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Abstract—Embedded and real-time systems must balance
between many often conflicting goals including predictability,
high utilization, efficiency, reliability, and SWaP (size, weight,
and power). Reliability is particularly difficult to achieve without
significantly impacting the other factors. Though reliability
solutions exist for application-level, they are invalidated by
system-level faults that are particularly difficult to detect and
recover from.

This paper presents the C’MON system for predictably and
efficiently monitoring system-level execution, and validating that
it conforms with the high-level analytical models that underlie
the timing guarantees of the system. Latent faults such as
timing errors, incorrect scheduler decisions, unbounded priority
inversions, or deadlocks are detected, the faulty component is
identified, and using previous work in system recovery, the
system is brought back to a stable state – all without missing
deadlines.

I. INTRODUCTION

Real-time and embedded systems must often meet conflict-

ing demands including predictability, efficiency, and reliabil-

ity. As these systems control more of the physical world,

system reliability is an increasingly important dimension of

a system’s correctness. System faults can corrupt execution

state, create erroneous computation that deviates from the

intended behavior, and violate the timing models that underlie

the schedulability analysis of the system.

System faults can originate from software bugs or from

environmental effects such as Single-Event Upsets (SEUs).

Though rigorous software engineering processes (e.g., code

verification) are used to mitigate software bugs, the impact

of SEUs is particularly difficult to avoid. SEUs are caused

by high energy particle strikes such as neutrons from cosmic

rays [1] that corrupt transistor state leading to bit-flips in

chip structures [2]. As chip technologies trend toward smaller

processes (i.e., down to a 22nm feature size and beyond),

micro-architectural effects will increasingly deviate from their

specified behavior due to manufacturing error, heat damage,

and other physical effects.

Most previous approaches for real-time fault tolerance on a

single node focus on application-level fault tolerance [3], [4],

[5]. However, ignoring faults in system-level components is

dangerous: a fault in the scheduler would defeat all of these

user-level techniques. Such system-level faults are frequent:

nearly 65% of hardware errors corrupt OS state [6] before

they’re detected. Due to fault propagation, and the consequent
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corruption of system-global state, recovering from system-

level faults in monolithic systems is particularly difficult. Fault

propagation can corrupt any memory in the system as system

components can access all of physical memory. For example,

a fault in a scheduler manifesting as argument corruption to

memset (e.g., passing an accidentally large range argument)

can easily overwrite all of the system’s memory. Only after

all data is corrupted and it is too late to recover, will the error

be detected. For real-time systems, a pernicious dimension of

fault propagation exists: a fault that causes changes in logical

code can result in unexpected variability in run-time, which

can cause missed deadlines for all system tasks. This motivates

our previous work on the COMPUTATIONAL CRASH CART,

C3 [7], a combination of fine-grained isolation via hardware-

provided protection domains, interface-driven recovery, and

OS component micro-rebooting yielding predictable and effi-

cient fault tolerance at system level.

A common assumption of past real-time research is that

errors are detected immediately by the system without any

fault propagation (i.e., the fail-stop model), or that they don’t

propagate to a validation function that determines if a fault has

occurred [5], [7], [8], [9]. This assumption underlies temporal

redundancy in which a fault is detected at the end of a job’s

execution, enabling the re-execution of the job. However, other

research [10], [11], [12] has shown that violations of the

fail-stop model are significant and that faults propagate and

corrupt memory. In this work, we will assume the following

fault lifetime (similar to [13]): (1) an SEU causes a fault in

hardware state, (2) some faults manifest as errors in which the

fault negatively impacts software execution state and causes

deviations from expected behavior, (3) if an error is detected

(e.g., as it generates a hardware exception, or triggers an

assertion), then the temporal offset of detection from the

fault is the error detection latency, and (4) a system failure

occurs when the system cannot meet its objectives (i.e., misses

a deadline). Fault tolerance infrastructures attempt to avoid a

failure in spite of faults. The fail-stop model assumes that error

detection latency is negligible or zero. In contrast, latent faults

have a possibly unbounded error detection latency. They are

dangerous: before detection and after the error, execution

is possibly compromised. This research provides a system

infrastructure and timing analysis for the predictable detection

of latent faults for hard real-time systems. To avoid system

failure (e.g., avoid missing deadlines) and recover from the

fault, we rely on our previous work C3 [7].

C’MON: predictable fault tolerance for latent fault.
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Fig. 1: Detected latent faults. (a) A task gets stuck in an infinite loop in a component. (b) The scheduler delays switching to the higher priority task. (c) The
scheduler switches to an incorrect task. (d) The circular dependency is formed due to the improper sequences of lock acquisitions and releases. Dotted-line
rectangular area represents task’s normal behavior when no fault occurs. τl, τm and τh are tasks with lower, medium and higher priority respectively.

Though C3 [7] provides the facilities to recover from detected

failures predictably, it assumes fail-stop faults with immediate

detection (e.g., via assert or hardware exception). However,

“knowing that a fault has occurred is more important than the

actual failure” [14] – and the fail-stop assumption rules out the

detection of, hence recovery from, significant classes of latent

faults [10], [11], [12]. C’MON, or the C3 MONITORING SYS-

TEM, is a system-wide monitoring infrastructure that tracks all

communication between each component and the rest of the

system (such as the event of component invocation, context

switch or interrupt), and dynamically validates that execution

behavior and timing conform to the models specified offline

to analyze the system. When a deviation from the expected

behavior is detected, C3 as a complementary system-level

recovery mechanism can be used to recover the system in

a timely manner. C’MON relies on the COMPOSITE [15]

component-based operating system that breaks system level

software into relatively small, isolated, user-level components,

one for each logical policy or mechanism in the system.

This isolation restricts the propagation of faults due to

(1) hardware-provided memory protection via page-tables, and

(2) controlled communication between components. The goal

then, is to determine if a component demonstrates erroneous

behavior.

Though the C’MON infrastructure could detect broader

behavioral faults based on communication arguments, such as

unexpected patterns of communication between components,

we scope this work to focus on temporal overruns and behav-

ioral faults that affect the system timing as this is intrinsic to

the correctness of real-time systems. Figure 1 shows examples

of such faults. The temporal overrun fault occurs when a

parameter of the system model such as the worst-case execu-

tion time of a thread, component, or critical section is violated

at run-time. For example, component execution overrun can

occur when a task gets stuck in an infinite loop in a component

as shown in Figure 1(a). The behavioral fault occurs when

the decisions made by specific components that control system

timing demonstrate a faulty outcome. For example, priority in-

heritance policies might result in gratuitous priority inversion

such that the higher priority task suffers unbounded priority

inversion as shown in Figure 1(b); or the scheduler might

choose to run a lower priority task when a higher priority task

is runnable, which implies the improper scheduling as shown

in Figure 1(c); or the presence of circular wait for system

resources such as locks that results in deadlock as shown

in Figure 1(d). The detection of faults using the high-level

behavior is significant: instead of relying on programmer-

inserted assertions, domain-specific knowledge to assess cor-

rect execution, or other logic-centric representations, C’MON

instead relies on observed execution behavior and compares

it to the high-level model of the system, thus making a direct

correlation between the mathematical analysis that determines

correctness, and the system’s execution.

C’MON is designed with the following goals: (1) Simplicity

– minimize the complexity and footprint of the monitoring in-

frastructure that must be trusted for proper fault detection (the

C’MON is less than 1K Lines of Code (LoC), and the kernel

is less than 7K LoC). (2) Predictability – execution overhead

for both logging component operations with synchronization,

and the processing of those buffers in the C’MON must

be bounded. (3) Efficiency – especially the common-case

logging of component operations must be efficient and have

minimal impact on the average-case execution of system-level

components that service both real-time and best-effort tasks.

Contributions. The contributions of this research include:

• Design and implementation of system-level latent fault de-

tection. This paper presents the design of C’MON in the COM-

POSITE system. This includes the design of a wait-free multi-

producer, single consumer buffer for event monitoring, and

a SYSTEM MONITOR COMPONENT (SMC) for predictable

and efficient event processing and constraint validation. We

additionally provide algorithms for practical optimizations:

minimizing memory consumption, and finding a monitor

periodicity that results in a schedulable system.

• Schedulability analysis of C’MON for predictable relia-

bility. We present a system overhead aware schedulability

analysis for a system with C’MON. This analysis includes

time for the system to detect and recover from faults without

missing any deadlines.

• Evaluation of C’MON. This paper evaluates the C’MON

implementation not only in terms of execution time, but also in

terms of latent fault detection effectiveness. System overheads

are utilized in the schedulability analysis, and the overall

schedulability of the system is assessed.

Organization. This paper is organized as follows: Section II

defines the fault model, Section III presents the system model

used for analysis, Section IV discusses C’MON design and

implementation, Section V introduces the schedulability anal-

ysis, and Section VI presents our evaluation. Additionally Sec-

tions VII and VIII present the related works and conclusions,

respectively.

II. FAULT MODEL

SEU-induced transient faults can affect the control or data

flow in a component, through the corruption of either registers

or memory. This can lead to timing irregularities due to greater

than expected numbers of iterations, and even infinite loops

as shown in Figure 1(a), or incorrect scheduling decisions

as shown in Figure 1(c). Research [16] indicates that about

70% of transient faults manifest as control flow errors and the



rest as data flow errors. Although pervasive software-based

data and control flow checking can be achieved by replicat-

ing instructions or by using signature comparison [17][18],

these techniques usually require source code modification and

introduce noticeable memory or performance overheads that

heavily depend on applications. In contrast, C’MON leverages

the interfaces between components and focuses on detecting,

and therefore recovering from temporal and behavioral faults

in system-level services efficiently and predictably without

modifying the component source code.

Fault propagation. Where the fault can occur within a

component is unpredictable, however, with proper spatial and

temporal partitioning [19], fault propagation can be greatly

limited or mitigated. Barbosa et al. in [20] reported that

in µC/OS-II only 22% of transient faults can propagate if

the private address space of each process is protected by

memory management hardware while 60% − 70% can prop-

agate to other process without such partitioning. The results

from [21][22] showed that only 17%−21% of transient faults

can propagate from the kernel level to the application level,

a boundary without an isolation barrier. As COMPOSITE pro-

vides pervasive protection boundaries to constrain the scope

of error propagation, and stub-based validation of function ar-

guments passed between components, we make the following

assumption underlying the use of isolation boundaries in all

fault tolerant systems:

Assumption 1. Faults in a component can corrupt all state

within the component, which can impact all that harness that

component’s functionality, but these faults do not propagate

outside of the component.

Fault frequency. Different fault frequency models have been

proposed in the past, including bounded fault models (e.g.,

two faults must be separated by a minimum distance [5][8][9],

or each fault has a bounded interval during which a burst of

unknown number of errors can occur [23], or at most n faults

can occur within a certain period [24]), and unbounded fault

models (e.g., fault occurrence characteristics are modeled by

random parameters[4][25]). We adopt the bounded model for

latent faults and make the following assumption:

Assumption 2. Two consecutive latent faults are separated

by the minimum time interval, denoted by pft.

In Appendix A we discuss how to compute this value.

III. SYSTEM OVERVIEW AND MODEL

COMPOSITE background. C’MON is built on top of the

COMPOSITE [15] component-based OS in which system

policies and most abstractions are defined in fine-grained

user-level components. Components in COMPOSITE are code

and data that implement some functionality that exports an

interface of functions through which other components can

harness that functionality. Components have a set of functional

dependencies on interfaces that must be satisfied by other

components. Components in COMPOSITE execute at user-

level in separate hardware-provided protection domains, and

access to resources and communication channels is restricted
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Fig. 2: C’MON system architecture overview

by a capability system. Even low-level services such as

scheduling [15], physical memory management and mapping,

synchronization, and I/O management are implemented as

possibly hierarchically-arranged [26], user-level components.

Invoking a function in the interface of a depended-on compo-

nent transparently triggers thread-migration-based [27], [28]

synchronous inter-component communication (called “com-

ponent invocation”). In this way, the same schedulable thread

executes through many components, and can be preempted at

any time. By default, components are passive. A component

becomes active only when invoked by threads from other

components, or when a thread is explicitly created in it.

Multiple threads can concurrently execute within a component

and predictable resource sharing protocols are required just

as they are in system services of more traditional OSes.

An important implication of executing system code as user-

level components for this work is that the kernel itself is

minimal and does not include scheduling policy, and instead

only a dispatching mechanism. This means that all requests

for timing-related functions are made to the synchronization,

timing, and scheduling components, thus subjecting them to

the C’MON monitoring and latent fault detection.

C’MON architecture overview. C’MON is implemented as

monitoring code that is interposed on the interfaces between

components in COMPOSITE and publishes events to a system

monitor component that treats the events as sensor information

to detect latent faults:

• Event monitoring. In COMPOSITE, interface stub code is

generated for component and system call invocations: it sim-

ply transforms normal C calling conventions (cdecl in our

case) into the ABI of the kernel (e.g., register layout). This

means that system components and applications require no

code modifications to use monitoring-aware interface stubs.

C’MON harnesses this stub code by monitoring all interac-

tions between each component and the rest of the system

beyond its protection domain, as shown in Figure 2(a). In

C’MON we make the assumption that faults will propagate

within a component via memory operations trivially, but that

such memory errors will not span protection domain bound-

aries (see Assumption 1), therefore monitoring component

interactions with the rest of the system makes sense: if a

fault is detected, the system needs only to attribute it to that

component and reconstruct a uncorrupted state.

• System Monitor Component (SMC). Events are published to

the buffers that are shared between components and the SMC,

as shown in Figure 2(b), when components communicate.



The SMC validates that dynamic execution conforms to the

system model, and if it does not (fault detection), determines

which component requires recovery (fault localization), there-

fore enabling the faulty service to be recovered. The SMC

logic is essentially a large state machine which processes

events and updates its own state by tracking thread associated

activities (e.g., thread execution in components, prioritization,

and preemptions). Importantly, each event includes a cycle-

accurate time stamp counter, enabling fine-grained timing and

execution tracking which is essential for detecting latent faults.

System model and terminology. The system in which the

SMC examines the run-time constraints is modeled as fol-

lows:

• C = {cx, ...} is the set of components in the system. Of

these components, cs and cl are the scheduler and lock

components, respectively.

• T = {τi, ...} is the set of sporadic tasks. Each task has an

infinite number of jobs, with implicit deadlines.

• pi is the minimal job inter-arrival time (period) of task τi.

• ri,j is the release time of the jth job of task τi, thus its

deadline is at ri,j + pi.

• ei is the worst case execution time required by task τi for

each of its jobs.

• uT =
∑

∀τi∈T
ei
pi

is the utilization of the task set T .

• For simplicity, we assume fixed priority scheduling. hpi
and lpi are the sets of higher and lower priority tasks than

τi, respectively.

• exi is the total cumulative worst case execution time of task

τi in component cx within a job of τi.

• nx
i is the maximum number of events that occur in cx

within a job of τi. This value bounds the rate of events

generated over windows of time and is:

nx
i = nx

i,ipc + nx
i,ints (1)

• nx
i,ipc is the maximum number of IPC events that occur in

cx within a job of τi
nx
i,ipc =

∑

∀cy∈C,cy 6=cx

2(nx→y
i,ipc + ny→x

i,ipc ) (2)

where nx→y
i,ipc is the maximum number of invocation events

within a job of τi from component cx to cy . Such a value

can be derived from a static analysis of system code, or

empirical measurement.

• nx
i,ints is the maximum number of interrupts that can

happen within a job of τi within component cx. We harness

the user-level interrupt vectoring in COMPOSITE to activate

a job of τi in response to an interrupt [15].

• ex is the worst case execution time in component cx due to

single invocation of component cx, not including the time

in any subsequently invoked components.

• The worst case execution time ei of task τi is

ei =
∑

∀cx∈C

exi =
∑

∀cx∈C

∑

∀cy∈C
cy 6=cx

ny→x
i,ipc e

x (3)

• τm is the monitor task that executes in the SMC. We

assume now for simplicity that τm has the highest priority

of all tasks in task set T .

• pm is the period of the monitor task τm. When the SMC is

activated periodically, we call this a time-triggered SMC

activation.

• Bx is the size of the event buffer holding all events

in component cx, and B is the total buffer size of all

components (B =
∑

∀cx∈C Bx).

• When an event buffer is full, an invocation must be made to

the SMC. We call this a buffer-triggered SMC activation.

The worst-case cost of this activation is INV m.

• em is the worst-case execution time of the monitoring

task τm for processing events which is proportional to the

per-event processing cost to detect latent faults, times the

number of events generated per pm.

• To detect appropriate bounds on system priority inversion

we, for simplicity, assume a single resource per component,

and define the resource hold times to be rhtx for the re-

source in cx. The set of components with resources that can

be held while cx’s resource is held are rdsx = {cy, . . .} –

the resource dependency set. Note that rhtx includes the

execution of nested resources. The maximum block time

for a thread executing in cx using the priority inheritance

protocol (PIP) is bx = rhtx +
∑

∀cy∈rdsx b
y where the

latter term considers the nested contention for resources

held by lower priority threads. Under the pessimistic

assumption that each thread uses each resource, the worst

case block time for any thread is b = max∀cx∈C bx.

• We assume that faults will occur sporadically, but with a

minimal inter-arrival time defined by pft. In an aggressive

environment, a pft = 500ms gives “six nines” assurance

that at maximum a single fault occurs within this period.

Please see Appendix A for the calculation.

IV. SYSTEM DESIGN

C’MON is implemented in the COMPOSITE component-

based system as specialized stub code that interposes on all

communication between a component and the rest of the

system, and a SMC component. We cover these in turn.

SMC

event type
time stamp

current thread
next thread

caller component
callee component

committed

tail head

SMC

2

1

(a) shared event buffer (b) monitor activation

Fig. 3: (a) An event buffer shared between SMC and the

component c0. (b) The monitor task τm is 1 time-triggered

(periodically), or 2 buffer-triggered (the event buffer is full).

Interface stub-based monitor implementation. The system

monitoring code in C’MON is implemented within the stub

code (linked into components transparently at build time) that

interposes on and tracks function calls between components,

thread dispatches in schedulers and interrupt thread activa-

tions. These events are added to per-component buffers and

each buffer is shared between a component and the SMC.



Figure 3(a) depicts such a buffer, and the contents of its

entries.

Restartable wait-free ring buffers. As the event buffer is

shared memory, both the SMC and the component being

monitored must synchronize with each other. Also multiple

threads (multi-producer) in a component can concurrently add

events into the buffer from which the monitor task τm (single-

consumer) in the SMC processes all entries. Using locks for

synchronization would not only bind the SMC to the com-

ponent (i.e., if the component suffers a failure while holding

a buffer lock, the SMC would comparably be impacted), but

also result in a “chicken or the egg” problem: to synchronize

using a lock, we need to invoke a lock component, which

requires adding an event to the buffer, which requires this

synchronization. To address these issues, in C’MON the event

buffer is implemented as a multi-producer, single consumer

restartable wait-free ring buffer.

void e v e n t a d d ( e v t t type , t i d t thd , c i d t comp ) {
i n t t a i l ;

/ / when p r o c e s s i n g b u f f e r , SMC w i l l r o l l b a c k e x e c u t i o n

/ / f o r t h r e a d s wi th uncommit ted e v e n t s t o h e r e

s m c r e s t a r t a d d r :

whi le ( 1 ) {
t a i l = rb−>t a i l ;

s t r u c t e v e n t ∗e = rb−>r i n g [ t a i l % rb−>s i z e ] ;

/∗ b u f f e r−t r i g g e r e d a c t i v a t i o n ∗ /

i f ( r i n g b u f f u l l ( rb ) ) smc proces s ( ) ;

/∗ c l a i m t h i s e v e n t f rame as our own? ∗ /

i f ( cas (&e−>owner , g e t t h d i d ( ) , 0 ) ) {
/∗ ‘ ‘ h e l p ’ ’ t h e h o l d i n g t h r e a d i n c r e m e n t t h e t a i l ∗ /

cas (&rb−>t a i l , t a i l +1 , t a i l ) ;

c o n t i n u e ;

} e l s e {
/∗ we have t h e e v e n t e n t r y ! ∗ /

break ;

}
}
/∗ e i t h e r we , o r t h e c o n t e n d i n g t h r e a d w i l l t a i l ++ ∗ /

cas (&rb−>t a i l , t a i l +1 , t a i l ) ;

e v t p o p u l a t e ( type , g e t t h d i d ( ) , thd , ge t comp id ( ) , comp ) ;

e−>t s c = r d t s c ( ) ;

e−>commit = 1 ;

/∗ a t t h i s p o i n t , t h e e v e n t i s s u c c e s s f u l l y added ∗ /

}

Fig. 4: Basic “publish” operation for our restartable wait-free ring buffer.

Figure 4 summarizes the logic for a thread to publish an

event to the component’s buffer. The problem with traditional

ring buffers is that the tail index into the buffer which is

incremented by the producer is susceptible to the race between

two producers (i.e., when one increments the tail, but then is

blocked until the ring overflows, thus creating a “bubble” with

an inconsistent event in the buffer, which might be reused

by another thread concurrently). Our restartable wait-free

ring buffer enables such events that are not yet, or partially

published, to (1) be ignored by the SMC, (2) and for other

threads to continue using the buffer. Note that the number of

such wasted entries is bounded by the maximum number of

preemptions of threads over the monitor task’s period pm.

The core of the algorithm in Figure 4 is to (1) identify

each entry with the “owner” that is attempting to populate

it, (2) have that owner explicitly commit the update of an

entry so that the SMC knows it is valid, and (3) enable the

SMC to “restart” or roll back the execution of any thread

publishing an incomplete entry so that they start the entire

publishing process again. The latter functionality is trivial to

accomplish in COMPOSITE as the SMC can simply make

the system call to modify the register contents of threads.

If an owned, but not yet committed entry is detected, when

buffers are being processed, the SMC will roll the instruction

pointer back to a 512 byte boundary, and we ensure that the

smc restart addr address is aligned on this boundary.

When this rollback happens, the event entry does not have

“commit” bit set, so the SMC ignores it. The number of

rollbacks is limited by the number of preemptions. Compared

to [29], our multi-producer, single consumer restartable wait-

free ring buffer is guaranteed to record every event (i.e., roll

back and log again) and bound the number of wasted event

entries as well.

The SMC implementation. To check the run-time con-

straints, the SMC needs to be activated and process all

published events, through 1 time-triggered activation, or 2

buffer-triggered activation, as shown in Figure 3(b).

Time-triggered activation asynchronously occurs when the

monitor task τm is periodically activated in the SMC to check

run-time constraints at the periodicity of pm. Importantly pm
puts an upper bound on the amount of possibly erroneous

computation, enabling it to be integrated into the schedulabil-

ity analysis. To provide both spatial and temporal isolation,

the SMC executes in a separate protection domain, and is run

in a lower-level environment than the rest of the system such

that timer-ticks are vectored to it, and the SMC can propagate

them to the rest of the system (e.g., to the system’s scheduler).

The techniques for this are detailed in HIRES [26]. In HIRES,

a protocol between hierarchically arranged schedulers is used

to enable virtualized subsystems to coordinate by making

timing delegations between parents and children. In C’MON,

the SMC acts as the parent scheduler for the system, and

delegates almost all time (aside from τm execution every pm)

to the rest of the system. This effectively guarantees that the

SMC’s time-triggered execution is at the highest priority. This

also indicates that pm is the smallest period of all tasks, which

is essential for avoiding any deadline miss in C’MON.

Buffer-triggered activation synchronously occurs when any

component’s shared event buffer is full when a component

invocation attempts to log its communication. In such a case,

the SMC has to be activated via component invocation by the

running thread. These activations could raise a synchroniza-

tion problem: the threads making buffer-triggered activation

race on accesses to SMC data-structures with the monitor task

τm for time-triggered activation. Though traditional synchro-

nization could be used here, we decided to avoid the complex-

ity of implementing locks and the appropriate synchronization

protocols, and instead make all event processing in the SMC

be conducted solely by τm. Thus upon a buffer-triggered

activation, the intended event is stored, the invocation is made

to the SMC, at which point the SMC immediately switches

to the monitor task τm which processes published events from

all components and examines the run-time constraints at the

highest priority.

Time-space trade-off. There is a significant time-space

trade-off in C’MON design. On the one hand, if the event

buffers are small (e.g., holding zero or one entry), then a



thread wishing to add the event must do synchronous buffer-

triggered activation more frequently by invoking the SMC

and switching to τm to process all events. On the other

hand, if the system is willing to devote more memory to

the event buffers, the costs of these synchronous activations

can be decreased, possibly increasing system schedulability.

Therefore, one of design objectives in C’MON is to use the

least possible amount of memory for event buffers and still

guarantee that the system timing constraints are satisfied. In

Section V, we introduce an algorithm for assigning memory,

while for optimizing schedulability.

Constraint checks implementation. System execution must

adhere to the system model specified in Section III. Here we

briefly discuss how the SMC validates that actual execution

conforms to the system model. For a thorough treatment of

the system events, and how the constraints we discuss here

map to the system model, please see Appendix B.

Events
Heap dependency dependency dependency

Buffer

lower  priority
Thread execution 

stack

Fig. 5: The main SMC data-structures for event processing.

The data-structures used to track thread execution are

depicted in Figure 5. To validate that the run-time execution

conforms to or differs from the system model (thus the

faulty component is detected), the SMC examines each thread

execution in components as it processes all published events

in the order of occurrence. Each of the system components

has a possibly different sized buffer shared with the SMC.

A heap is used to sort the head entry of each of the buffers

to ensure ordered event traversal. Though for a N -component

system this naively involves a O(log N) heap operation for

each event, we avoid this in most cases by tracking where the

next event should come from unless there is a preemption.

(i.e., an event of invocation from component cx to cy should

expect the next event in cy if no preemption occurs). Thus,

the number of actual heap operations is proportional not to

the number of events, but the number of preemptions.

Figure 5 also shows the per-thread data-structure main-

tained by SMC, including a stack that tracks which com-

ponent the thread is executing in and a small structure for

each component. When a thread invokes a component, an

item is pushed on the stack. This item includes a pointer to

the component structure in the thread being invoked, and the

timestamp for that invocation. A thread’s cumulative execution

time is incremented for each event it published. A thread’s

cumulative component execution time is tracked in the per-

thread component structures, and the worst-case component

invocation time is updated in the stack entry. Proper schedul-

ing behavior involving always choosing the highest priority

thread is validated by maintaining a shadow run-queue sorted

by priority. Blocking times (i.e., when the system breaks the

“highest-priority thread should aways run”) are tracked for

PIP. Instead of using a stack as a common implementation

technique, each thread structure maintains a dependency field.

When an invocation due to shared resource contention is

made, this dependency field is made to point to the thread

holding that resource which will create a dependency tree,

as shown in Figure 5. The dependencies are followed for

the highest-priority thread until a thread is found with no

dependencies to determine which thread should be chosen for

execution by the scheduler. If the cycle is found during the

traversal in the dependencies tree, the deadlock is detected. All

executions following dependencies are tracked and checked

against the maximum blocking time in the system model (see

the blocking time discussion in Section III).

Recovery in C’MON. Once detected and localized, the faulty

system service must be recovered. As a complementary fault

recovery function, the previous work C3 [7] is used in this

paper to recover the faulty component, even though other

recovery mechanisms (e.g., checkpointing as also studied

in [7]) could also be used. Here we only give a brief summary

on how C3 works. For more details, please refer to [7]. C3 is a

fault tolerance system built on COMPOSITE. It assumes fine-

grained protection domains, and explicit interfaces between

components. C3 recovers the faulty service by (1) first

providing efficient and predictable micro-reboot to bring the

component to a safe (initial) state, then (2) using the in-

telligent recovery code and functions in the interfaces of

the components themselves to reconstruct the state that the

rest of the system expects. For example, if a scheduler is

identified as a faulty service (e.g., C’MON has detected a

improper scheduling decision made in the scheduler), C3 will

be activated to reboot the scheduler to an initial state, then

the rest of the components in the system make invocations

on the functions exported by the scheduler to make it aware

of all of the threads in the system, of their priorities, and of

the thread state (e.g., if they are blocked). And eventually the

scheduler will be brought back to a consistent state. Though

C3 can provide predictable system-level recovery, the focus of

C’MON in this work is on system-level latent fault detection

with an emphasis on timing faults.

SMC and shared buffer vulnerability. It is important in

C’MON that the SMC itself not be erroneous. On the one

hand, as with all components in COMPOSITE, the SMC has

its own protection domain and has no dependencies on other

components. The amount of memory required for the SMC

is small: 920 bytes for each system thread, and 56 bytes for

each component in our system. The SMC is simple (under

1K LoC), and other components have very limited access

to it: the SMC only exports two function entry points for

(1) processing events (upon the buffer-triggered activation),

and (2) mapping in a shared buffer. Also compiler techniques

(e.g., [30]) for hardening the code could be used to further

decrease the chance of SMC being corrupted. Therefore, even

though it is still possible that faults occur in SMC, with

a small footprint, simple interfaces and possible compiler



hardening techniques, the chance that SMC could be impacted

by an SEU is minimized while a wide range of temporal

constraint violations it enables to be detected.

To correctly detect the run-time constraints violation, the

events logged in the shared buffers must be either uncorrupted,

or able to assist faulty component detection. To facilitate this,

the shared buffer contains no pointers. Regardless, a faulty

component can corrupt the events in its shared buffer. In

C’MON, all events are logged redundantly in all components

involved in the interaction (i.e., when a component invokes

another, both components publish events on their exit and

entry for a total of four events (see Figure 9)). Thus multiple

components buffers are referenced to validate the integrity

of any event entry. For example, if a component cx is

invoking cy , cx will attempt to generate an event declaring

it is calling cy . If an argument of that event is corrupted

in the shared buffer between cx and the SMC, such that

it is logged as an invocation to cz instead, the corruption

will be detected by a mismatch between the logs in cx and

cz . Details about how this general class of log corruption

bugs are detected are beyond the scope of this paper and

are discussed in an online extended version of this paper

at www.seas.gwu.edu/∼gparmer/. As an alternative design,

C’MON could implement logging in the kernel. However,

such a design (1) increases the footprint, thus fault surface,

of the kernel significantly, (2) doesn’t have redundant data

spanning multiple protection domains, thus an event buffer

corruption could be hard to recover from, and (3) it would

significantly increase the complexity of the kernel.

V. SYSTEM TIMING ANALYSIS

A primary goal of C’MON is to provide predictable moni-

toring, hence enabling the recovery for hard real-time systems.

This section integrates the system overheads from our C’MON

system into a schedulability analysis. This analysis will enable

a system, even in the presence of latent timing faults, to avoid

missing deadlines. We extend a response-time analysis [31]

(RTA) that is broadly applied to fixed-priority systems. The

overall structure of the RTA is based on a recurrence that

finds a fixed point less than the task’s deadline, otherwise

determines the task is not schedulable:

Rn+1

i = Rn
i (RTA) +Rn

i (C
3) +Rn

i (MON) +Rn
i (F ) (4)

In the following we will discuss how each term on the right

hand side of above equation contributes in the RTA (please

refer to Section III for the terminology we use here):

i) Rn
i (RTA) is the traditional response-time analysis [31]:

Rn
i (RTA) = ei + bi +

∑

∀τj∈hpi

⌈

Rn
i

pj

⌉

ej (5)

ii) Rn
i (C

3) is the contribution from C3 [7] using “on-demand”

recovery. It contains the cost of micro-rebooting (eur) the

faulty component, and the cost of rebuilding the state (rj(mj))
for m objects in the failed component for higher-priority task

τj during the recovery:

Rn
i (C

3) =

⌈

Rn
i

pft

⌉

(eur +
∑

∀τj∈hpi

rj(mj)) (6)

iii) Rn
i (MON) is the contribution from the monitoring over-

head in C’MON, which includes (1) synchronous buffer-

triggered activation in SMC, and (2) the execution time (em)

of the monitor task τm that is proportional to the maximum

number of events generated per monitor task period pm, and

their per-event processing cost. To obtain Rn
i (MON), we

must first determine how many buffer-triggered activations

can occur within pm. This is a function of the amount of

memory in each buffer, and the number of events generated

between time-triggered activations. First, we define the buffer

size Bx
nosyn for a component cx for which no synchronous

buffer-triggered activation could arise:

Bx
nosyn =

∑

∀τi∈T

⌈

pm
pi

⌉

nx
i +

∑

∀τh∈hpi

⌈

pm
ph

⌉

=
∑

∀τi∈T

nx
i +|hpi|

The first term determines the maximum number of events

generated within pm (where nx
i is the maximum number

of events that occur in cx within a job of τi), and the

second considers the entries required in the buffer due to

the buffer entries being skipped because of the restart-based

synchronization around the wait-free buffers (see Figure 4).

As ∀τi, pm < pi, the simplification on the right holds. Recall

that Bx is the size of the event buffer holding all events

in component cx, the maximum number of buffer-triggered

activations in the SMC is derived as:

Mm = max
∀cx∈C

⌈

Bx
nosyn

Bx

⌉

− 1

Given that INV m is the cost of the invocation to the SMC

due to each buffer-triggered activation, Rn
i (MON) is finally

derived as:

Rn
i (MON) =

⌈

Rn
i

pm

⌉

(Mm × INV m + em) (7)

iv) Rn
i (F ) is the contribution from the fault localization

overhead and wasted computation. When a fault occurs and is

detected, the faulty component must be localized to enable the

recovery of the affected service and we denote such overhead

as em(localization) (see detailed analysis in Appendix B).

Note the overhead for actually recovering the faulty compo-

nent is already considered in Rn
i (C

3). Additionally, there is

a period of computation within the faulty component which

cannot be trusted. All of that execution could have simply been

iterations through an infinite loop. This wasted computation

is the period of the monitor task pm, plus the worst-case

execution time of a system-level component, which we denote

wf = max∀cx∈C{e
x}. This considers the worst-case where a

fault is only detected on a component execution overrun. So

Rn
i (F ) is given as:

Rn
i (F ) =

⌈

Rn
i

pft

⌉

(em(localization) + pm + wf ) (8)

A. Memory Allocation for Schedulability

The values for Bx are fixed in the RTA. However, they

can have a large impact on the schedulability of the system

which manifests as a time-space trade-off between using little

memory for event buffers, and having lower computational

overheads for synchronous buffer-triggered activation of the

www.seas.gwu.edu/~gparmer/


SMC. Thus, C’MON integrates a greedy heuristic that at-

tempts to achieve system schedulability, while minimizing

the amount of memory required for buffers. Assume Bnosyn

is the total buffer size for which no synchronous buffer-

triggered activation could occur from any component (i.e.,

Bnosyn =
∑

∀cx∈C Bx
nosyn) and recall that B is the total

buffer size of all components (i.e., B =
∑

∀cx∈C Bx), we

first initialize ∀cx, Bx = 1 so that every event after the first

causes a synchronous activation of τm. Then: (1) If a RTA

of the system is successful, a solution is found for the event

buffer sizes. (2) Otherwise, double the amount of memory

allocated (B = B×2). (3) If B ≥ Bnosyn, then the system is

unschedulable for any value of B. (4) Otherwise binary search

between the current value of B and B/2 to find the minimum

value of B that can still make the system schedulable.

When a value of B is evaluated for producing a schedulable

system, C’MON must determine how to allocate this memory

between components. Again, we use a simple heuristic that

allocates the minimum amount of memory to the component

that will decrease the number of the buffer-triggered activation

the most. This is done repeatedly until all memory is allocated.

This algorithm is run offline during a timing analysis, and

returns answers immediately, so we believe it is practical.

B. Monitor Periodicity of Time-triggered Activation

The periodicity of the monitor task (pm) has an impact

on system schedulability as well, and it’s value must be

determined by the system designer. A large value will not

detect faults soon enough for the system to recover, while

a small value will induce more time-triggered activation

overheads. Section VI investigates pm’s impact on system

schedulability. We use a trivial algorithm for computing a

schedulable pm (if one is found): Iterate the pm starting from

the length of a single timer tick, up through the minimum

periodicity of any real-time task, recomputing the RTA each

time.

VI. EXPERIMENTAL EVALUATION AND RESULTS

A. C’MON micro-benchmarks

We evaluate four types of overhead in C’MON infrastruc-

ture: 1) per-event buffering overhead – the fast path of pub-

lishing an event, 2) per-event processing overhead (including

constraint check and faulty component localization), 3) SMC

buffer-triggered activation overhead, and 4) periodically SMC

time-triggered activation overhead, Unless otherwise speci-

fied, experiments are run on an Intel i7-2760QM running at

2.4 Ghz (only one core enabled) and Table I shows these

C’MON infrastructure overhead (in units of µ-seconds):

per-event buffering 0.052 (0.008), 0.08

per-event processing 0.23 (0.048), 0.35

SMC buffer-triggered activation 0.51 (0.014), 0.71

SMC time-triggered activation 0.54 (0.023), 0.67

TABLE I: The “average (stddev), maximum” infrastructure over-
head

Note that above “per-event buffering” overhead could have

been reduced by nearly 50% if the events were logged in the

kernel. However, the kernel footprint and complexity, thus the

fault surface, would increase.

B. C’MON latent fault detection and localization

Workload. We evaluate the fault tolerance effectiveness of

C’MON for three system level components: 1) the system

scheduler, 2) the system physical memory manager and map-

per, and 3) the lock manager. Each system service is evaluated

in C’MON while running the following workloads:

• Scheduler (Sched): Three threads at high, medium and

low priority contend over a number of locks, resulting in

priority inversion.

• Memory Manager (MM): Systems are granted a number

of pages, these pages are aliased once, and then revoked,

which removes all aliases.

• Lock: Three threads at high, medium and low priority

acquire and release locks in the properly nested manner.

Fault injection. Four types of erroneous timing behaviors are

randomly created in the scheduler, memory manager and lock

to mimic the occurrence of the latent fault:

• component execution overrun – a long-running or infinite

loop is occasionally introduced into Sched and MM.

• unbounded priority inversion (PI) – a delay is occasionally

introduced into the scheduler as the scheduling decision is

made whenever a low priority thread switches to a high

priority thread during PI.

• improper scheduling – occasionally the scheduler chooses

a lower priority thread to run when a higher priority thread

is runnable during PI.

• deadlock – occasionally a task is made to contend the lock

that one of its dependents is holding.

Each type of faults listed above is injected 1000 times. We

measure how many times the erroneous behaviors are detected

and how many times the faulty services are localized by

C’MON successfully, hence enabling the recovery (e.g., using

C3 to recover the faulty component).

fault type detected localized

MM execution overrun Fig 1(a) 1000 1000

Sched execution overrun Fig 1(a) 1000 1000

Unbounded PI Fig 1(b) 1000 1000

Improper scheduling Fig 1(c) 1000 1000

Deadlock Fig 1(d) 1000 1000

TABLE II: Fault detection and localization success rate

The results shows that C’MON can effectively detect the

abnormal timing behavior of tasks and localize the faulty

services for all injected faults at the system-level.

C. Schedulability Evaluation in C’MON

To evaluate the schedulability, each task set has 50 tasks

with an average period of 100ms where the task’s period

follows a uniform random distribution and the number of

events that occur in each component follows a random ex-

ponential distribution. The fault period pft is fixed at 500 ms

and the number of objects recovered by C3 is fixed at 5 (i.e.,

mj = 5 in Eq. (6)). In order to evaluate the impact imposed by

the monitoring infrastructure on the system schedulability, we

define the event rate (evts/ms) as the total number of events

that occur in one millisecond.
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Figure 6 illustrates the system schedulability as the function

of task set utilization at different event rates. For comparison,

we choose the system with event rates of 200, 400 and

800 events/ms, respectively. The system with lower event

rate can attain a higher schedulability than the system with

higher event rate at high utilization (e.g., the system with

200 events/ms starts decreasing its schedulability until after

70% utilization). This is due to the fact that the system with

a higher event rate will render more events within pm, thus

increasing em, and the interference on system tasks. Also we

observe that incorporating C3 in the system with C’MON has

negligible impact on the schedulability.

Discussion. The C’MON infrastructure does have an impact

on the schedulability of systems, and depends significantly

on the event rate of the system in question. In our system,

the decrease due to C’MON was limited to between 5%

and 15% of available utilization. C’MON pairs well with

C3 to predictably provide not only fault detection, but also

recoverability.

Figure 7 presents the lower bound of total amount of memory

required by the system with C’MON to be schedulable, at

different event rates. For a given event rate, we show the

memory requirements for the system to be schedulable, when

it consists of 10, 25 and 50 components. The result indicates

that the systems with more components and higher event

rates need more memory to achieve schedulability at higher

utilization. For example, at 800 events/ms and 60% utilization,

the system with 50 components needs 60KB and the one with

10 components only needs less than 10KB.

Discussion. The number of the buffer-triggered activation

depends on both event rate and allocated memory size. The

buffer can be more quickly filled up in a system at higher event

rate which results in more synchronous SMC invocations, thus

hurting system schedulability. Higher utilizations leave less

slack that can be filled with overhead from the buffer-triggered

activation.

Figure 8 depicts how the system schedulability is affected by

the choice of monitoring period pm. In the previous experi-

ments, we search for a pm resulting in a schedulable system

(how to find the schedulable pm is discussed in Section V) .

Here we show its impact explicitly. For comparison, we have

chosen task set of 35% and 65% utilization and different

amount of memory (8KB, 32KB, 64KB and infinite) are

allocated to the system. The result shows that all task sets have

a very small schedulability, if not zero, when pm is very small
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and the schedulability increases when pm increases. Also all

task sets have a noticeable decline in schedulability around

pm=7.8ms. Importantly, the tasks in our task set are generated

with a minimum periodicity of 10ms. This is why the search

space for pm is so small and narrow. A task set with larger

periodicities would afford more leeway in pm selection.

Discussion. The monitoring period pm can affect the sys-

tem schedulability in two ways, one is through the C’MON

overhead as the denominator in Eq. (7) and the other one

is within the wasted time in Eq. (8). For very small pm, the

C’MON overhead dominates the interference and for large pm
(e.g., 7.8ms), the wasted time dominates the interference. In

between, the schedulability is decided by the ratio of these

two, which causes small “sawtooths” in the graphs. These are

smoothed out here as we report the average over 10 runs.

Fault period. The fault period pft affects the system schedu-

lability in the similar way as it does in C3 [7]. Therefore we

make the similar statement: a system could be unschedulable

until some pft is reached, after which the schedulability is

maintained regardless of how large pft is.

VII. RELATED WORKS

Run-time Timing Constraint Monitoring. Run-time moni-

toring has been used to detect violations in design assump-

tions. Hardware-based runtime monitors such as [32][33]

bring minimal intrusiveness to the target system, however,

these techniques suffer from high cost and poor portability.

Chodrow et al. [34] proposed synchronous and asynchronous

timing violations monitoring based on a constraint-graph algo-

rithm using RTL [35]. The monitor in [36] detected the event

occurrence by inserting the detection code into applications

and kernel. Mok et al. [37] proposed a Java runtime timing

constraint monitor (JRTM) to detect temporal constraint vio-

lations at the earliest possible time. The runtime monitoring of

event flows end-to-end timing in distributed real-time systems

is investigated in [38]. Haitao Zhu et al. [39] investigated

bounding detection latency in order to achieve predictable

monitoring. As the tracing infrastructure in the traditional

system, Feather-trace [29] has been used to track timing of

execution within monolithic systems. Another issue related

to the predictable event monitoring, such as the bounded

event histories size, is studied in [40][41]. However, most of

these works did not take the intrusiveness of monitoring, the

detection latency and the event history size into consideration

in the system schedulability, nor are they applied in a fault

tolerance infrastructure for system level fault detection and
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recovery. C’MON not only detects by monitoring with fine-

grained fault isolation of system-level code, but also allows

the system-level recovery to tolerate latent faults predictably.

Reliable system design. Many research works have been

dedicated for ensuring that operating systems are resilient to

faults. Swift et al. [42] present Nooks where device drivers

are isolated within protection domains inside a monolithic

kernel address space, where hardware and software prevent

them from corrupting the rest kernel. Additionally Nooks [42]

provides monitoring of driver interactions for recovery. µ-

kernels provide fault tolerance by isolating kernel extensions

in user-mode where fault containment can be more easily

achieved. CuriOS [43] saves client-specific state information

in protected memory, Minix [44] tolerates the faulty service

via a Reincarnation Server, and Singularity [45] achieves the

isolation through software-isolated processes written in type-

safe language. Our previous work C3 [7] tolerates the transient

faults in even more general system critical services (i.e.

scheduler, memory manager and file system). Checkpointing

is another popular way to ensure system reliability and has

been studied extensively in the past. The works presented

in [5][46], among others, study the effect of checkpointing on

the schedulability of fault-tolerant task sets. We investigated

the checkpointing and schedulability problem at the system

level in [7] as well. Most of these research projects assume

the fail-stop model and do not provide automatic runtime

means for dealing with error detection latency at system

level, which is undesirable for real-time embedded systems.

Differentiating from previous works, C’MON detects, hence

allows the complementary recovery techniques (e.g., C3) to

recover from latent faults at system level predictably.

VIII. CONCLUSIONS

Limitations. Though C’MON has been proved effective and

predictable in detecting latent faults, it has limitations: 1) The

characteristics of the detected faults in C’MON are inherited

from C3, therefore C’MON does not detect deterministic

faults (i.e., hardware faults or deterministic software bugs),

2) C’MON leverages and, therefore is tightly related to, the

structural properties of COMPOSITE (i.e., the components

communication through the interfaces), 3) C’MON assumes

that two successive faults arrive with a minimum inter-

arrival time (see Assumption 2), so it does not detect the

burst faults [23] or unbounded faults [25].

C’MON is the first system we know of to provide pre-

dictable latent fault detection and enable the recovery for the

lowest-level components of a system including the scheduler,

physical memory manager and lock. It does so by combining

an efficient and predictable monitoring infrastructure, with a

system-overhead-aware timing analysis to produce systems

that can detect latent timing faults, and recover from them

without missing any deadlines. We present a low-level system

architecture based on fine-grained fault isolation, and an

event processing system based on a restartable wait-free ring

buffer, and an isolated and simple SYSTEM MONITORING

COMPONENT. Also C’MON provides facilities for optimizing

buffer memory usage, and optimizing the monitor’s period-

icity. C’MON leverages all of this to detect, hence recover

from latent faults with only a relatively small (5% - 15%)

decrease in the utilization of schedulable tasks for the systems

we studied. All code for C’MON and COMPOSITE is located

at composite.seas.gwu.edu.
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APPENDIX A

Computing the fault periodicity. SEUs are inherently prob-

abilistic and determined by environmental effects (i.e., cosmic

rays). However, models exist that can predict the distributions

of faults. The goal of C’MON is not to obviate all faults with

absolute certainty, but to decrease significantly the probability

that a fault will lead to system failure. Specifically, in an

aggressive environment with significant radiation, an engineer

can place a “six nines” (99.999999%) probability that zero or

one fault will happen within a 0.5 second period. If this is an

acceptable risk, then pft ≤ 0.5s is appropriate for the system.

This work makes the assumption that the fault periodicity

(pft) can be derived and used in the timing analysis. Realisti-

cally, system engineers must choose a value of pft that implies

an acceptable probability that at most one fault occurs within

that window. This section describes a method to derive pft.
We assume that the distribution of the transient faults in any

fixed time interval follows a Poisson distribution, as suggested

in [4].

Prk(t) =
e−λt(λt)k

k!
(9)

gives the probability of k faults during an interval of duration

t, where λ is the expected number of faults in unit time. λ is

also called soft error rate or fault rate and is assumed to be

constant. Therefore, the probability of at most one fault in the

time interval t (pft in the rest of the paper), the assumption

of the timing analysis in Section V, is given by

Prk<2(t) = e−λt(1 + λt) (10)

According to Equation (6.10) in [47], the fault rate λ is

a function of terrestrial neutron flux and the “SEU cross

section”, an intrinsic parameter of a chip or circuit. A typical

value of differential flux at sea level in New York City is

4.58x10−5 cm−2 MeV−1 s−1 when the neutron energy is

around 10.51MeV. A typical value of the cross section is

between 10−14 and 10−12cm2/bit [48]. In [49], a fault rate

of 12700 to 18200 FIT/chip (Failures In Time over 109 hours

per chip) is given for a 4Mbit SRAM chip at New York City,

which is equivalent to 10−5 faults per hour. According to [49],

this rate will increase at higher altitudes (e.g., a flight endures

10−3 faults per hour at 40K ft). Indeed, the typical values

for λ range from hundreds of faults per hour in aggressive

environments to 10−3 faults per hour in lab conditions, as

shown by Ferreira et al. [50].

Assuming λ = 10−3, with Equation (10) we obtain a six

nines probability (i.e., 99.999999%) that at most one fault

occurs over a window of 509.15 seconds (i.e., pft ≤ 509.15
seconds). In a more aggressive environment with λ = 1, we

achieve the same probability when pft ≤ 0.5 second.

APPENDIX B

Event Model. A thread’s computation is viewed as a sequence

of events occurrence where event informally represents the

state change that may occur [34]. The set of event types

of note in the system that are observable by the logging

infrastructure are defined as ELOG:

ELOG = {ECINV
x→y
i , ESINV

x→y
i , ESRET

x←y
i ,

ECRET
x←y
i , ECS

s
i→j , EINT

x→w
i→h }

(11)

where τh is activated in cw by the interrupt and the scheduler

component is cs, ∀cx, cy ∈ C and ∀τi, τj ∈ T .

• ECINV
x→y
i indicates an event in client component cx when

task τi is about to make the invocation to server component

cy from cx (cx 6= cy).

• ESINV
x→y
i indicates an event in server component cy when

τi enters cy due to the invocation to cy from cx (cx 6= cy).

• ESRET
x←y
i indicates an event in cy when τi is about to

return to cx from cy (cx 6= cy).



• ECRET
x←y
i indicates an event in cx when τi returns back

to cx from cy (cx 6= cy).

• ECS
s
i→j indicates an event in cs when context switch from

τi to τj occurs (τi 6= τj).

• EINT
x→w
i→h indicates an event when interrupt task τh is

activated in cw due to an interrupt while τi is executing in

cx.
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Fig. 9: Event Model

Figure 9 illustrates a few of these events involved in

an invocation between components, and a context switch

in a scheduler. The decomposition of events transforms the

execution state of task τi into the trace of events occurred in

components, which allows us to profile the temporal behavior

of a task with finer granularity (i.e. at component level).

This is important for a fault tolerant system to quickly detect

any violation of specified constraints and take the appropriate

corrective action in the early stage.

In a sequence of events occurred in the system, the kth

event is denoted as Ex
i,k if it occurs in component cx by task

τi. In the case that the component and task information are

not relevant, event Ex
i,k is simply denoted as Ek.

Definition Φ(Ek) is the event type of Ek. ∀k,Φ(Ek) ∈ ELOG,

Definition @(Ek) is the occurrence time of event Ek.

∀k,@(Ek) < @(Ek+1) (12)

Definition ∆i(Ek1
, Ek2

) is task τi’s total accumulated exe-

cution time between any two events Ek1
and Ek2

(k2 > k1)

∆i(Ek1
, Ek2

) =

k2−1
∑

k=k1

δi(E
x
l,k, E

y
h,k+1

) (13)

where δi(E
x
l,k, E

y
h,k+1

) is task τi’s cumulative time between

two consecutive events, Ex
l,k and E

y
h,k+1

δi(E
x
l,k, E

y
h,k+1

) =

{

@(Ey
h,k+1

)−@(Ex
l,k) if τl = τi

0 otherwise

(14)

Definition ∆x
i (Ek1

, Ek2
) is task τi’s total cumulative execu-

tion time in cx between any two events Ek1
and Ek2

(k2 > k1)

∆x
i (Ek1

, Ek2
) =

k2−1
∑

k=k1

δxi (E
z
l,k, E

y
h,k+1

) (15)

where δxi (E
z
l,k, E

y
h,k+1

) is task τi’s cumulative execution

time in cx between two consecutive events, Ez
l,k and E

y
h,k+1

δxi (E
z
l,k, E

y
h,k+1

) =

{

δi(E
z
l,k, E

y
h,k+1

) if F x(Ez
l,k)

0 otherwise
(16)

whereF x(Ez
l,k) = (∀cv∈C,τj∈T cz = cx ∧

Φ(Ez
l,k) ∈ {ESINV

v→z
l , ECRET

z←v
l , EINT

v→z
j→l , ECS

z
j→l})

A. Constraints for Timing Fault Detection

The following are a set of constraints that must hold at all

points in time for the system’s dynamic execution to adhere

to the model that underlies the analysis of the system.

• Bounded number of invocations. ∀cx, cy ∈ C, τi ∈ T, j ≥
0, t = ri,j , k > 0,

Sinv = {ECINV
x→y
i,k |@(ECINV

x→y
i,k ) ≥ t∧@(ECINV

x→y
i,k ) < t+pi}

|Sinv| ≤ nx→y
i,ipc (17)

• Bounded number of interrupts that interfere with a task.

Assume τi is a thread that activates in response to an interrupt

in cy . ∀cx ∈ C, τl, τh ∈ T, j ≥ 0, t = rl,j , k > 0,

Sint = {EINT
x→y
h→i,k|@(EINT

x→y
h→i,k) ≥ t∧@(EINT

x→y
h→i,k) < t+pl}

|Sint| ≤ ny
i,int (18)

• Task (and interrupt) execution bounds. ∀τi ∈ T, k1, k2 >
0, j ≥ 0, where @Ek1

= ri,j and @Ek2
= ri,j + pi,

∆i(Ek1
, Ek2

) ≤ ei (19)

• Component execution bounds. ∀k1, k2, c
x, cy ∈ C where

Φ(Ek1
) = ESINV

x→y
i and Ek2

is the next closest event such

that Φ(Ek2
) = ESRET

x←y
i and ∀τi ∈ T ,

∆y
i (Ek1

, Ek2
) ≤ wy (20)

Discussion. These constraints, in sum, ensure that threads

and interrupts do not execute in a manner that would invalidate

the system timing analysis based on the system model. To

validate that the system has proper timing behavior, the

behavior of the scheduler must also be validated.

Validating scheduler behavior. We assume a fixed-priority

preemptive scheduling policy, and predictable resource shar-

ing using the Priority Inheritance Policy (PIP) [51]. We choose

PIP over priority ceiling as it is the more complex policy

to validate. The scheduler and synchronization components

exhibit correct behavior if the highest priority thread amongst

those active is always chosen to execute at all points in time,

unless resource sharing prevents high-priority thread from

execution. In that case, the extent of the priority inversion

due to this sharing must be bounded as defined by the system

model. Here we introduce the constraints the policy must

adhere to.

C’MON detects contention on shared resources in a compo-

nent cx when it sees an event ECINV
x→l
i,k1

(recall that cl is the

lock component). This interference finishes with the closest

occurrence of ECRET
x←l
i,k2

. The maximum allowed observed

execution in τi is constrained by the resource block time. For

all k1 and k2, as defined above,

bx ≥
∑

∀τj∈lpi

∆j(ECINV
x→l
i,k1

, ECRET
x←l
i,k2

) (21)

Thus, C’MON tracks all scheduling decisions (context

switches, and interrupt activations), and keeps a running total

of this priority inversion, checking to make sure it is within

this bound.
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