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Abstract—Multi- and many-core systems are increasingly
prevalent in embedded systems. Additionally, isolation require-
ments between different partitions and criticalities are gaining in
importance. This difficult combination is not well addressed by
current software systems. Parallel systems require consistency
guarantees on shared data-structures often provided by locks
that use predictable resource sharing protocols. However, as the
number of cores increase, even a single shared cache-line (e.g.
for the lock) can cause significant interference.

In this paper, we present a clean-slate design of the SPECK
kernel, the next generation of our COMPOSITE OS, that attempts
to provide a strong version of scalable predictability – where
predictability bounds made on a single core, remain constant
with an increase in cores. Results show that, despite using a
non-preemptive kernel, it has strong scalable predictability, low
average-case overheads, and demonstrates better response-times
than a state-of-the-art preemptive system.

I. INTRODUCTION

Multi-core systems have proven to be a double-sided sword
for embedded and real-time systems. They provide increases
in computational power that promise to not only consolidate
previously distributed systems together, but also to increase
the computational capability, thus intelligence and function-
ality, of embedded systems. However, these parallel systems
present a significant challenge due to the interference between
tasks caused by increased resource sharing between cores. For
example, different cores often share hardware resources such
as last-level caches (LLC) and memory buses. Past research
has addressed each of these in turn by, for example, partition-
ing memory [1] or cache [2]. An inescapable challenge not
addressed by these techniques is the interference caused by
the sharing relationships of data-structures within software
due to cache coherency. This problem is complementary to
previous approaches, and it is particularly important: a store
to a cache-line can (on our hardware) take three cycles, or
more than 27µs, depending on coherency behavior.

If each load or store can have such high variance, depending
on the sharing relationships in the software, it is reasonable
to design the software to mitigate these effects. The impact
of this overhead not only impacts a task’s response time, but
increases the interference between competing tasks. One task’s
data-structure access pattern in the kernel can increase the
latency of another. This cross-talk makes temporal isolation
difficult across cores. A high criticality task, tested in isolation
on a system could suffer memory access latency spikes when
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a low criticality task is added to the system that contends a
shared kernel data-structure.

This paper presents the SCALABLE PREDICTABILITY-
ENABLED COMPOSITE KERNEL (SPECK), a kernel with the
goal of not only scaling its performance, but also its worst-
case latency with an increasing number of cores. We call this
scalable predictability, and it is a strong form of scalability
that focuses on the worst-case overheads from cache-line
coherency traffic – in addition to the average behaviors that
are often the focus of scalable systems – and on avoiding
coherency traffic all-together. SPECK is a kernel that focuses
on simplicity, and on exporting system policies from the
kernel instead to be implemented in user-level components
in the tradition of COMPOSITE [3], [4].

l o ck (&thd_lookup_lock ) ;
t = t h d l k u p f i n d ( t h d i d ) ;
l o ck ( t−>t h d l o c k ) ;
t h d l k u p r e m o v e ( t ) ;
unlock (&thd_lookup_lock ) ;
t h d c l e a n u p ( t ) ;
unlock ( t−>t h d l o c k ) ;

The shared data structures of
kernels must be kept consistent
despite parallel accesses from
many different tasks on different
cores. Locks are often used to
ensure this consistency by serial-
izing access to data-structures. For example, the simplified
code to the right deallocates a thread and uses fine-grained
locking: a lock protects the lookup structure, and a per-thread
lock protects the thread structure. With increasing core counts,
the overheads for cache coherence for the cache-line backing
the thd lookup lock become quite large, especially in the
worst case. Whenever the OS includes a data-structure that is
accessible from within both low- and high-criticality tasks (as
in the thread lookup structure in this example), both tasks’
timing are impacted by the sharing.

To remove the overhead and interference from locks and
shared kernel structures, SPECK takes a drastic approach:
The kernel is lock-less, instead ensuring consistency on shared
objects with atomic instructions on the granularity of kernel
objects that either fit into a cache-line (i.e. the finest-possible
granularity), or are core-local. This means that coherency
overheads only occur when tasks on different cores (1) have
access to the same object, and (2) actually attempt to modify
the same object. This is in contrast to traditional methods of
ensuring consistency that use locks where cache coherence
overheads and interference impact (at least in the worst-case)
all cores that must do lookups (thus, in our example, take the
lock) of any resource.

Without locks, it is difficult to handle proper deallocation of
resources. In the above example, no other core is accessing the
lookup table while the thread is being removed from it, so after
the thdlkup remove() and unlock operations, the thread
can be freed as no references to it exist. To avoid coherence
traffic, SPECK instead uses quiescence-period based tracking



of references. Once removed from lookup structures, the sys-
tem guarantees that no references (pointers) exist to resources
after a bounded delay, thus enabling the memory to be reused.
This quiescence-period is based directly on the worst-case
execution of the non-preemptive kernel, effectively leveraging
predictability guarantees of the system for the overall system
design. SPECK’s quiescence framework is also applied to vir-
tual memory mappings. Thus, Translation-Lookaside Buffer
(TLB) shootdowns (e.g. in munmap) that are traditionally
extremely expensive on multi-core processors, have a con-
stant worst-case overhead, thus enabling complicated memory
mapping manipulations in real-time computation.

In addition to avoiding coherency overheads on accesses to
different kernel objects, each lookup structure in the kernel is
also strictly access-controlled along two dimensions: (1) mod-
ification access that can cause cache-coherency traffic (i.e. re-
mote invalidations), and (2) kernel object access. Kernel data-
structures are structured as simple radix tries called resource
tables with embedded modification access bits. The capability
to modify these tries is only granted through higher-order
resource tables, references within resource tables to resource
tables. Components of the system with heightened permissions
(e.g. the booting component, similar to init) can access
and modify all system resources. Such components create
additional components that execute system and application
tasks that have access to a subset of the system’s resources,
none of which are modifiable. This creates a container of
resources whereby any execution therein is guaranteed to
not create any modifications to kernel state that could cause
expensive contention coherency traffic, thus ensuring scalable
predictability for all of that component’s system calls.

Contributions. This paper’s contributions include:

• An introduction to the design and implementation of the
SPECK kernel that provides both scalable predictablity, and
low average-case overheads. This includes resource tables for
lock-less kernel object lookup, access control, and fine-grained
consistency management; and quiescence-based kernel object
deallocation and reuse.
• A discussion of the support in SPECK that provides

the foundation for the COMPOSITE component-based system.
This requires that system policy is implemented in fine-
grained user-level components (e.g. user-level scheduling). It
enables system customization and fault tolerance, and effi-
cient, low-level primitives for Inter-Process Communication
(IPC) and memory mapping.
• An evaluation of the performance, predictability, and scal-

ability properties of the SPECK kernel, and a comparison to
a real-time L4 µ-kernel, Fiasco.

Paper organization. Section II investigates worst-case hard-
ware cache-coherence overheads to motivate the goals of
SPECK that are discussed in Section III. SPECK’s design
is covered in Section IV, and Section V translates how this
design provides the necessary guarantees. Section VI evaluates
the system and compares it to an L4 variant, Fiasco. Sec-
tions VII and VIII discuss related work and draw conclusions,
respectively.

II. BACKGROUND AND MOTIVATION

Cache-line Sharing Coherency Latency. Studies of the
average-case scalability [5] of modern hardware have shown
that data-structure construction, and synchronization primi-
tives can have a large impact on overall performance. How-
ever, no comparable study has been performed on the worst-
case scalability implications of different primitives. Even
more-so, it is important to understand the limitations of
the hardware coherence implementations as they place lower
bounds on the latencies for sharing data between cores.

To study the hardware overheads for sharing cache-lines
between cores, we run a series of experiments on a system
consisting of Intel Xeon E7-4850 (10-core chip) clocked at 2.0
GHz, with four sockets. Hyper-threading is disabled, leading
to a total of 40 cores. With 39 cores generating workload
(one is used for system tasks and interrupts), we measure
the latency of single load and store instructions. We measure
with half store (writer) threads, half load (reader) threads,
and, separately, with all but one writer thread. The results
are consistent across both settings, and the average load and
store latencies are close to 10µs which is similar to results
shown in [5], but the maximum latency is 27µs. Fetch and
add (faa) instructions yield similar results. Worse, compare &
swap (cas) instructions that modify memory impose latencies
of 17µs on average, and 50µs in the worst case. Such results
show that contention on shared and modified cache-lines can
have significant overheads, and that a single instruction can
significantly degrade execution latencies.

Do these results generalize to higher-level synchronization
primitives? The Appendix details a study of the average-case
and worst-case overhead experienced by a number of synchro-
nization primitives. We survey a naive spinlock, a spinlock
with geometric backoff, a trivial lock-free stack (without ABA
protection), and two predictable spinlocks: a ticket-lock, and
a MCS lock. In the worst-case, implementations with tight
spins around shared memory do not scale. Surprisingly, the
measured worst-case overheads for MCS locks, that are known
to be scalable (in the average case) approach 50µs. When
protecting a cache-line that is modified in the critical section,
latencies increase further to over 65µs.
Discussion. In the worst case, the latency imposed by cache-
coherency can significantly degrade the WCET of system
code, and if such operations are in the path that determines
system response-time, they place a strong lower-bound on that
latency. If the WCET of a system is to be analyzed, assuming
the worst case cache latency for every shared cache access
will cause the WCET to be very pessimistic. In addition, the
high cache-coherency overhead can also play a significant role
in temporal interference between different criticality threads
that access a shared system structure.

III. SPECK GOALS

SPECK is designed to provide pervasive, efficient isolation,
and scalable predictability guarantees for hard real-time tasks.
Specifically, an application or system service that can be
implemented scalably in a user-level component, must not



be limited by any kernel contention, particularly from lower-
criticality interference. We seek a particularly strict sense of
scalability: even in the worst-case the latency bounds made
on a single core should hold with increases in core count.
G1 Avoid cache-line contention for real-time tasks. Given
the overheads of modifying a shared cache-line, SPECK is
designed to (1) ensure objects fit into a single cache-line and
provide synchronization at that finest-possible granularity of
contention, (2) ensure that all contention is explicit to user-
level through the system-call API so that it can be avoided, and
(3) ensure that the common-case uses of the kernel perform no
shared cache-line modifications. One key to avoiding cache-
line modifications in the common case is to provide liveness
tracking of kernel objects. The key question of “when can an
object be deallocated?” is complicated by parallel accesses to
it, and common solutions such as reference counting do not
scale.
G2 User-level definition of policy, and pervasive inter-
component isolation. A fundamental goal of COMPOSITE
is the extraction of resource management policy from the
kernel to user-level components. SPECK takes this one step
further, and enables the component-based control over all
kernel scalability properties. This is essential to provide strong
temporal isolation boundaries between components to match
the spatial isolation provided by hardware protection.
G3 Aggressive optimization of the fast-paths. Optimizing for
scalability often implies slowing and complicating the code.
For example, fine-grained locking increases parallelism, but
imposes more overhead [6]. SPECK is intended to not only
provide latencies that do not increase with an increasing core
count, but with latencies that are competitive on a single core
with existing state-of-the-art systems.

IV. DESIGN AND IMPLEMENTATION OF SPECK

SPECK leverages a clean-slate co-design of the ker-
nel’s data-structures, interface, and contention mechanisms
to achieve the required scalable predictability guarantees.
This co-design enables the finest-gained synchronization at
the level of individual kernel-object cache-lines, an explicit
interface mapping from the kernel namespace to cache-lines
that enables explicit cache-line contention avoidance, and
a quiescence-based reclamation scheme based on the very
predictability guarantees made by the kernel.

SPECK also maintains the fine-grained component-based
isolation of COMPOSITE systems, and the implementation
of all resource management policy in user-level components.
Components here refer to a unit of code of data that 1) are
memory isolated and execute in user-level, 2) export a set
of functions that can be invoked by other components, and
3) have a set of functional dependencies on other components.
A system is composed from a collection of specifically chosen
components by satisfying all of their functional dependencies.
Components in COMPOSITE include application processes
and middle-ware in addition to low-level policies such as
schedulers, memory managers, synchronization managers, file
systems, and networking protocols.

A. SPECK Kernel Abstractions
SPECK has a small number of abstractions. These are

focused around providing 1) the access control necessary to
strictly control both the system resources accessible by each
component, and the modification permissions to each of those
resources to limit cache coherency operations, 2) efficient
and bounded-latency access to those resources, and 3) the
capability to define system resource management policies in
user-level components.

Fig. 1: SPECK’s main data-structures. Components (here, a client
Cc, and a manager, Cm) each include a KOTBL and PGTBL. Cc

has a SINV object in a KOTBL slot (labeled S), that enables it to
invoke Cm. In this case, Cm provides a memory mapping service, so
slots (labeled H) in its KOTBL include higher-order PGTBLs. Thus,
Cm can modify the PGTBL of the client by adding pages into it.
A kernel thread structure includes an invocation stack that tracks a
thread’s execution as it migrates between components. In this case,
the thread has invoked Cm from Cc (the stack grows down). System
memory is referenced within the PGTBLs.

Resource tables (RESTBLs). Each component is defined by a
set of resource tables that index and control access to system
resources. Each resource table is a radix trie consisting of
nodes up to a fixed depth. Each node in the radix trie has a
number of slots that hold references to other kernel objects.
Slots in nodes that are internal in the radix trie (i.e. non-leaf
nodes) hold references to nodes of the next level. Each radix
trie maps an index into a slot in a leaf node that references
a resource (e.g. a thread, memory frame, and other resource
tables). This same data-structure is used for various system
structures, each with different internal node radices, different
numbers of slots in the leaves, and different node sizes. These
include:
• KOTBL – the Kernel Object tables enable components to

access and use kernel objects. The only system call in SPECK
performs an operation on the kernel object at an index in the
KOTBL.
• PGTBL – page-tables are the main mechanism for tracking

not only virtual mappings for the component, but also access
to physical memory used for kernel data-structures.
• LIVENESS TABLE – This structure is used to track the

liveness and quiescence of kernel objects. This structure will
be elaborated in Section IV-F.

The only mechanism to make modifications to resource
tables is higher-order resource tables – references within
resource tables to resource tables, themselves. Most compo-
nents in the system do not have such access, thus make no
modifications to shared kernel structures. Components with
access to higher order resource tables are in charge of handling
delegation of, and access to, resources throughout the system.



Even these management components only modify and access
resource tables and resources reachable through their own
resource tables. Higher-order resource tables are a significant
departure from the previous COMPOSITE kernel and from
existing µ-kernels. Figure 1 depicts some of SPECK’s data-
structures including RESTBLs. In contrast, capability-based
systems (e.g. seL4 [7] and Fiasco L4 [8]) often provide kernel-
supported delegation of resources between servers (compo-
nents) via IPC. The bookkeeping for these delegations to
support revocation of resources requires complex synchroniza-
tion [6], and revocation execution time is bounded by the size
of the bookkeeping data-structures. As SPECK’s aim is to
avoid all such locks and their associated impact on scalability
and interference, and to bound kernel execution times, we
instead use higher order resource tables managed by user-
level components. Of note, the same policies in capability-
based systems for delegation and revocation are implemented
in versions of, for example, memory mapping management
components.
Components. Components are the combination of the re-
sources addressed by the namespaces of a KOTBL and
PGTBL. Components are active only when a thread is created
in them, or when one of their exported functions is invoked by
another component. System calls are interpreted as lookups
in the KOTBL for the active component, and all memory
accesses are logically treated as PGTBL lookups. The latter
are, of course, accelerated by the hardware page-table walker
of our processor, and translations are cached in the TLB cache.
A component’s complete set of access rights are thus defined
by the contents of their resource tables.
Communication channels. COMPOSITE requires highly op-
timized mechanisms for Inter-Process Communication (IPC).
SPECK provides synchronous invocations between compo-
nents with function call semantics (i.e. call-return) that can
pass arguments in registers. The component to activate on
invocation, and the instruction to initiate execution at in
that component are stored in the SINV kernel object. The
SRET object designates a return to the calling component.
Asynchronous notifications, either within a component, or
across components, are transmitted using ASND objects which
activate threads blocked on ARCV objects on possibly dif-
ferent cores. Faults are routed through SINV objects, and
interrupts are exposed to components as ASND objects that
can be wired to a component’s ARCV objects.
Threads. Thread structures are kernel objects also accessed
through KOTBLs. Threads are orthogonal to components in
COMPOSITE: a thread migrates [9] between components via
invocations via SINV objects. Each thread tracks the sequence
of components that have been invoked (i.e. including nested
invocations) in the kernel thread structure in an invocation
stack. The head of the stack is the component in which the
thread is active. Thread kernel objects also store a register
context for preempted threads.

Thread structures do not include a kernel execution stack.
The SPECK kernel is non-preemptive, thus we use a single
kernel stack per-core which is the root of all data-structures for
that core. Most notably, a structure embedded with the kernel

stack references the currently executing thread, and the active
component is found on the top of its invocation stack.
System memory. Memory frames are accessed via RESTBLs
just like any other system resources. SPECK supports the
user-level management of kernel memory in a manner similar
to seL4 [7]. The kernel does not have a memory allocator,
and instead relies on user-level to provide memory to back
kernel data. This has the significant benefits that the kernel
is simplified, and that all memory is directly accounted to
components. This is safe [7], and does not require trusted user-
level components; the kernel ensures that user-level cannot
access this memory, and that the kernel is memory safe
(i.e. all pointers reference valid memory of the proper type).
Toward this, each frame is typed and can be either user-level
virtual memory, kernel memory used for kernel data-structures
(including RESTBLs and threads), or untyped memory which
can be retyped to and from the other types. PGTBLs hold
not only references to user virtual memory, but also untyped
memory. In the latter case, the present bit is not set in the page-
table entry (PTE), instead one of the spare flag bits is used
to denote the untyped memory. At boot, all frames not used
for the initial kernel image are mapped into the initial boot
component’s PGTBL as untyped memory. Kernel memory is
tracked through component’s KOTBLs and backs all of the
previously described kernel objects.

B. SPECK Functionality and Operations

All of a component’s resources are accessed through one
of the two namespaces associated with the component: virtual
memory which is accessed through PGTBLs (e.g. via hardware
paging accelerators), and kernel objects whose operations are
accessed via a system call to the kernel. Fast-path operations
are performed on objects indexed into the KOTBL. The
following three sets of operations make no modifications to
shared kernel cache-lines, and the majority of components
have access only to them. This is the foundations for scalable
predictability. These operations include:
• sinv(args,...) – A synchronous invocation from the current

component, to another specified by the SINV resource. The
previous component, and the return stack/instruction pointers
are tracked in the invocation stack of the current thread.
This is the main method of inter-component coordination
and is paired with sret(retvals,...) that returns to the calling
component. Invocations are tracked on the thread’s invocation
stack, and returning simply pops a component off. The sinv
and sret pair forms a round-trip synchronous IPC between
two components. Figure 1 shows how a sinv operation from
a client to a manager is tracked in a thread’s invocation stack.
• asnd() and arcv() - ASND objects send an asynchronous

notification to an associated ARCV resource. A thread bound
to an ARCV resource can block waiting for the notification.
Each ASND and ARCV resource is bound to a specific core,
and can only be used on that core. This enables partitioning al-
gorithms to restrict the cores on which threads are activated. If
send and receive are on different cores, then IPIs are used for
the notification. This is the main mechanism for asynchronous
inter-core communication, e.g. event notification.



• dispatch() – Scheduling policies in SPECK are defined
by user-level schedulers. Thread dispatch operations are used
by scheduling components to switch between two threads. If
a thread resource is indexed in the RESTBL, this operation
dispatches that thread. This is used only by schedulers that
have been given access to the thread. The referenced thread
resource can only be dispatched to on the owner core, thus
enabling components to maintain strict thread partitioning.

Operations on higher-order resource tables. The previ-
ous operations are the common case, and most components
will only ever use them. Components with a reference to
a RESTBL in a slot within their own RESTBL have the
opportunity to modify and add to that RESTBL (e.g. see the
manager, Cm, in Figure 1). To create, delete, and duplicate
kernel objects within this nested RESTBL, the following
operations are provided to resource management components.
• activate(rtid, rid, type,...) – Activate a resource of a

given type at a rtid × rid (that is, at a specific rid indexed into
the RESTBL at index rtid). For example, a memory mapping
manager component (e.g. Cm) activates a page as part of the
page-table of a client component. This is used to allocate
each resource type, and the arguments include type-specific
initialization information that often include references to other
resources used in the construction of the resource. When the
object being activated requires significant memory resources
beyond what the slot can provide, the index to kernel memory
to be used to back the object is provided. For example, when
a thread is activated, the backing memory is provided as an
argument in the form of a kernel memory object.
• deactivate(rtid, rid) – Deactivate an already activated

resource at rtid × rid. Any subsequent accesses to the slot
in the RESTBL the resource was at will return failure, unless
later reactivated.
• copy(rtidto, ridto, rtidfrom, ridfrom) – Duplicate a re-

source at rtidfrom × ridfrom to rtidto × ridto. This aliasing
operation enables sharing between separate components (e.g.
shared memory, or the ability to schedule the same thread as
in [4]). For example, a memory manger component utilizes
this operation to copy a memory mapping to construct shared
memory for two components in different address spaces.

The kernel’s RESTBLs are manually created using the
following operations that use untyped memory.
• cons(rtidto, ridto, rtidfrom) – This function connects

nodes in a resource table by extending a RESTBL node (rtidto)
at level n at index ridto with the RESTBL node at rtidfrom
at level n+1. For example, this operation is used to connect
one level of page table into the next level, and to comparably
extend KOTBLs. The same RESTBL node can be aliased
into multiple resource tables, enabling, where appropriate,
efficient coarse-grained sharing. decons(rtid, rid, rtidparent)
provides an opposite operation in which does of a RESTBL
are disconnected.
• retype(type, rtidto, ridto, rtidfrom, ridfrom) – Each of the

system’s physical frames can be exactly one type, and can
only be used in positions in the API that use resources of that
type. Frames can be retyped if they are no longer used in any
data-structures. Each frame starts as untyped memory, which

is the only type that can be converted to the other types, and
vice-versa. This is used by memory manager component to
manage physical memory frames.

A final operation is required but rarely used.
• introspect(rtid, rid) – This operation is used to enable

a component to gather information about the RESTBLs it has
access to. This functionality is rarely used, but is important in
cases when a manager crashes that is in charge of constructing
kernel RESTBLs. A fault handling component can uses this
operation to clean up the state by introspecting on the crashed
component’s RESTBLs, and deactivateing/deconsing ap-
propriately to reclaim the memory.

C. Fine-grained Kernel Synchronization

SPECK is designed to avoid the coherency costs imposed
by locks in the kernel. However, without the consistency
guarantees provided by lock’s mutual exclusion, kernel data-
structures must be synchonized using different mechanisms.
All kernel data-structures aside from RESTBLs either fit into
a RESTBL slot (i.e. they’re embedded into the leaf of the
RESTBL) – which are not larger than a cache-line, or are larger
but core-local (e.g. threads). Thus, only slot access and mod-
ification requires synchronization. Due to quiescence-based
reclamation of kernel structures (Section IV-E), RESTBL
lookups do not require synchronization. In fact, after most ker-
nel objects are created in a KOTBL slot (SINV, SRET, ASND,
ARCV, and components), they are immutable, thus requiring
synchronization only on activate and deactivate.

To provide activation and deactivation that are synchronized
between cores, each cache-line in the leaves of the KOTBL
includes an allocation bitmap, and a size field. Each of these
cache-lines is broken into between 1 and 4 slots, depending
on the value of the size field. Each slot additionally has a
header with the type of kernel object held in the slot, and
quiescence information. The allocation bitmap includes four
bits that are zero if the corresponding slot is free, and one
otherwise. Importantly, both this bitmap and the size field are
in a single word, enabling atomic modification of them. Thus
activation updates the allocation bitmap and size (size can only
be changed if there are no slots allocated), initializes the kernel
object, and sets the type of the slot. When a slot is deactivated,
these operations are reversed. However, the current time of
deactivation is recorded (see Section IV-E), and a subsequent
activation of that slot must be delayed while any pending
references to it exist (i.e. until the system has quiesced). If
kernel objects grow beyond a cache-line, or cache-line sizes
changed (on different architectures), the size and number of
slots in these leaf items must be adjusted.

Threads are relatively large structures, but are still ref-
erenced through KOTBLs. The slot within the KOTBLs is
managed identically to other kernel objects, but contains
both a pointer to the thread structure (currently a page),
and the core on which that thread can be accessed. Thus,
synchronization of the thread structure is not required as it is
accessed on a single core, and the kernel is non-preemptive.
A thread contains a reference count as it might be accessed by
multiple components, enabling multiple schedulers the ability



to context switch to, or away from the thread. This enables
hierarchical user-level scheduling HIRES [4].

Like threads, the nodes that constitute the various levels
of the RESTBLs are also referenced by slots in the KOTBL.
cons simply attaches these nodes together to form RESTBLs,
while decons breaks them apart. When a RESTBL node of
level n + 1 is consed to one at level n, the corresponding
RESTBL is expanded.

This trivial support for RESTBL construction is sufficient
for most systems. However, if the system wishes to efficiently
alias part of the address space of a RESTBL with another, the
second level in a resource table (e.g. PTE) should be refer-
enced by two separate resource tables. Though not required
by POSIX, this enables the controlled sharing of namespaces
between cores as in shares and address ranges in Corey [10],
and mutable protection domains in COMPOSITE [11]. Support
for this requires that the RESTBL node’s slot include a
reference count for the number of aliases. Importantly, only
a component that is trusted by the component being modified
can perform these operations (as it has the proper higher-order
RESTBL), so it can mitigate the impacts of the worst-case
scalability problems, often by only performing the operations
only on isolated cores.

D. Component Control over Scalability Properties

As all policy for resource and isolation management is
exported to user-level components in COMPOSITE, it is re-
quired that control over the scalability properties of the kernel
also be in component control with SPECK. A few invariants
provide this control: (1) Components with no RESTBL nodes
objects in their KOTBL cannot make any cache-line modifi-
cations that can be shared between cores. This represents the
majority of components aside from the lowest-level, trusted
management components. (2) Manager components that have
access to higher-order RESTBLs mediate modifications to the
RESTBL structures, or even delegate to other components by
giving them access to subsets of the higher-order RESTBLs.
(3) The mapping between the namespace that is used to
index into higher-order RESTBLs explicitly maps to the slot’s
cache-lines. Thus managers can explicitly avoid false sharing.
Specifically, SPECK guarantees that when indexing slots in a
KOTBL, any indices with identical values for brid/4c (given
four slots per cache-line), share a cache-line. Manager com-
ponents can avoid scalability bottlenecks by simply ensuring
that any operations that modify a cache line on a specific core
never use slots on a cache-line for another core, i.e. by striping
the resource namespace across cores.

Cores in SPECK are tagged as one of two types: real-time
or best-effort. A flag on the kernel stack (recall SPECK has
single kernel stack per-core) is used to decide the type of the
current core, which is used to limit access of best-effort cores
to avoid interference: the data structures in the kernel used
by real-time tasks cannot be modified by best-effort cores.
Operations that might negatively impact kernel response-time
(e.g. cons with RESTBL sub-trie aliasing) for a core handling
real-time computation, must be exported to a best-effort core.

time

quiescence period

syscall

D A

Fig. 2: Kernel object liveness example. Bars represent kernel system
call execution, and the three timelines denote three cores. A kernel
object is deactivated at D. The dashed (lightly shaded) region de-
notes the quiescence period (WCETk+WCETcas). Only those kernel
invocations that start before deactivate can maintain references
to the object (e.g. the first bar on the second core). A subsequent
activate (denoted A) of the same slot must await completion of
the quiescence period.

E. Quiescence-based Kernel Object Liveness Tracking

One of the most challenging aspects of implementing a
kernel with no locks is determining when a kernel object’s
memory can be reused after being freed. Parallel references
to an object must finish before the object is actually freed and
can be reused. Were this not the case, an object that is freed
and zeroed on one core, while being accessed on another,
could cause faults as those accesses de-reference the newly
zeroed values. Figure 2 depicts a timeline including kernel
object deactivation.

Instead of using locks to solve this problem (by ensuring
mutual exclusion, but causing coherency overheads), SPECK
uses a quiescence period, the end of which determines when
no references at the start of the period could persist. The
important question in SPECK is what is an appropriate
quiescence period? Here SPECK’s non-preemptivity is useful:
no reference to a kernel object that has been removed from,
or deactivated in RESTBLs can persist for longer than a
kernel Worst-Case Execution Time (WCETk). Any references
are released on return to user-level. When a kernel object is
deactivated, the current time-stamp is taken and stored in
the header of the object. If deactivate is called at time t, the
kernel object can be reused at t+WCETk+WCETcas where
WCETcas is the worst-case latency for a compare and swap
(cas) instruction that is used to mark the slot as inaccessible.

The LIVENESS TABLE is a separate data-structure that
is used to facilitate tracking kernel object liveness. When
deactivated, an offset into the LIVENESS TABLE is placed
into the object’s header. This level of indirection through the
LIVENESS TABLE enables multiple kernel objects to share the
same lifetime tracking information.
LIVENESS TABLE quiescence tracking. When deactivate
is called on a kernel object, a index into the LIVENESS
TABLE is provided. Each entry in the LIVENESS TABLE has
a time-stamp value. This value in the LIVENESS TABLE entry
associated with the kernel object is set to the deactivation
time. There is no explicit call to “free” the slot in the KOTBL.
Instead, a subsequent activate call is successful only if the
quiescence period has passed from the liveness entry’s time-
stamp.

Time-stamps are taken using the rdtsc instruction on x86
processors. Modern x86 (and many other) processors support
invariant time stamp counters that proceed at a constant rate,
independent of frequency scaling or processor sleeping. This



enables a global notion of time across cores. For architectures
without such support, emulated approaches, e.g. periodically
updating a shared global variable on a single core, can be
used to get a representation of time at coarse granularity. This
hardware support enables quiescence periods to be globally
applicable across all cores.
Quiescence-based TLB coherence. TLB shootdown is a
means to achieve coherency between TLB caches on remote
cores, and updated page-tables. We assume the shootdown
flushes TLB entries of all address spaces on each core, for
simplicity. A page-table frame mapping that is updated or
removed typically requires an IPI be sent to all other cores
so that they can flush their TLB caches. This is an extremely
expensive operation that does not scale. SPECK introduces a
second quiescence period: the latency between when a PGTBL
is modified, and when all other cores have flushed their TLBs.
Toward this, each core maintains a private time-stamp that
tracks the last time it flushed its own TLB during a thread
switch. Quiescence is reached when the time-stamp for each
core is higher than that value.

We have implemented management components that use
two mechanisms to unmap memory from page-tables. The
first uses predictable, periodic TLB flushes to implement
SPECK’s worst-case scalable, TLB coherence protocol. Each
core periodically executes a high priority thread in a dedicated
TLB flush component that immediate blocks and forces a
TLB flush. The second, traditional protocol uses synchronous
TLB coherence provided by manually using ASND objects to
trigger the TLB flushing threads (waiting on ARCVs) on each
core. This approach is not scalable, but provides functionality
that is backwards compatible with POSIX munmap.
LIVENESS TABLE TLB quiescence tracking. Tracking qui-
escence on virtual memory (VM) mappings is more difficult
than doing so on slots in a KOTBL. When a VM mapping is
removed from a PGTBL, it is replaced with an offset into
the LIVENESS TABLE. At the same time (atomically), the
present bit is unset, and one of the free bits in the PTE is
used to denote pending quiescence. A comparable operation
is performed when a decons is performed on non-leaf PGTBL
nodes. These entries can only be reused when TLB quiescence
has been achieved. The tracking mechanism assumes an
available user-definable bit in the page-table entry (e.g. one of
the three free bits on x86). However, on architectures with no
such free bits (e.g. ARM), an additional resource table must
be used to track quiescence states instead.

F. Scalable Physical Memory Management

Kernels must track physical memory so that it can be put
to various uses. For example, rmap in Linux enables mapping
from a physical frame, to the PTEs it is mapped into, and
struct page contains a count of the number of mappings
to the frame. As this count doesn’t scale, RadixVM [12]
introduces Refcache. This per-core cache provides scalability
in the average case, but in the worst-case, still requires shared
modifications.

Similarly, SPECK requires tracking of physical frames: if
a frame is mapped into user-level, it cannot be used to back

kernel data-structures, and vice-versa. This is the foundation
for user-level management of kernel memory, and enables the
removal of all memory management in the kernel. In other
words, the retype operation can only be conducted on a
frame when it is no longer used in its previous type’s capacity.

Frames can be in one of three types: Untyped, in which
case they are referred to in a single (non-present) PGTBL
entry. Similar to the quiescence bit used for VM mappings, a
free bit in the PGTBL entry is used to annotate such untyped
memory. Thus, we assume a spare bit in the page-table entries.
If this assumption is not valid, a separate RESTBL can be
used to track such frames. User virtual memory, in which
case a counter tracks how many times the frame is mapped
into PGTBLs (i.e. with the present bit set). Kernel memory,
in which case the frame is used in a kernel data-structure and
referenced in a slot in a KOTBL. Retyping enables memory
to be changed from one type to another.

A single counter and type variable per page is problematic
due to scalability concerns. Clustered objects [13] enable
distributed counters, local to each core, to be access in the
common case, and only when a total count is required, is
an expensive gather operation performed. Unfortunately, a
straight-forward application of this technique requires too
much memory. On a M -core machine with N physical frames,
for example, N ×M counters are required. Instead, SPECK
takes advantage of the fact that user-level components can
intelligently manage and partition frames for different uses,
and maintains the counts for bundles of frames. Each bundle
is a set of B adjacent frames (in the current implementation,
B = 32), and the type of all frames in a bundle is the same.
retype, then, retypes bundles of frames. Thus, the memory
required for the counters is M×N/B. The choice of B trades
the granularity of frame typing for memory usage.

The per-bundle counters now track all frames in that bundle.
If the pages are user virtual memory, the sum of the bundle’s
counters track the number of mappings of all pages in the
bundle. If the bundle is typed to be kernel memory, then
the counters hold the number of pages used in kernel data-
structures. A retype operation is only possible when the sum
of the count in all core’s counters for a bundle is zero. A subtle
additional constraint is that when retyping from user-level
virtual memory to untyped, TLB quiescence is also required,
and is tracked similar to how quiescence is tracked for user
memory mappings.

The retyping operation is not scalable as it must read cache-
lines modified on other cores. Management components still
maintain control over the response time of the kernel: retyping
should be rare (or non-existent on statically-configured sys-
tems), and can be performed on isolated cores. This implies
that a number of cores should be devoted to such non-scalable
operations, and the rest (the hard real-time cores) will benefit
from low response times.

G. Scalable Asynchronous Notifications

The asnd and arcv operations are used for asynchronous
notifications and are the primary mechanism for sending
inter-core, preemptive notifications. Hardware Inter-Processor



Interrupts (IPIs) provide asynchronous inter-core notifications
(via local-APICs on x86), and are used by these operations.

x86 processors do not provide message passing; data to
accompany the remote interrupt is passed via shared memory.
Thus, many operating systems (including Linux and Fiasco)
use a lock-protected queue per core to pass messages with
IPIs. To avoid the contention of M − 1 cores modifying
a core’s message queue, SPECK uses pair-wise, single-
producer, single-consumer, wait-free ring-buffers to deliver
messages. Each queue has a head and tail offset, and a number
of cache-line aligned data items. This provides predictable
overheads as the sending core, and receiving core transfer
three cache-lines (two written by the sender – head and data,
one by the receiver – tail). The only data passed in the buffer
is that which is necessary to identify the designated ARCV
kernel object. No arguments are sent, as queuing them could
require possibly unbounded memory.

The cost for this predictable overhead for message passing
is in memory consumption for the the pair-wise queues.
Though M2 queues are necessary, they are each relatively
small given the paucity of data passed.

V. SYSTEM GUARANTEES

SPECK’s design meets the goals laid out in Section III.
Here we emphasize a number of guarantees that are necessary
for the correctness of SPECK.
Synchronized modification of kernel data-structures.
Atomic instructions are used to modify individual kernel
objects, and the activation/deactivation protocols (discussed
in Section IV-C) are used for modifications larger than a
word. All other accesses are to core-local data-structures
(Sections IV-C, IV-F, and IV-E).
Component-controlled interference and latency bounds.
Modifications to shared cache-lines are only allowed within
components that have access to higher-order RESTBLs. Man-
agement components do not give out this capability (Sec-
tions IV-C and IV-A). Thus kernel contention is mediated
only by trusted components capable of carefully managing
resources. The explicit mapping of the resource namespace to
cache-lines enables these components to avoid false-sharing
(Section IV-D). The strongest guarantees are made by manager
components by ensuring that cores with low response-time
requirements don’t modify any kernel cache-lines, instead
outsourcing such modifications to other cores.
Kernel execution has a bounded latency. All paths in
the SPECK kernel have bounded execution time. The entire
kernel is lock-less. There are very few loops in the kernel,
and all of them are bounded. RESTBLs all have a fixed depth,
and lookup is constant-time. The longest loop in the kernel
zeros a page to be used for a kernel data-structure, or when
retyping it to be user-level-accessible (Section IV-F). Results
on our architecture show that this page zeroing operation
has acceptable latency. Were it not, we’d need to include
preemption points [7]. There are no spin-locks in the kernel,
and when contention between cores is detected (with a failed
cas instruction), the kernel API returns a failure (Section IV-B
and IV-C) instead of re-trying the operation. Thus, kernel

execution time is trivially bounded on cores that only read
kernel data-structures (i.e. hard real-time cores). It is bounded
on cores that update data-structures by hardware-imposed
coherency latencies.
Kernel memory is inaccessible to user-level. The retyping
facilities of SPECK (Section IV-F) guarantee that each frame
can be either typed as kernel memory (along with its bundle
of frames), or as user virtual memory, but not both. This
is tracked with distributed counters and is integrated with
quiescence.
Kernel type and memory safety. SPECK guarantees that
no kernel object can be deallocated or have its type changed
while references to it exist. Key to maintaining this invariant
is ensuring that a quiescence period has elapsed since the
object is made inaccessible. Section IV-E discussed how these
periods are maintained based on 1) the kernel WCET, and
2) on scheduled TLB flushes. Rare kernel data-structures
that are aliased use specialized reference counting schemes
(Section IV-C).
No kernel memory leaks. SPECK ensures that all kernel
memory is referenced transitively from the initial component’s
RESTBL – i.e. that it isn’t leaked and unrecoverable. This is
provided by a combination of an API that only moves memory
between structures (Section IV-B), and never removes refer-
ences entirely. When a RESTBL node is being deactivated,
it is scanned to ensure that it has no references to other kernel
structures. Given these two guarantees, every kernel object
should be reachable from the boot component’s RESTBL.
Kernel support for user-level resource management.
Scheduling is performed in user-level components using the
direct dispatching support for thread kernel objects, and asyn-
chronous end-points for interrupts (as in [3]). Memory map-
ping/kernel object management components have references
to the PGTBLs/KOTBLs of the components they manage.

VI. EVALUATION

To evaluate and demonstrate the scalability and predictabil-
ity of SPECK, we conduct µ-benchmarks of various opera-
tions in SPECK, and compare against Fiasco.OC (henceforth
referred to as Fiasco), release-2014022815. Fiasco is from
the L4 µ-kernel family. It is a fully preemptive kernel with
low response times [8], which is designed for hard real-time
computation. All experiments are run on the same 4 socket,
40 core, hardware from Section II. To avoid interference, core
#40 is dedicated to handle non-benchmark workloads.
Measured Worst-Case Execution Time. In this section
we try to evaluate the WCET of SPECK operations as
well as average execution time. As mentioned earlier, all
paths in SPECK have bounded length and therefore bounded
WCET. Statically evaluating WCET itself is a complicated
process, especially considering multi-core factors including
cache coherency. To evaluate worst-case latencies, this section
instead focuses on empirical measurements. Thus all reported
“worst-case” measurements must be interpreted as “worst-
case measured latency”. Due to the difficulty of measuring
worst-case latencies with cache-coherency effects, we use
two empirical methods to measure latencies: 1) measured



execution time while flushing all caches, and 2) execution time
with maximal cache coherency traffic due to modifications to
shared cache-lines.

With the cache flushing case, a complete cache+TLB flush
is done before measuring an operation. This emphasizes the
impact of DRAM and cache latency on execution time. How-
ever, the high overhead of the flush operation itself reduces the
degree of cache contention significantly (i.e., causing a very
low cache contention rate). This case approximates WCET
on a single core platform as cache-coherency has very limited
impact. On the other hand, to emphasize the execution impact
of cache coherency traffic, each core does measurements in
a tight loop, therefore maximally contending on the shared
cache-line. Neither of these techniques computes the absolute
theoretical WCET. However, we believe the measured WCETs
in both cases are reasonably representative and approximate
the theoretical WCET.

A. Hard Real-Time Subsystem Scalability and Predictability

First, we implement a manager component that provides
an execution environment for scalable predictability for HRT
computation. It creates components such that all operations
they perform are not on a higher-order RESTBLs, and it per-
forms activation/deactivation to create/delete commu-
nication channels (capabilities, here) and map/unmap pages.
It explicitly avoids shared cache-line contention by carefully
using the RESTBL namespace (Section IV-D). These opera-
tions are tested in a management component (task) in both
SPECK and Fiasco.

To demonstrate scalable predictability, all operations are
measured under four different core counts. The minimal
number of sockets is always used. In all cases, each operation
is measured 1 million times in a tight loop; average cost, max-
imum cost and standard deviation are measured and reported
(in CPU cycles). Irrelevant interrupts (e.g. timer interrupts
and System Management Interrupts) are filtered out as they
must be accounted for separately. We do not flush caches
before each measurement. Flushing all caches is an extremely
expensive operation that hides the scalability aspects of the
test. We will investigate this in Section VI-B.
Core-local IPC. As one of the most common operations in
µ-kernel based systems, IPC performance is critical in any
µ-kernel, and we measure its round-trip cost between two
protection domains. To assess scalability we measure IPC
costs with 4 core counts (i.e. threads on that many cores IPC
between the same pair of protection domains).

In SPECK, the IPC is via a SINV/SRET pair between two
components. In Fiasco, two threads (with same priority, and
from different tasks) on each core are used to measure IPC
cost. The client thread invokes ipc call and the server thread
invokes ipc reply and wait.

Discussion. The results of IPC benchmark are shown in
Figure 3. Round-trip IPC cost is reported in cycles. SPECK
achieves perfect scalability for both average and maximum
overhead, and outperforms Fiasco in both cases. Fiasco main-
tains consistent, scalable average overhead on different core
counts. However the max overhead increases to more than
11K cycles on 39 cores.
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Fig. 3: IPC Benchmark Results

Cross-core communication benchmark. Cross-core commu-
nication is common and useful in multi-core platforms. As
discussed in IV-B, ASND and ARCV provides asynchronous
communication channels which is used for cross-core com-
munication in SPECK via IPIs (Section IV-G). In Fiasco, the
same IPC API as before is used, except one-way sends and
one-way receives are used to mimic notification, rather than
synchronous behavior. IPIs are used for event notification by
both mechanisms.

The benchmark measures pair-wise cross-core communica-
tion costs. Each client thread on a core communicates with the
dedicated server thread on the paired core. For configurations
with 2 or 10 cores, all communication is intra-socket; for cases
with 20 or 38 cores, all communication is inter-socket.

Discussion. Figure 3 includes the cross-core communica-
tion costs on both systems. Because hardware IPI generates
contention on the APIC bus, higher overhead are observed
for both systems when more cores are involved. SPECK
and Fiasco have comparable average costs, while SPECK
has relatively lower max overhead (more than 50% on 38
cores) and smaller standard deviation. The software overhead
in SPECK remains constant across the core numbers here, so
the overhead is hardware imposed. Fiasco sends IPIs in both
directions for coordination reasons. Though these are ignored
on the sender, they create more traffic on the APIC network
and QPI links, which might account for some of the increase
in worst-case overhead.
Memory mapping / unmapping. SPECK provides scalable
and efficient memory mapping / unmapping mechanisms,
which enables virtual address mappings to be built dynam-
ically even for hard real-time computation. In this benchmark
we measure the costs of memory mapping and unmapping
with different numbers of cores.

For all configurations, only one thread conducts map /
unmap on each core. However, all threads are in the same
address space to emulate a manager component. Each thread
maps a physical page to a dedicated, distinct region in its
virtual address space. In SPECK, we explicitly avoid false-
sharing, i.e. different cores modify different cache-lines in the
page table.
Capability activation / deactivation. Similar to memory
mapping and unmapping, SPECK allows scalable capability
operations (e.g. activation and deactivation of SINV objects).
The benchmark setup is also similar in both systems. Cache-
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Fig. 4: Memory / Capability Operation Benchmark Results (in Log Scale)

line false-sharing is avoided in SPECK.
In Fiasco, system tasks of the L4 Runtime Environment

interfered with execution, and manually re-prioritizing them
did not have the desired impact. We manually modify the run-
queue to remove them while the tests are running to avoid
large perturbations in the worst-case costs.

Discussion. Results of memory and capability operations
in Figure 4 show the benefits of the SPECK design: low
average and maximum overhead, and small standard deviation
across all operations. On the other hand, Fiasco suffers from
a spin-based shared lock and unscalable TLB shootdown for
memory unmapping, which result in extremely high overhead:
millions of cycles on average, and hundreds of millions of
cycles maximum. The high overheads of those operations
make their use unrealistic in HRT computation. Even for
non-RT applications, the overheads are a potential scalability
bottleneck.

The cost of thread dispatch in SPECK is measured by two
threads on the same core switching to each other. As thread
objects are indexed through the KOTBL, and are core-local
data-structures, thread dispatch cost in SPECK is very low –
with average cost 463 cycles and maximum cost 528 cycles
on 39 cores.

B. Response Time of Hard Real-Time Subsystems
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Fig. 5: Measured Worst-case Interrupt Response Time
In this subsection we evaluate the interrupt response time of

SPECK. Based on the non-preemptive design of SPECK ker-
nel, the response time of the system is determined by the
longest execution time in kernel. We evaluate the impact
of each of the operations in Section VI-A on interrupt re-
sponse time. The response time measured in this section is
the response time of Inter-Processor Interrupts (IPIs), which
approximates I/O response time in a reasonable way. Like L4
and other µ-kernels, in COMPOSITE IRQs are mapped into
user-level and delivered to handler components.

To measure the response time, a sender core sends IPIs
using the system’s cross-core communication mechanism to
a high priority thread on a receiver core; low priority threads
on all cores aside from the senders perform an operation to
provide interference. The response time of the IPI to the high
priority thread is measured on the sender core (a single word
is written to shared memory when the notification is received).

At core counts ≥5, Fiasco deadlocks. This is due to a
bug in the helping lock implementation – which uses thread
migration – that leaves the state of the lock owner variables
inconsistent. To avoid this deadlock, we prevent the low-
priority thread on the receiving core from migrating (migration
happens when preempted while holding a lock). This should,
if anything, avoid the overheads of migration which could
interfere with high priority execution. Thus we believe our
modifications do not penalize Fiasco.

Discussion. Results of the worst-case interrupt response
time are reported in Fig 5. Though Fiasco is a preemptive
kernel, interrupts are briefly disabled in the lock implemen-
tation, and as the lock cache-line bounces between cores,
the response time will rise. Thus, with more cores actively
performing operations in kernel, the response time of Fiasco
is impacted and increased to above 130K cycles with 39 cores.

Two cases of response time in SPECK are measured: with
and without cache+TLB flushing. Results in the previous
subsection show that scale in SPECK does not impact ex-
ecution time in kernel (which is response time because of
the non-preemptive kernel design). As shown in Fig 5, the
response time in SPECK w/o cache+TLB flushing is low and
consistent with more than 10 cores. To evaluate the impact
of caches on the SPECK results, the same tests are executed
with cache+TLB flushed (including entries with global bits
set) on the receiver core. Due to the high overhead of cache
flushing (millions of cycles on our hardware), each case is
measured 10 thousand times. Results show that the response
time is below 24K cycles, which is the worst-case response
time in SPECK. Thus, even at 40 cores, the response time of
SPECK is dominated by the same caching factors that equally
impact the system on a single core. This is exactly the scalable
predictability that is the main goal of SPECK.

An observation is, with cache+TLB flushing, the worst-
case response time is the 2-core case. With more cores, the
response time is actually lower. We believe this is because
after the cache / TLB flushing, more cores executing will help
warm up the shared cache faster (e.g. last-level shared cache),
which lowers response time.



Operation Cost (Cycles)
IPC 6024

Capability Activation 8079
Capability Deactivation 7464

Memory Map 10554
Memory Unmap 7770

KOTBL CONS 7290
KOTBL DECONS 9609

KOTBL Activation 14148
KOTBL Deactivation 17463

Memory Retype (to User) 8586
Memory Retype (to Frame) 13497

TABLE I: Measured Max Cost with Cache and TLB Flushing

Table I summarizes the maximum costs of each SPECK
operation w/ cache+TLB flushing. Similarly, cache and TLB
flushing is done before each measurement; each operation is
measured 10K times. However, the cache / TLB flushing
overhead itself limits contention from multiple cores as the
flushing operation causes a large gap between two operations
on a core. Thus the chance of contention are very low. Because
of this, with cache+TLB flushing, we only measure and report
the maximum overhead of each operation on single core. The
worst-case overhead of HRT allowed operations is below 11K
cycles (memory mapping).

Please note that Table I also includes operations that a
component manager would not perform on a core devoted
to HRT computations.

C. SPECK Kernel Quiescence Period

In this subsection, to evaluate worst-case kernel execution
time, we relax the constraint of no false-sharing. Instead,
we pursue maximum contention to measure the worst-case
in all scenarios, including non-HRT cores with unconstrained
operations. The resulting number is required to determine the
kernel quiescence to use for liveness calculations.

For the completeness of the SPECK specification, all
operations in SPECK are measured and reported in this sub-
section, including the ones not allowed in the HRT subsystem.
Table II in Appendix show the results of different operations
with contention (e.g. false sharing). Namely, the operations
are cons/decons of KOTBL, activate/deactivate of
KOTBL/PGTBL, and memory retype. In addition, mem-
ory mapping/unmapping and capability activation/deactivation
are re-measured and reported because contention and false-
sharing are allowed in this case.

From the results in Table II, KOTBL cons/decons op-
erations are the most expensive operations, with average of
63K cycles and max of 277K cycles on 39 cores. This is
caused by 1) shared reference counter and 2) high contention
rate (if no memory is actually allocated after retyping, the
next retyping can happen immediately with quiescence). If
the worst-case overhead of these operations is not acceptable,
RESTBL aliasing can be disabled as it is not an essential
feature. When multiple reference to the same KOTBL object
are not allowed, the contention of cons/decons is eliminated
as well. The next most expensive operations are memory
retype, which have average overhead < 24K cycles, and
max overhead < 100K cycles on 39 cores. Please note
that, as shown in Table I, the max overhead with cache
and TLB flushing is 18K cycles (KOTBL deactivate),
which doesn’t contribute to worst-case execution time when

contention dominates the overhead.
Though SPECK does include some operations that are

not scalable, the capability for management components to
explicitly prevent those operations from occuring on cores
devoted to HRT computation demonstrates the utility of
enabling an explicit mapping between the kernel namespace,
and contention.

VII. RELATED WORK

Predictable shared resource mediation. Significant effort
has been placed into predictable sharing of resources between
processors (e.g. surveyed in [14]) and using improved sharing-
aware analysis (e.g. surveyed in [15]). To avoid the overhead
for locking that implies the coherency overhead from Sec-
tion II, SPECK takes an orthogonal approach by preventing
any contention in the case of kernel access by hard real-
time tasks, and enabling contention to be on at the finest-
granularity and mediated directly with atomic instructions to
avoid locking.
System structure for scalability. Multikernels [16] propose
a share-nothing approach to kernel design. Each core executes
a separate kernel image, and manages disjoint memory sets,
thus coherency contention is impossible, and message passing
is used for inter-core coordination. Although no-sharing kernel
design alleviates high overhead caused by cache coherency,
it limits the flexibility and efficiency of kernel data-structure
sharing. In addition, as the # of cores goes up, the # of
messages, and the overhead of message passing / handling
can also increase. Shared memory is still the fastest mech-
anism for inter-core coordination, and SPECK enables its
use where appropriate, by enabling user-level components to
define sharing policies (including share nothing if desired).
Similarly, [17] specialize a core to perform global scheduling.
Such a technique could be accomplished in SPECK using the
asynchronous inter-core communication facilities. Corey [10]
represents another system design for scalability that enables
explicit control of mappings of namespace regions onto cores.
This support can be emulated in SPECK by sharing select
regions of RESTBLs between different components.
TLB coherency management. Previous systems have opti-
mized the TLB shootdown procedure when access rights of a
page mapping are reduced. As shown by the Fiasco results,
such a shootdown is not scalable. One approach [6] main-
tains per-core bookkeeping to prevent some unnecessary TLB
shootdowns. RadixVM [12] uses separate page-tables for each
core to separately track accessed bits to determine if a TLB
invalidation IPI must be sent. Unfortunately, these systems
do not change the worst case: unscalable TLB shootdown.
SPECK enables asynchronous TLB coherence with delayed
virtual memory reuse, with a latency bounded by periodically
scheduled TLB flushes, thus enabling the avoidance of TLB
shootdowns even in the worst-case.
Increased complexity in user-level managers. The non-
preemptive design of SPECK simplifies kernel design and
enables scalable quiescence-based liveness tracking; higher-
order resource tables enable managers to control parallel
modifications to shared kernel objects. However, the trade-
off for this approach is the increased complexity of user-level



Operation Number of Cores
1 10 20 39

KOTBL CONS 332 (2.00) 441 1688 (769.23) 9669 16419 (9732.71) 84162 62518 (34686.29) 242928
KOTBL DECONS 358 (2.00) 1257 1381 (691.16) 7428 11361 (9732.71) 77523 48878 (34591.28) 276255
KOTBL Activation 1394 (3.16) 2355 1499 (11.66) 8349 1735 (246.75) 11352 2426 (366.62) 13548
KOTBL Deactivation 3494 (9.70) 6258 3580 (19.87) 9384 4045 (228.50) 11355 4501 (391.49) 14119
Memory Retype (to User) 490 (2.24) 1113 1516 (131.64) 8430 5118 (4413.97) 36580 19066 (10497.42) 87411
Memory Retype (to Frame) 1877 (2.00) 2385 1975 (1131.50) 9060 7432 (5326.97) 44166 23546 (13563.87) 96954
Memory Map 422 (2.83) 828 563 (144.88) 2160 1492 (2053.86) 25929 2749 (2954.37) 63219
Memory Unmap 481 (2.24) 1263 600 (158.36) 1641 1305 (1705.90) 25260 3248 (3819.21) 67092
Capability Activation 516 (2.83) 750 627 (252.11) 2766 1249 (1008.75) 15969 1480 (1203.76) 30570
Capability Deactivation 404 (1.73) 1113 637 (204.93) 2130 673 (1044.40) 20265 780 (1144.15) 44745

TABLE II: SPECK Operation Benchmark – Average Cost (Standard Deviation) Max Cost
management components for tracking the RESTBL names-
pace, and for tracking when the slots for deactivated objects
can be reused (i.e. they must track quiescence). Future work
includes the creation of library support that simplifies much
of this management burden for user-level policy components.

VIII. CONCLUSIONS

SPECK uses the co-design of the kernel interface, data-
structures, and contention management mechanisms to yield
a system with scalable predictability for cores with hard real-
time tasks. Though the kernel is non-preemptive, this is used
at scale to provide quiescence to enable common kernel execu-
tion paths with no modifications to shared cache lines. Though
some kernel operations do perform cache-line modifications,
they are controlled using higher-order RESTBLs for access
control. Components with access have an explicit mapping
from the kernel RESTBL namespace, to cache-lines, and are
able to completely avoid inter-core contention. Consistent with
COMPOSITE, SPECK provides fine-grained isolation, and
component-based definition of system resource management
policies.

We show that SPECK performs fundamental system man-
agement capabilities such as communication, thread man-
agement, and memory mapping with both low average-case
overheads, and worst-case overheads, even at high core counts.
SPECK scales perfectly, and is the first system we know of
that provides worst-case scalable TLB coherence. We find that
SPECK’s response times are determined more by the cache
effects that dominate single-core latency, than by coherency
effects, thus demonstrating scalable predictability.
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Fig. 6: Average Overhead of Synchronization Primitives
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Fig. 7: Measured Max Overhead of Synchronization Primitives
Synchronization Primitive Scalability. Fig. 6 and 7 depict
the average and measured worst-case overheads for different
synchronization primitives running on the system detailed
in Section II. Though some implementations do well on
average, a rare view on these operations is with a worst-
case perspective. The maximum values for even the scalable
MCS locks show overheads close to 50µs. The use of such
primitives can cause significant interference and negatively
impact the latencies of hard real-time computations. The lock-
free stack and two spin-locks (w/ and w/o back-off) are not
shown in Fig. 7 as their measured maximum overheads are
orders of magnitude higher due to their non-predictable nature.


	Introduction
	Background and Motivation
	SPeCK Goals
	Design and Implementation of SPeCK
	SPeCK Kernel Abstractions
	SPeCK Functionality and Operations
	Fine-grained Kernel Synchronization
	Component Control over Scalability Properties
	Quiescence-based Kernel Object Liveness Tracking
	Scalable Physical Memory Management
	Scalable Asynchronous Notifications

	System Guarantees
	Evaluation
	Hard Real-Time Subsystem Scalability and Predictability
	Response Time of Hard Real-Time Subsystems
	SPeCK Kernel Quiescence Period

	Related Work
	Conclusions
	References

