on
the Pentium. Technical Report 2002-1, University of Karl-
sruhe, Germany, 2002.

[19] R. Vanegas, J. Zinky, J. Loyall, D. Karr, R. Schantz, and
D. Bakken. QuO’s runtime support for quality of service in
distributed objects. In Proceedings of the IFIP International
Conference on Distributed Systems Platforms and Open Dis-
tributed Processing (Middleware’98), September 1998.

[20] R. West and G. Parmer. Application-specific service tech-
nologies for commodity operating systems in real-time en-
vironments. In Proceedings of the 12th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS
2006), pages 3–13, 2006.

