
The State of COMPOSITE∗

Jiguo Song, Qi Wang, Gabriel Parmer
The George Washington University
{jiguos,interwq,gparmer}@gwu.edu

I. THE TAO OF COMPOSITE.
COMPOSITE is a component-based operating system that has

been under development since 2006 with design goals including
configurability, predictability, and reliability. Unlike many pre-
vious component-based operating systems that focus on kernel-
based configurability, COMPOSITE implements most system
policies, mechanisms and abstractions as user-level, hardware-
protected, fine-grained units of functionality that are harnessed
through well-defined interfaces. COMPOSITE’s structure is most
similar to µ-kernels: “A concept is tolerated inside the mi-
crokernel only if moving it outside the kernel, i.e., permitting
competing implementations, would prevent the implementation
of the system’s required functionality”[1]. COMPOSITE philo-
sophically expands on this in two ways:
1) Component-based policy definition. We strive to eliminate
policies from the kernel, thus including only mechanisms. This
enables for both customized resource management, and for de-
signers to trade between complexity and TCB size, for flexibility
and capability. Though the line between policy and mechanism
is not clean [2], functionality common to most modern micro-
kernels including scheduling and structured memory mapping
is moved to user-level components where it can be redefined.
Unlike exokernels [3] we avoid distributed management of
resources, instead centralizing the policy into specific manager
components. To enable flexibility of resource management (di-
versity of policy), resource managment abstraction is enabled
via inter-component protocols to hierarchically control schedul-
ing, manage memory, or perform I/O [4]. This support enables
concurrent execution of multiple virtual environments that trade
between heightened isolation with customized resource manage-
ment, and resource sharing.
2) System behavior via composition of fine-grained components.
One of the most successful component-based systems is the
UNIX command line, based on the composition of simple
programs into pipelines of complex functionality. COMPOSITE
emphasizes the composition of complex systems from fine-
grained components. The structure of this composition is a
general DAG, and the functional protocols between components
are encoded in explicit interfaces. Though a pervasive separa-
tion of concerns, and extensive interface-level polymorphism,
developers have significant leeway in programming a system
all the way down to resource management policies at the
composition-level.

Mutable Protection Domains enables protection boundaries
between components to be dynamically raised and lowered [5]
to trade protection and performance. Collections of components
can be collapsed into the same protection domain to mimic the
structure of µ-kernels, monolithic systems, or exokernels. This

This material is based upon work supported by the National Science Foun-
dation under Grants No. CNS 1137973, CNS 1149675, and CNS 1117243.
Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

fine-grained control over protection domains enables the generic
study of system structure.
COMPOSITE’s focus. COMPOSITE provides unique opportuni-
ties due to its component-based structure. These include:
• Configurability. Supports concurrent execution of divergent

virtual environments ranging from a separation-kernel envi-
ronment emphasizing strong barriers between high- and low-
criticality tasks, to a simple web-server that serves both static
and dynamic content composed of 25 components. In the server,
different communication protocols, altering the data source, or
even changing the interrupt scheduling to more aggressively
avoid livelock, can all be done by changing the composition
of components. Though extensively decoupled, this web-server
performs at least as well as Apache.
• Predictability. All aspects of the system are designed around

the goal of bounded-latency. Notably, COMPOSITE places an
emphasis on the end-to-end bounded latency of invocations
across a possibly long chain of components. This solves by
design the dependency problem that complicates scheduling in
many component-coordination systems. This end-to-end pre-
dictability is currently being extended to multi-core systems.
• Reliability. By pervasively memory isolating components,

fault propagation is significantly constrained in COMPOSITE.
COMPOSITE enables even the lowest-level system components
to fail, and will predictably reconstitute their state with overhead
on the order of 10s of µ-seconds.

II. CURRENT STATE OF COMPOSITE
COMPOSITE is a research OS, and current goals do not

include executing existing applications. Including external li-
braries, COMPOSITE is 160K lines of code (LOC) including a
7K LOC kernel, and 30K in components (minus third-party
libraries). The system includes some POSIX support, some
scripting language support (via LUA), and networking via LWIP.
Who should use COMPOSITE? COMPOSITE is in a state of
constant development, and is not yet appropriate for production
environments. Researchers investigating some combination of
OS structure, resource management, parallelism, and real-time
execution could benefit from the system. Developers interested
in expanding the corpus of components are always welcome.
Online presence. The development mailing list, and more
information can be found at http://composite.seas.gwu.edu/. The
source is available at https://github.com/gparmer/Composite.

REFERENCES

[1] J. Liedtke, “On micro-kernel construction,” in Proceedings of the 15th ACM
Symposium on Operating System Principles. ACM, December 1995.

[2] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf, “Policy/mecha-
nism separation in hydra,” in Proceedings of SOSP, 1975.

[3] D. R. Engler, F. Kaashoek, and J. O’Toole, “Exokernel: An operating
system architecture for application-level resource management,” in Pro-
ceedings of SOSP, 1995.

[4] G. Parmer and R. West, “HiRes: A system for predictable hierarchical
resource management,” in Proceedings of RTAS, 2011.

[5] ——, “Mutable protection domains: Adapting system fault isolation for
reliability and efficiency,” in ACM Transactions on Software Engineering
(TSE), July/August 2012.

http://composite.seas.gwu.edu/
https://github.com/gparmer/Composite

	The Tao of Composite.
	Current State of Composite
	References

