
Janus: OS Support for a Secure, Fast Control-Plane

Wenyuan Shao, Xinyu Han, Evan Stella, Linnea Dierksheide, Phani Kishore Gadepalli, Gabriel Parmer

The George Washington University, Washington, DC

{shaowy,kevin han,evanstella,ldierksheide,phanikishoreg,gparmer}@gwu.edu

Abstract—The emergence of the edge cloud, empowered by
advanced wireless technologies such as 5G, is aimed at delivering
predictable, interactive services within low milliseconds. Even in
the traditional cloud, latency-sensitive services are pervasive. To
enable low-latency software, much focus has been on data-plane
optimizations for fast processing of requests. Unfortunately, these
efforts alone are insufficient: effective, low-latency services also
require advances in the control-plane. However, control-plane
operations require strong spatial and temporal isolation between
tenant computations, thus can result in significant overhead.

This paper introduces Janus, an OS abstraction for a flexible
control-plane which provides both strong isolation and low
latency through the use of pervasive kernel-bypass. Janus

leverages Memory Protection Key (MPK) hardware to enable
low-cost control operations for protected procedure call (PPC)
and thread dispatch – two essential building blocks of spa-
tial and temporal isolation. By transparently improving these
fundamental control-plane operations, Janus enables efficient
and predictable user-defined and customizable system control
policies and mechanisms, while maintaining strong isolation.
We evaluate Janus’s ability to extensibly define new control
mechanisms, increase the efficiency of an existing RTOS, and
support low-latency services in a memcached server. Compared
to a Linux approach, a specialized latency-sensitive control plane
using Janus provides over a 6x improvement in throughput,
while providing 99th percentile tail latencies almost 3x lower.
Demonstrating the utility of an efficient control plane, Janus

improves tail latency in a multi-tenant system by orders of
magnitude.

I. INTRODUCTION

Predictably low-latency services have become increasingly

prevalent in our computational infrastructure. For example,

within data-centers, microseconds in the tail matter [1], [2]

and must be designed around [3], [4], [5]. Tail latency is a core

optimization due to low-latency networking and fanout/fanin

architectures [2] where service time is bounded by the worst-

case request latency. Similarly, the proliferation of low-latency

wireless (e.g. 5G) enables the network edge to be accessed in

the low-milliseconds. This enables software running on the

edge to provide cloud services with tighter latency properties,

but emphasizes the need for tightly controlled latencies in

software. To provide low-latency services, much of the focus

has been on optimizing the data-plane [6], [7] – the fast-

path software for processing on requests and providing replies.

Similarly, real-time systems often focus on interrupt response

time as the core system optimization – to enable processing

on the data quickly and within a bounded latency.

Unfortunately, optimizing the data-plane isn’t sufficient.

The promise of cloud infrastructures is to provide strong

isolation facilities to enable third parties to provide poten-

tially low-latency services. Similarly, real-time systems are

f(); g();

f(){...} g(){...}

U

K

f(); g();
f(){...}
g(){...}

U

f(); g();
f(){...}
g(){...}

U

K

(a) Kernel-resident control policies (Linux, seL4)

(b) User-lvl policy, kernel mechanisms (Composite)

(c) User-level policy & mechanisms (Janus)

Fig. 1: An interaction between two threads in different protection
domains (processes). Blue dashed lines are calls to receive some
service and correspond to logically invoking function f() and re-
turning from function g, purple dotted lines indicate thread dispatch,
and dark grey denotes the implementation of the control policy
(including scheduling and thread coordination policies). Examples:
f and g might be sending and receiving on a channel, or unlocking
and locking a lock. (a) OSes such as Linux or seL4 [9] that have
control policies and mechanisms in the kernel. (b) Composite [10]
microkernel that enables user-level control policies, but uses kernel-
resident IPC and dispatching mechanisms. (c) Janus that also enables
user-level control mechanisms, thus avoiding mode switches with
customizable control policies.

adapting to provide the strong isolation facilities required

for consolidation [8] in embedded systems. In such systems,

the control-plane – the software that coordinates resources

between services, processes, and threads – must intelligently

multiplex resources in a latency-aware manner.

Despite their importance, control-plane operations often

involve significant overhead due to the need for strong tenant

isolation which imposes restrictions on access to memory,

processing cycles, and I/O. Isolation mechanisms include page

tables to restrict memory accesses, scheduling, and execution

of I/O management in hardware-isolated protection domains

(either by page table or dual mode protection). These mecha-

nisms entail significant overhead, due to interactions between

user- and kernel-level [11], [12], [13] and between virtual

memory address spaces. This includes micro-architectural ef-

fects [11] from mode-switching, the cache overheads of kernel

paths [12], [13], [14], and TLB cache effects of multiple

address spaces (even with tagged TLBs [15], [16]). Traditional

RTOSes avoid isolation to maintain predictable execution

control through direct scheduling and thread coordination [17].

Other approaches leverage single address space operating

systems to avoid hardware-provided isolation [18], [19], [4],

[20], [21]. Unfortunately, the major focus of existing research

is to optimize the performance of the data-plane while focusing

less on the control-plane, which can become the bottleneck

when strong isolation is required.

In this paper, we present Janus1, depicted in Figure 1(c),

an OS abstraction for a flexible control-plane that provides

both strong isolation and controlled latency. Janus achieves

this by utilizing intra-page-table isolation hardware facilities

to avoid page-table and mode switching overheads, while

integrating them cleanly into a µ-kernel’s capability-based

access control to maintain strong security. Customized pre-

emptive scheduling, coordination, and multiplexing policies

are implemented extensibly at the user-level. When paired with

kernel-bypass-based I/O management techniques, Janus can

avoid all mode- and page table switches enabling a latency-

sensitive control-plane that provides strong, customizable iso-

lation, coordination, and scheduling. Janus’s efficient control-

plane enables 1) customized CPU management and scheduling

policies, 2) inter-thread coordination policies, 3) lightweight

I/O multiplexing, and 4) the fine-grained software partitioning

required for multi-tenancy.

Janus leverages the Memory Protection Keys [22] (MPK)

x86 extension which provides a mechanism for low-overhead

switching between protection domains at user-level (§II-A).

MPK hardware has a number of limitations: protection do-

mains must share a virtual address space (as in Single Address-

Space OSes [23], [24]), there are a limited number of MPK

keys (i.e. 15), untrusted user-level code can change MPK

domains [25], [26], and underlying OSes are susceptible to

confused deputy attacks [27], [28], [29] as they don’t under-

stand intra-process protection domains.

Janus leverages MPK to enable low-cost control-operations

for IPC, scheduling, and inter-thread coordination. It does so

while integrating MPK-based mechanisms into the core OS

ensuring that they provide consistent semantics and security

properties of the underlying capability-based system. This

prevents attacks within existing MPK infrastructures includ-

ing confused deputy and control-flow attacks. It additionally

provides mechanisms to control virtual address spaces to avoid

the 15-key limitation (§III-D).

Janus demonstrates that 1) the control-plane can be cus-

tomized with new coordination mechanisms by implementing

L4-style IPC entirely at user-level that is faster than seL4,

1Janus is the Roman mythological god of gates and transitions, and their
protection. Similarly, our system creates new abstractions and mechanisms
for gate-based control transitions, while maintaining the strong protection of
the underlying OS.

2) RTOS latencies in Patina [30] can be significantly decreased

with efficient control, and 3) latency-sensitive cloud systems

using memcached can achieve significantly improved through-

put and latency due to a customized control-plane and efficient

isolation mechanisms, especially in multi-tenant scenarios.

Contributions. The key contributions of this paper follow.

• Janus introduces a latency-sensitive and customizable

control-plane abstraction for managing executions of mul-

tiple, latency-sensitive and untrusted tenants.

• Janus transparently integrates the existing isolation mech-

anisms in a security-centric OS with those provided by

hardware extensions for memory isolation (MPK), thereby

enabling efficient and predictable extension of control-plane

policies.

• We evaluate Janus and compare it with existing µ-kernels,

a µ-kernel-based RTOS, and Linux.

II. BACKGROUND AND RELATED WORK

Janus uses x86’s MPK to enable direct, user-level switch-

ing of memory protection domains. It expands the execution

model of the open source and publicly available Compos-

ite [10] OS to support fast, predictable control-plane opera-

tions while maintaining backward compatibility with applica-

tion and system code. This section covers the background for

MPK (§II-A) and Composite (§II-B).

A. Memory Protection Keys (MPK)

MPK [22], [31] is an x86 architectural feature that provides

memory protection facilities within a page table. MPK enables

the restriction of memory access within a page table to a

set of pages marked with domains or keys, and provides

user-level instructions to quickly switch active domains. The

Protection Key register’s (PKRU) bits represent active access

rights (read/write) to specific domains. Similarly, each page in

a process is associated with a set of domains. To implement

this, each page table entry contains a bitmap containing up

to 16 domains. The user-level accessible wrpkru instruction

directly updates the read/write access permissions to each

domain in PKRU, thus enabling the dynamic, user-level update

of memory access rights.

As an example, two different ranges of pages in a process

have page table entries that tag them separately as domains

1 and 2. The process executes wrpkru making only domain

1 read/writable. At this point, any accesses to the memory

in domain 2 would page-fault. After executing wrpkru to

make only domain 2 read/writable, memory access to pages

in domain 1 would correspondingly fault. At first glance,

this provides the core of what might be necessary to provide

memory protection domains, with fast switching.

MPK has a number of limitations:

• Unrestricted access to MPK instructions. Any user-level

code can update the active MPK domains, which can easily

subvert the required protection.

• Limited number of MPK domains. As MPK enables only 15

protection domains, it does not scale to all protection domains

in an OS.

• Control Flow Integrity (CFI). When used to communicate

between isolated components, restricting memory accesses

is a necessary but not sufficient metric for security. CFI [32]

must also be maintained. The set of instruction entry points

for Protected Procedure Calls (PPCs), and the instruction

address to be returned to when a client performs a PPC,

must be carefully maintained.

• Semantic gap between OS and MPK protection domains.

MPK provides memory protection domains within existing

process abstractions. This can lead to a mismatch [28]

between OS process access control, and the access control

of MPK protection domains.

Restricting access to MPK instructions. Janus must prevent

user-level code from being able to directly update memory

access controls through the PKRU register. Janus takes a

conventional approach [25], [33], [34] to restricting access

to MPK instructions: we scan the binary and disallow any

memory patterns that match wrpkru or xrstor instructions,

detailed in §V-D.

More than 15 memory protection domains. Research

projects have added interfaces to program and use MPKs [31],

to virtually expand the number of keys [35], or to use both

MPK and VMFUNC [36], [37], [38], [39] to provide a larger

effective number of protection domains. Dynamic approaches

that virtualize many more keys require recoloring the keys

at runtime [40], which slows down the system, and incurs

unpredictable delays. Instead, Janus co-designs the page table

management of address spaces with MPK domains (§III-D) to

enable an unlimited number of clients to use MPK-based PPC

to call the set of control-plane services.

Ensuring PPC CFI. Most MPK approaches generate call-

gates [25], [26], [13] that transition a function call across pro-

tection boundaries directly using the MPK instructions. While

these approaches carefully validate that a specific protection

domain is allowed to call another, they do not validate that a

PPC return specifically corresponds to a PPC invocation. In

contrast, Janus is the first system we know of that ensures

PPC CFI by devoting an MPK domain to logic to track the

sequence of PPCs (§III-B).

Unification of MPK and OS security primitives. In-process

isolation facilities [25], [26], [13] are treated by the kernel as

all part of the encompassing process. Thus system calls can

be used to bypass the MPK isolation facilities, for example

by mmapping memory in another domain [28]. µSwitch [34]

integrates MPK protection domains with those in Linux,

but only in restricted cases to provide stronger isolation of

libraries. Janus integrates MPK-based PPC and protected

dispatch into the strong capability-based security model of an

existing µ-kernel.

B. Composite

Composite is a µ-kernel based on a capability-based access

control model [41], [42]. In Composite, components include

the code and data for execution, a set of functions they export

to be called by other components, and a set of functional

dependencies. Components are isolated using page tables, and

function dependencies exported by another component are

invoked via thread migration-based IPC2. Thread migration-

based IPC [43], [44], [45] is synchronous and mimics func-

tion call semantics. When invoking a function in the server

protection domain, a thread discontinues execution in a client

protection domain, and resumes at a defined entry point in

a server. When returning from that invocation, that thread’s

execution resumes in the client, thereby emulating a func-

tion call and return, but between protection domains. From

the scheduler’s perspective, the same thread executes across

protection domains, thus requiring no thread context switch.

In this paper, we’ll assume that all PPC adheres to thread

migration semantics.

C. Slite

Slite [46] is a user-level scheduling framework designed

for predictable, efficient, and customizable scheduling. Unlike

traditional schedulers that rely on kernel-mediated thread dis-

patch, Slite enables near-zero-cost thread dispatch by directly

saving and restoring thread registers. When dispatching to

a preempted thread, the kernel path is still taken to enable

restoring full register context and potentially switching ac-

tive components. Slite enables schedulers to switch between

threads without kernel involvement, which leads to incon-

sistencies between the tracking of the active thread in the

kernel and user-level. User-level dispatch changes the active

thread, as does kernel-handled interrupts. As both user- and

kernel-level change the active thread, they must coordinate to

understand which thread and component are active. As part of

that coordination, the kernel validates that the scheduler has a

capability to the thread.

To enable this scheduler/kernel coordination, Slite intro-

duces two key data structures: a per-core Scheduler Control

Block (SCB), and a per-thread Dispatch Control Block (DCB).

The SCB tracks the (capability to the) currently active thread,

and the DCB tracks preemption status and register state. While

Janus is built on Slite, the PPC path must have a trustworthy

understanding of the currently active thread, without kernel

coordination. As such, Janus introduces a Protected Dispatch

operation with which the SCB and DCB operations are MPK-

protected.

III. JANUS SYSTEM DESIGN

Janus focuses on two main control operations as building

blocks for OS spatial and temporal isolation: thread dispatch,

and Protected Procedure Calls (PPC). Thread dispatch enables

schedulers to multiplex threads across cores. PPC facilitates

logical function calls between protection domains, supporting

cross-domain coordination and allowing OS abstractions, poli-

cies, and mechanisms to be defined within user-level compo-

2Note that thread-migration-based IPC is different from the “thread migra-
tion” used to colloquially refer to moving a thread from a core to another.
Thread-migration-based IPC used for communication between protection
domains with all execution on the same core. When we reference “thread
migration” in this paper, we always mean thread-migration-based IPC.

nents. These operations represent the kernel-resident control-

plane foundation for memory and processor multiplexing in

Composite. Janus enables both kernel- and user-level control

operations with consistent semantics and security properties.

Scheduling logic executes at user-level in isolated protection

domains. Scheduling policies use thread dispatch to directly

switch between threads. Unlike library-based dispatch (e.g.

in go), Janus switches between actual system threads (not

user-level threads [46]) and supports interrupt-driven thread

preemption. Scheduling and synchronization policies are built

on thread dispatch.

PPCs provide cross-protection-domain function-call seman-

tics whereby a thread in a client protection domain invokes

a function in a separate server protection domain. Client

and server executions are spatially isolated (e.g. in separate

page tables), thus each access separate memory sets, including

disjoint execution stacks. PPCs use thread migration [45] to

avoid switching between threads, thus also avoiding scheduler

interaction during IPC. This approach enables the IPC nec-

essary for protected coordination, in which a client requests

service from a server that provides an abstraction using its

heightened resource access.

Thread dispatch and PPC are the core building blocks

for system control-plane policies for resource management

and coordination. PPC enables µ-kernel-style isolation of

system services, including the system scheduler. PPCs enable

client components to safely invoke the scheduler component’s

functions that provide abstractions for locks, semaphores,

and timing, which in turn utilize thread dispatch to manage

concurrency. In Janus, when paired with kernel-bypass-based

I/O, direct, user-level implementations of thread dispatch and

PPC can avoid all mode-switches while providing traditional,

protected OS services.

A. Goals, Challenges, and Mechanisms

The core goals and key properties of Janus’s design fo-

cus on enabling the integration of customized, efficient, and

predictable control operations into data-paths to enable fine-

grained multi-tenant computation.

G1: Efficient control operations. Janus avoids processor

mode transitions – thus their overheads – on most control-

path operations including both thread dispatch and PPC. This

enables performance-sensitive data-path computations to ef-

ficiently integrate tightly with predictable control operations.

G2: Customizable control-plane operations. Specialized

systems can benefit from customized and extensible

scheduling, control-flow, and communication abstractions.

Micro-second-scale systems [1], [4], [47], [5], [20]

utilize specialized, tail-latency-aware scheduling. Real-

time systems require specific policies that maintain the

predictable temporal properties of tasks.

G3: Uniform security model. Unlike in-process isolation

mechanisms [25], [26], [48], [13], [49], which separate

in-process protection domains from OS processes, Janus

unifies protection domain access-control around capability-

based security, ensuring consistent semantics and security

across in-kernel and user-level control paths.

The core challenge to achieving these goals is that kernel-

level mechanisms for PPC and thread dispatching must co-

exist alongside user-level mechanisms and policies. MPK

hardware only enables 15 different protection domains (§II-A),

thus requiring them to be used alongside normal page-table-

based protection domains to support more components. This

raises the question of how user- and kernel-resident poli-

cies coordinate to identify the currently active protection

domain? To enable preemptive scheduling, interrupts must

directly dispatch between threads within the kernel, neces-

sitating kernel-resident dispatching logic. Consequently, with

user-level scheduling policies and kernel-level dispatching

for preemption, how can user- and kernel-resident policies

consistently determine the currently active thread? To achieve

these goals, Janus’s design focuses on three core mechanisms.

Direct, user-level control operations. Key control opera-

tions to multiplex threads on cores and to conduct IPC be-

tween protection domains proceed transparently and directly

at user-level using abstractions constructed around MPK.

Despite this, to maintain the system’s security properties,

switching threads and doing IPC between protection domains

is only possible if corresponding kernel capabilities exist.

Co-design of kernel- and user-level control operations.

Key data-structures integral to the control fast-paths of

thread dispatch and synchronous IPC are directly accessed

by both user- and kernel-level. This enables the elision of

system calls, instead relying on asynchronous coordination

through these data-structures between user-level policies

and the kernel. Nevertheless, it preserves the semantics

of system operations, replacing them transparently with

efficient, protected, user-level variants wherever possible.

Asynchronous protocols for delayed kernel consistency.

User-level policies perform thread dispatch and IPC

invocations without mode-switching into the kernel, instead

updating the shared data-structures at user-level. Janus

maintains normal, non-shared, kernel data-structures. Control

operations must asynchronously interact with the kernel, so

that it can correctly update its state (i.e. which thread and

protection domain is active) when it is next activated.

B. Janus PPC Design

Protected Procedure Calls enable resource management

services to multiplex their resources across multiple clients.

They require the following operations:

1) save client context (including ip and sp),

2) switch to the server memory protection domain,

3) establish a stack,

4) execute the target server function,

5) upon return, switch back to the client protection domain,

6) restore its context.

The Composite kernel provides IPC by saving client context

in the kernel in a per-thread invocation stack – where the top

of the stack indicates the thread’s active component – and

uses page tables to provide memory protection domains. When

K

(a)

(c) (b)

Fig. 2: Protected Procedure Calls in Janus use MPK-protected
(grey box) per-thread stacks to track PPCs in (a). The rounded
rectangle boxes around components depict address spaces. The first
two components are in the same address space, thus they use direct
PPC through user-level in (a). The second two are not, thus they
must use the kernel PPC path (b). The user- and kernel PPC stacks
are synchronized in (c) to determine the thread’s active component.

calling the server, steps 1 and 2 are performed by an IPC

system call, context is saved in the invocation stack, and a

capability identifies which server to switch to. The client uses

a capability to a PPC endpoint resource, which denotes which

function in which server is invoked. Returning from server to

client in steps 5 and 6 requires a system call, activating a return

capability (with value 0), which pops the client’s context from

the current thread’s invocation stack to return to it.

Janus’s PPC replaces steps 1, 2, 5, and 6 with user-level

operations by using hardware support to switch protection

domains via MPK. Yet it must still a) provide the capabili-

ty-based protection of invocations and returns identical to that

of the kernel, b) isolate the client context from both the client

and server so that the PPC returns to the correct context in the

client, and c) enable the kernel to understand which protection

domain is active for future system calls.

User-level Invocation Stack. To maintain a trace of user-level

invocations, Janus defines a per-thread user-level invocation

stack. Each PPC invocation pushes the client context onto the

stack, along with the capability corresponding to the callgate.

Each return pops the context off the stack, restoring the client.

Figure 2 depicts Janus’s data-structures.

This data-structure serves three purposes. (1) It provides

the control-flow integrity of PPC returns into the client, by

accurately restoring client context (instruction pointer and

stack). (2) It maintains a proper, nested return order to the

correct protection domain, thus maintaining CFI around the

return semantics of PPCs. In contrast, existing codegates [25],

[13], [26] validate only that a return is from the proper (server)

protection domain, but not that the return was paired with a

specific active invocation from the client to the server. (3) It

tracks the capabilities corresponding to the callgates. This

enables the kernel to asynchronously consider both a thread’s

kernel-resident invocation stack and the user-level invocation

stack when identifying which protection domain is active.

The user-level invocation stack must be isolated from both

the client and the server, so that neither can inhibit proper

PPC semantics. Thus, Janus isolates this stack into a separate

system protection domain (with a dedicated MPK domain),

inaccessible from normal components.

Janus’s MPK Callgates. The Janus PPC implementation

uses MPK-based callgates for direct, user-level switching

between protection domains. During an invocation and before

updating the invocation stack, the callgate validates that the

intended client is invoking the callgate. Before switching to

the server, the callgate validates that the invocation stack

was properly updated. Similarly, when returning, the callgates

validate that the server is returning, and that the proper client

is returned to.

The user-level invocation stack must be isolated from com-

ponent code, thus Janus protects in a separate system MPK

protection domain. This requires a callgate that switches from

a client to a server to go through the intermediately user-

level invocation stack domain, thus doubling the number of

protection-domain switches. While this adds overhead, it is

key in Janus to maintain the CFI around PPC and access

control guarantees of the existing OS. §V-A presents a detailed

callgate implementation.

User-level and Kernel PPC Synchronization. While a core

goal of Janus is to provide user-level, direct PPCs, the kernel

must be able to coordinate through the user-level invocation

stack to understand, for a given thread, which protection

domain it is active in. For example, when a component makes

a system call (e.g. to map memory or to delegate a capability),

the kernel must ascertain which capability-table and page table

it should use to identify and constrain access rights. Janus

determines the currently active component and protection

domain by examining both the user and kernel invocation

stacks, despite the asynchronous and preemptive execution of

user-level PPCs.

C. Janus Scheduling Design

Janus is built on the user-level scheduling component in

Composite, extending it to provide protected user-level thread

switching. The kernel has no blocking APIs, which empowers

the scheduler to efficiently define abstractions and policies to

manage concurrency across all components in the system. A

scheduler in Composite is a component that has access to

threads in its capability-table. Dispatching to a thread via a

capability contains at least the following operations:

1) save the current thread’s registers,

2) potentially reprogram the timer to fire at a specific

(scheduler-chosen) time in the future,

3) if the next thread is not executing in the scheduler com-

ponent (as it was previously preempted), switch active

page tables,

4) restore the register contents of the target thread,

All four steps are executed by the Composite kernel during

the dispatch system call (i.e. using a capability to a thread).

While all steps are generally required, context switches for

concurrency primitives often maintain the previously pro-

grammed timer value, and switch to a thread that intentionally

blocked itself (thus was not preempted). In such cases, only

steps 1 and 4 are required. Previous research on Slite [46]

leverages this observation to enable direct, user-level dispatch.

Janus integrates user-level dispatch into the capability-based

K

(a)

(c) (b)

DCB SCB

Fig. 3: Protected dispatch in Janus uses MPK-protected (grey
box) per-thread context structures in (a). The scheduling component
(left) can direct switch between threads, except those that were
preempted and require (b) kernel dispatch. The kernel synchronizes
these structures in (c) to update its view of the currently active thread.

security of Composite by providing dispatch gates that vali-

date a scheduler’s access right to dispatch to a thread.

Protected dispatch data-structures. In Slite (§II-C), the

scheduler has direct access to the SCB and DCB, which

means the PPC path must trust the entire scheduler to properly

update the active thread. While this may be a reasonable

decision in many cases, Janus’s protected dispatch wraps

all of these data-structure accesses and logic in the system

MPK protection domain, thus ensuring that the active thread

is accurately updated during dispatch. Figure 3 depicts the key

data-structures and their interactions in Janus. When a thread

is not in a preempted state (tracked by DCB), the scheduler

component can switch to it with user-level thread dispatch

in (a). Otherwise, the scheduler component must use kernel

dispatch (b) to switch to that thread. When it next executes, the

kernel synchronizes user- and kernel-level states in (c) using

the information in SCB and DCB (§V-C).

User- and kernel-level synchronization. As the user-level

scheduling logic and the kernel execute asynchronously, they

must synchronize around the key thread state. The SCB tracks

the capability to the thread of the active thread. The user-

level scheduler uses protected dispatch to switch between

threads, updating this value. When the kernel activates (i.e.

due to an interrupt, or system call), it looks up the SCB’s

thread capability in the component’s capability table. When an

interrupt preempts a thread, the kernel notes this in the DCB,

so that a future dispatch to the thread through the protected

dispatch path will know it needs to go through the kernel.

D. Janus Address Space Management

As discussed in §II, MPK hardware is limited to 15 different

memory protection domains, motivating the continued use

of traditional protection domains provided with page tables.

MPK does not switch page tables so only components that

share a virtual address space can use MPK for IPC. Thus,

the straightforward combination of page tables and MPK is

limiting: the small number of components that share a page

table with the control-plane component (e.g. the scheduler)

will have fast access to it, but components in other page tables

will require kernel-mediated control operations.

Janus enables control-plane policies to be quickly ac-

cessed at user-level by a large number of components by

1) providing an API to explicitly control the mapping of

a b

c

e

d

E

SEi

SEj

Fig. 4: An example of explicit address space management with
split. Address space E is split into S

E
i and S

E
j . This results in the

components in address space E being invoked directly via user-level
PPC from components in all of E, SE

i , and S
E
j .

component protection domains to virtual address spaces, and

2) creating a split operation that enables sets of components

(i.e. in the control-plane) to be shared across many virtual

address spaces. Address spaces are created explicitly, and

when a component is created, its virtual address space is an

explicit parameter. Two components that are created using

the same virtual address space will share it (i.e. they cannot

have overlapping addresses). Later, when PPC IPC capabilities

link these components, Janus will use through-kernel IPC if

components are in separate address spaces, and MPK-based

PPC gates otherwise.

The split operation enables a set of components to be in

multiple address spaces – thus providing direct, user-level

PPCs from components in any of those address spaces. To

describe this operation, we’ll treat each address space as a

set of all resident components. As shown in Figure 4, split is

performed on an existing address space, E, to generate a new

address space, SE
j , that includes all components in E and any

other components: E ⊆ SE
j . Any two address spaces SE

j and

SE
i split from E share the same components, E = SE

j ∩SE
i . As

such, any of the components in SE
j or SE

i will use user-level,

MPK-based PPC to any component in their address space or

in E. Janus ensures that PPCs and protected dispatch will

use the kernel-based path from a component in E to any

component in SE
j (as SE

j might not be the active address

space at the time of the PPC). Split enables an unlimited

number of components to be able to use MPK-based PPC

to the control-plane components in the shared subset E. This

solution enables predictable and guaranteed access to user-

level PPCs in contrast to approaches that dynamically manage

MPK keys and have significant overhead [36].

IV. JANUS SECURITY AND PREDICTABILITY ANALYSIS

This section analyzes Janus’s security properties and pre-

dictability of its PPC, thread dispatch, and user-kernel syn-

chronization.

A. Janus Security Properties

While Janus’s callgates and dispatch gates enable kernel-

bypass, protection domain switches using wrpkru introduces

challenges. These include (1) access control of the gates them-

selves, (2) mid-gate hijacking, and (3) unauthorized access to

MPK instructions.

Access control for PPC gates. A client protection domain

gains PPC callgate access only when a corresponding capabil-

ity is added to its (kernel resident) capability-table. If access

to the server function is removed by revoking the capability

from the capability-table, the client should correspondingly no

longer have PPC access to the server’s function. To provide

this one-to-one mapping of capability and PPC access, PPC

code is dynamically generated when a PPC capability is

created at component creation time. Likewise, the PPC code is

zeroed out to remove access upon capability revocation. Sim-

ilarly, in thread dispatch, a protected dispatch gate dispatches

to threads for which the schedulers have capabilities in their

capability table. When a thread is added to (removed from)

the scheduler’s capability-table, Janus provides (removes)

dispatch gate access to the corresponding thread’s DCB.

MPKs present another challenge by constraining only

read/write permissions for load/store instructions, without

restricting execution permissions [13], [22]. Thus, Janus’s

callgates and dispatch gates must include logic to prevent

unintended components from leveraging callgates and dispatch

gates to which they should not have access. Both the callgate

and dispatch gate code validate that they are being executed

by the proper component and thread (§V-D).

Control Flow Integrity for PPC. Unlike existing callgate

implementations [25], [26], the user-level invocation stack

provides expected “return” semantics: that each return cor-

responds to a previous call. The invocation stack ensures that

a PPC returns to the proper client, at the correct instruction

and stack pointer.

Preventing mid-gate hijacking. While Janus ensures a

component only has access to PPC callgates if it has the

corresponding kernel capability, malicious components can

still intentionally jump into the middle of a gate in an

attempt to bypass its checks. Were a malicious component to

bypass the necessary checks to validate execution by a proper

component, it could hijack the callgate to illegally switch to

other protection domains. Janus detects these malicious jumps

into the middle of a gate using tokens that are obtained at the

start of the gate, and checked for validity at the end. A jump

into the middle will not properly acquire the token, which will

be detected. Details are in §V-D.

Limiting Access to MPK Instructions. MPK-based iso-

lation requires that applications never directly execute the

wrpkru/xrstor instructions to change active PKRU do-

mains thereby bypassing Janus protection. To ensure that

no wrpkru/xrstor instructions exist in component binaries

outside the Janus callgates, we adopt ERIM’s static binary

scanning [25] approach. A thorough analysis [25] of five large

Linux binary distributions (including over 100s of MLoC),

found only 1213 wrpkru/xrstor instruction sequences, and all

were addressed with standard binary rewriting tools. We found

no instances of these instructions outside of gates in Janus.

B. Janus Predictability Analysis

The user-level PPC path, similar to the kernel implemen-

tation, is bounded including no loops. Call and return paths

each access only two entries on the stack, and the pointer

to the head of the stack. Janus ensures that the kernel PPC

path for synchronization between the kernel and user-level

stacks is also bounded. The number of user-level invocation

stack entries it must process is bounded by the maximum

PPC call-depth, which is a constant. As such, Janus has

predictable PPC control paths for both user- and kernel-level

implementations.

The dispatch gate’s logic includes no loops, and is bounded

– involving only looking up the DCB, and directly updating

it and the SCB. Same as with the kernel path, the dispatch

operation is predictable. When the kernel is activated (due

to a system call or interrupt), it must determine the active

thread. It synchronizes with previous protected dispatch logic

by deriving the currently active thread from the SCB. As such,

dispatch retains predictable execution properties for both user-

and kernel-level implementations.

Synchronization between user-level PPC and dispatch does

impact the performance of kernel operations. To assess the

impact of this, we induce synchronization overheads by mak-

ing multiple direct PPCs and dispatch actions, then measuring

the performance of a kernel-level PPC. This requires syn-

chronizing both with SCB and user-level invocation stacks,

and we find that the kernel PPC slows from 1129 to 1445

cycles – a 27% slowdown. With Janus, users can explicitly

optimize (through the high-level configuration of address

spaces) component PPCs to use the direct, user-level paths

where heightened performance is beneficial, and pay a small

cost of synchronization otherwise.

V. IMPLEMENTATION

This section provides a detailed description of the imple-

mentation of MPK-based callgates for PPC (§III-B) and the

dispatch gate for direct, protected thread dispatch (§III-C).

This section also details the state synchronization between the

user and kernel, as well as the implementation of security

properties in §IV-A.

A. MPK-based Callgates

According to §III-B, Janus allows clients to make PPC

to servers via an MPK-based callgate if the client possesses

the necessary capability in its capability table to invoke

the corresponding server. The callgates are generated by

a trusted constructor component which is responsible for

creating components and allocating capabilities according to

a system specification. The constructor keeps track of the

address spaces, capabilities and PPCs, enabling it to generate

callgates only when adding such a capability. The callgate

switches the active protection domains by updating the PKRU

register with wrpkru. The following pseudocode is abridged

callgate code. The callgate starts by saving the caller’s state.

From line 8 to line 12, the callgate switches to the MPK system

protection domain to push entries into the user-level invocation

stack in lines 14 and 15. Subsequently, a second protection

domain switch is performed to the callee’s protection domain.

Implementation details regarding the security and integrity of

the callgate are discussed in §V-D.

1 JANUS_SAVE_CALLER_STATE

2 ; Save AUTHENTICATION_TOKEN

3 mov $AUTHENTICATION_TOKEN, %r15

4 ; Validate the PPC is from the correct caller

5 rdpkru

6 cmp $CALLER_PROTDOM, %rcx

7 jne handle_abuse

8 mov $SYS_PROTDOM, %rax ; Janus system domain

9 xor %rcx, %rcx

10 xor %rdx, %rdx

11 ; Switch to Janus MPK system protection domain

12 wrpkru

13 ; Push PPC capability and %rsp into INVSTK

14 JANUS_ULINV_GET_INVSTK

15 JANUS_ULINV_PUSH_INVSTK

16 mov $CALLEE_PROTDOM, %rax

17 xor %rcx, %rcx

18 xor %rdx, %rdx

19 ; Switch to callee

20 wrpkru

21 cmp $AUTHENTICATION_TOKEN, %r15

22 jne handle_abuse

23 call callee_fn

B. Thread Dispatch

As described in §III-C, Janus enables user-level direct

switches to threads that were not preempted. The scheduler

determines whether the current thread dispatch is eligible for

using user-level dispatch by checking if the DCB of the next

thread has its context (instruction and stack pointer). Other-

wise, it uses the kernel dispatch to switch to the preempted

thread. Janus implements a user-level thread dispatch gate

in the scheduler. The following psuedocode is an abridged

version of its code.

1 SAVE_THREAD_STATE

2 ; Check if we are in the scheduler

3 mov %rsp, ($ADDR_IN_SCHEDULER)

4 mov $AUTHENTICATION_TOKEN, %r15

5 mov $NEXT_DCB_ADDR, %rsi

6 mov $CURR_DCB_ADDR, %rax

7 ; Switch to system MPK protection domain

8 JANUS_SWITCHTO_SYSTEM_PROTDOM

9 ; Save sp, ip for current thread

10 mov $RESTORE_ADDR, (%rax)

11 mov %rsp, 8(%rax)

12 mov 8(%rsi), %r14

13 mov (%rsi), %r13

14 ; Check if next thread is preempted

15 cmp $0, 8(%rsi)

16 je slow_path

17 JANUS_UPDATE_SCB_ACTIVE_THREAD

18 ; Fast Path

19 JANUS_SWITCHTO_SCHED_PROTDOM

20 cmp $AUTHENTICATION_TOKEN, %r15

21 jne handle_abuse

22 mov %r14, %rsp

23 jmp *%r13

The protected dispatch assumes that registers outside of

instruction and stack pointers have already been saved to the

stack. To save the instruction and stack pointers, lines 10-11

move them to their corresponding DCB entry. We note that

these values being saved indicates to future dispatches to this

thread that protected dispatch can be used as the thread was

not preempted. Lines 12-13 read these register values for the

thread being switched to, and line 15 checks the sp of the next

thread. If zero, this indicates the next thread was preempted,

and the scheduler proceeds with the slow path through the

kernel. Otherwise, if there are valid sp and restore address,

the scheduler continues with the fast-path, updating the active

thread in the SCB on line 17. Finally, the scheduler will switch

to the destination thread update by restoring its stack and

instruction pointer (in line 22 and 23).

Janus offers a secure protected dispatch gate as the SCB

and DCB track critical information including the current

active thread id which is also used in PPC. System designers

configure Janus for either direct dispatch with lower overhead

or protected dispatch with enhanced security. With protected

dispatch, the scheduler does not require trust outside of its

core functionality, as SCB and DCB updates are performed

in protected code. Similar to PPC, using wrpkru to switch

protection domains requires additional checks to prevent ma-

licious accesses, details in §V-D.

C. User-kernel Synchronization

As discussed in §III-B and §III-C, Janus leverages three

user-space structures for synchronization between user and

kernel state: the user-level invocation stack, SCB and DCB.

When the kernel attempts to determine the active thread, it

checks if its (per-core) variable tracking the current thread

differs from the scheduler’s SCB. If so, the inconsistent values

mean that protected dispatches have updated the active thread,

thus the kernel updates its current thread. To determine the

currently active component, Janus is able to locate the corre-

sponding user- and kernel-level invocation stacks of the active

thread. Each of the kernel’s invocation stack entries tracks

the corresponding offset in the user-level stack active when an

address space is invoked (through kernel IPC). To synchronize

execution contexts, Janus’s kernel iterates from this offset

to the current user-level invocation stack top, each iteration

identifying the next component that was invoked through PPC.

The top of the stack denotes the active component.

Both PPC and dispatch paths are lock-free as they must

assume they are preempted at any point. Thus, key variables

serve as synchronization points: the reference to the head of an

invocation stack for PPC, and the active thread id for protected

dispatch. Only when these are updated is the gate’s operations

“committed”, thus accessible to the kernel. Additionally, refer-

ences to components or threads placed into shared structures

are always in the form of capabilities, thus the kernel must

translate (through the corresponding) capability tables, which

component or thread is being referenced.

D. Implementation of Security Properties

Janus’s callgate and thread dispatch gate implement the

security properties described in §IV-A.

Gate access control. Both callgate and dispatch gate must

validate that the proper client is calling the code. PPC callgates

use a similar approach to Underbridge [13]. As shown in the

callgate implementation in §V-A, the callgate retrieves the

active domain via rdpkru (line 5), and compares it to the

domain that is intended to use the gate (line 6). On return, the

callgate makes similar checks by validating that the component

is returning from a call, thus it is at the head of the invocation

stack. To verify if the scheduler is calling the dispatch gate,

the gate in §V-B issues a store to a pre-defined global address

only valid in the scheduler’s memory (line 3).

Preventing mid-gate hijacking. To prevent a malicious com-

ponent from jumping into the middle of a gate, Janus’s im-

plementation of callgates and the thread dispatch gate relies on

a randomly generated 64-bit AUTHENTICATION TOKEN

loaded into a register at the start of the gate, which is later

confirmed to properly hold the correct token. This detects

jumps into the gate, past where the token is loaded. It is highly

unlikely for a malicious adversity to guess the value of the

AUTHENTICATION TOKEN given the 2
64 namespace.

Limiting Access to MPK Instructions. Janus adopts ERIM’s

static binary inspection which scans a sliding window over

each component’s code segment for the wrpkru/xrstor

instruction sequences at system image creation time [25]. We

have not found any components that contain such sequences.

E. Split, Address Space, and Page-Table Management

Janus decouples address spaces and protection domains

by enabling the creation of multiple component protection

domains into shared address spaces. This enables fast PPC

between those components. The split operation (shown in

Figure 4) enables the creation of multiple separate virtual

address spaces that all share a set of PPC-accessible com-

ponents. Component page-tables are safely created from con-

stituent memory frames using retype [10], [9] operations,

and operations to link page-table nodes. Janus adds new

operations into the library that abstracts component creation:

a virtual address space abstraction, and a split operation. Split

is implemented by linking the shared component’s page-tables

(at the first level) into the different virtual address spaces. As

the component’s virtual memory is shared by aliasing within

the page-table, only a single system call is required to link the

second level of the shared component’s page-table into the new

address space’s page-table. Most of the cost of creating new

components is in the page initialization operations (zeroing

them out, or memseting into them), so split adds negligible

overhead, measuring around 7.3 µs on a Cincoze Dx1200

embedded system equipped with a 1.1 GHz processor with

cold cache.

VI. EVALUATION

In this section, we evaluate the system-level overhead of

Janus and performance of real-world applications on Janus

comparing to other existing systems. In particular, in our eval-

uation, we (1) leverage microbenchmarks to evaluate Janus;

(2) assess the extensibility of Janus by comparing with seL4

[50] on seL4 style IPC, the baseline Composite, and Linux;

(3) evaluate the performance of the Patina [30], security-

focused RTOS; and (4) demonstrate the performance of Janus

by running a latency-sensitive application, memcached.

Janus Composite Linux seL4

IPC 408(416)496 1129(1226)1235 8741(9379)218480 1273*

Dispatch 718(866)897 2226(2708)2726 1720(1858)14185 806(1193)1202

TABLE I: Microbenchmarks study the round-trip latencies of inter-
process communication and thread dispatch. We use pipe() as the
Linux equivalent of IPC. All results are in cycles. We organize
the results as average(99th percentile)Maximum. We only show
the average IPC round-trip latency results of seL4 (marked with
*), since there’s no direct equivalent for round-trip IPC in seL4
microbenchmarks. Detailed results of seL4 are in Table II.

All experiments are conducted on a Cincoze Dx1200 em-

bedded system equipped with Intel(R) 12th i9-12900TE CPU,

utilizing 8 performance cores at 1.1GHz. The embedded

system is equipped with an Intel X550T 10GbE NIC for

networking. A client machine with an Intel(R) i7-14700F

CPU with 16 cores and Intel(R) X540 10GbE NIC is used

to drive the workload generation. The Linux evaluations are

performed on kernel version 6.8.0-47-generic. For memcached

evaluations, the client machine uses a modified mcblaster

open-loop workload generator to measure throughput and

round-trip latency. Janus uses DPDK version 22.03.0-rc0 and

memcached version 1.4.39 while the Linux comparison cases

use memcached server version 1.6.14.

A. Microbenchmarks

We first measure the overhead of inter-process communi-

cation (IPC) and thread dispatching in Janus and compare

to the Composite-baseline, Linux, and seL4 in Table I.

Both Composite and Janus thread-migration-based PPC for

communication between protection domains. We use a round-

trip pair of pipe()s as the Linux equivalent of inter-process

communication. To evaluate the overhead of thread dispatch-

ing, we measure the latency of one thread yielding to another.

Discussion. Janus achieves the lowest round-trip latency IPC

across all metrics thanks user-level control operations. Com-

posite and seL4 show similar IPC latency but are nearly 3

times slower than Janus, while Linux pipes are significantly

slower than both systems. Section VI-B provides a detailed

analysis of L4-style IPC latency. Janus reduces the cost

of PPC to that of a Linux system call (e.g.the getppid()

call) of around 304 cycles. Protected dispatch shows similar

benefits: the average thread dispatch latency of seL4 is 100

cycles larger, but Janus improves by over 1400 cycles over

Composite. This cost is larger in Janus and Composite

as a PPC to the scheduler and a yield to another thread

are required – a consequence of the reliable, specializable

scheduling policy. These results demonstrate that the design

of Janus’s control-plane operations significantly reduces IPC

and thread dispatching latencies.

B. Configurable Control Mechanisms and Policies

Janus enables the user-level definition of specialized con-

trol policies. By avoiding kernel interactions on the fast path,

even performance-sensitive systems can leverage increased

spatial and temporal isolation. To showcase Janus’s ability to

customize core control policies and mechanisms, we imple-

ment L4-style synchronous rendezvous between threads [12],

and we evaluate Janus’s benefit when used with an existing

secure, component-based RTOS.

L4-style IPC (“L4-IPC” henceforth) has a number of trade-

offs versus thread-migration-based PPC. A benefit of L4-IPC

is that a server can avoid multi-threaded concurrency by using

a single server thread to receive client requests.

L4-IPC is based on a set of optimizations [14]: (1) threads

synchronously rendezvousing to conduct IPC; (2) a specialized

API that uses call and reply and wait to require only two

system calls; and (3) a fast-path that uses direct switch and

scheduler policy bypass. We’ve implemented an extension to

the scheduler component in 112 lines of code that integrates

all of these optimizations to enable synchronous rendezvous

between threads-style IPC in Janus. It requires synchronous

invocations to the scheduler component (e.g. for call), dis-

patching between threads in the scheduler, and customized

logic for direct switch and policy bypass. Thus, our L4-IPC

extension uses the Janus facilities to extend the system’s

control facilities.

Table II depicts the overhead for round-trip IPC using

Janus’s L4-IPC. We show four different protection domain

configurations: (1) C1: all components share the same address

space, use kernel-bypass IPC, and fast dispatch, (2) C2:

same as C1, but using protected dispatch, (3) C3: all three

components use separate address spaces, using IPC through

kernel, (4) C4: the client and server each split from the

scheduler (§III-D), thus enabling kernel-bypass IPC, but re-

quiring dispatch between address spaces. We compare against

seL4’s fast-path IPC. Since seL4 has no direct round-trip IPC

equivalent in its benchmarks, we use the combined average

latency of SeL4 Call and SeL4 ReplyRecv for comparison.

Discussion. Surprisingly, Janus’s support for L4-IPC is faster

than seL4 using PPC callgates and fast dispatch, despite

enabling configurable scheduling and coordination policies

and emulating (without significant optimization) the fastpath

in seL4. The protected dispatch configuration requires two

switches to the MPK system protection domain, thus incurring

around 700 cycles of additional overheads in Janus’s L4-IPC.

The benefit of this approach is that faults in the scheduler don’t

necessary cause full system failure.

When using separate address spaces for all three testing

components, IPC and thread dispatch must go through the

kernel resulting in a significant slowdown with average round-

trip latency over 4000 cycles and 99th percentile tail latency

over 5000 cycles. The comparison between single and split ad-

dress spaces demonstrates the performance difference between

kernel mechanisms and the Janus user-level control-plane: a

reduction in latency by over 70%.

Patina [30]. RTOSes provide basic facilities for message

passing, event management, and synchronization. Patina is an

RTOS built on Composite that provides these in a multi-

component system focused on isolation. Results from the

System Configuration Avg 99%th Max

seL4 Round-Trip 1273 * *
SeL4 Call 636 640 641

SeL4 ReplyRecv 637 640 641

C1:Janus Single Addr Space, Fast Dispatch 1078 1087 1102
C2:Janus Single Addr Space, Protected Dispatch 1780 2163 3042
C3:Janus Separate Addr Spaces, Kernel dispatch 4484 5435 5968
C4:Janus Split Addr Spaces, Kernel dispatch 3680 3766 4284

TABLE II: Round-trip latency of L4-style IPC comparing seL4
against Janus with different configurations. All results are in cycles.
seL4 benchmarks do not have a direct equivalent of round-trip IPC,
thus we only show average latency which is the sum of the average
latency of SeL4 call and SeL4 ReplyRecv.

Patina paper show competitive performance with Linux, but

significant overheads for some operations, for example, con-

text switches. Janus transparently replaces the control-plane

operations in Patina, this enabling our assessment of how such

an existing system benefits from their increased efficiency.

We execute Patina [30] enhanced with Janus in Table III.

We compare Janus with Composite and Linux across multi-

ple Patina benchmarks: (1) Channel communication between

two threads across address spaces. In Linux, we evaluate both

sockets and pipes and use pipes as they are faster. (2) Channel

communication between two threads across address spaces

with an event manager component notifying threads when

new events have been triggered. The Linux comparison case

uses epoll to await the event. (3) Contented semaphore.

(4) Contented mutex. Both semaphore and mutex have a lower-

priority lock holder that activates higher-priority contender.

Results for uncontended mutex and semaphores avoid any

inter-component coordination, thus results are the same be-

tween Composite and Janus.

Discussion. Compared to Composite, Janus significantly

reduces latency across all metrics for channel communication

with event management (from over 9000 cycles to 3500

cycles) and without event management (from over 5000 cycles

to around 1300 cycles). These improvements demonstrate

that Janus’s ability to reduce overheads for control-plane

operations is a strong enabler for multi-component systems

with strong isolation properties. Linux pipes are nearly 7 times

slower than Janus which shows that Janus with Patina has

better than acceptable performance. For mutex and semaphore

operations, Composite is around 10% better than the Linux

equivalent, but Janus improves over Linux by almost 60%.

We also evaluate alternative approaches for user-level policy

configurations, including those that rely on language runtimes

such as go. Despite user-level definition of many concurrency

operations in go, facilities must exist for synchronizing with

the kernel (e.g. futexes guard the core runtime). Due to this, the

cost for go to RPC between goroutines (i.e.user-level threads)

using channels is on average 10717 cycles, nearly 10 times

slower than Janus’s channel communication without event

management.

Composite Patina RTOS Janus Patina RTOS Linux
Average 99% tail Max Average 99% tail Max Average 99% tail Max

Channel, Direct Switch 5663 5787 9460 1330 1353 7090 8741 9379 218480
Channel, Event Management 9813 9996 22371 3536 3652 13810 10340 13026 186897

Semaphore Contended 5704 5771 9806 2640 2678 6369 6158 6364 11855

Mutex Contended 5628 5688 8507 2789 2842 4839 6592 6810 13356

TABLE III: Patina Overheads in Cycles of Janus and Composite with equivalent Linux operations.

50 100 150 200 250
Per Client Throughput (1K packets per second)

0

3

6

9

12

Go
od

pu
t (

m
illi

on
 re

qu
es

ts
)

Linux Shared Memcached
Linux Separate Memcached

Janus
Composite

(a) Goodput Comparison

50 100 150
Per Client Throughput (1K packets per second)

0

1

2

3

4

99
%

til
e

La
te

nc
y

(m
s)

Linux Shared Memcached
Linux Separate Memcached

Janus
Composite

(b) 99th Percentile Latency of Requests

Fig. 5: Evaluations on goodput and 99th percentile latency of the memcached. Comparing Janus against Composite, Linux with separate
memcached instances and Linux with shared memcached instance.

C. In-Memory Key-Value Store

In this subsection, we investigate the benefits of creating

control-plane abstractions tailored toward low-latency, high-

throughput network-attached services. We further investigate

the co-location of client, tenant code on the node with the

service. This enables restricted hardware (e.g. in the edge) to

densely host multi-tenant computations and services.

We deploy a well-known in-memory key-value store

memcached as a component, with separate scheduler and

NIC manager (for network I/O) components. Tenant com-

ponents use PPC to query the memcached component. We

use DPDK [51] to interact with the NIC, and isolate it in

the NIC manager user-level component. To prevent malicious

access and maximize resiliency, all of memcached, tenant

computations, scheduler, and network I/O are isolated in

separate protection domains. Consequently, each tenant must

perform PPCs to transmit and receive packets via the NIC,

as well as to execute memcached operations. In Janus, all of

these components share the same address space. With Janus

replacing control-plane operations, the memcached application

benefits from both kernel-bypass IPC and user-level thread

dispatch. We run in total 7 tenants across 8 cores with 1 spe-

cialized core devoted to packet receiving and demultiplexing.

We compare Janus with Composite and Linux. The Com-

posite comparison case uses the same configuration as Janus,

but instead of sharing the same address space, Composite

has each component execute in separate address spaces thus

relying on page-table-based isolation and thread dispatching

through the kernel. We configure Linux in two different ways:

(1) running memcached server with 8 threads across 8 cores

which is a close replica of Janus’s setup, and (2) running

7 separate memcached server instances, each with 1 thread

to avoid contention and demultiplexing. The clients generate

a 90% get, 10% set workload with a 16-byte key and 135-

byte value as the default workload of mcblaster. Figure 5b

shows the 99% tail latency of replies as the increase of the

number of packets sent by the workload generator per second.

Figure 5a depicts the changes in goodput as we increase the

client sending rate.

Discussion. In Figure 5a, Composite achieves a goodput of

around 8.1 million rps, while Janus reaches over 10.7 million,

demonstrating a significant 32% increase by focusing on an

efficient an predictable control-plan. This increased efficiency

is also clear when focusing on 99th percentile latencies in

Figure 5b. Composite starts to get overloaded when the per

client throughput is greater than 120K packets per second, but

Janus maintains a tight latency distribution until the per client

throughput is greater than 150K packets per second. Linux

with separate memcached instances achieves only 4.6 million

goodput – about 43% of Janus’s goodput. This is mainly

due to overheads the Linux kernel in packet transmission.

With a shared memcached instance, the goodput of Linux

drops to around 22 million, primarily due to the cost of

demultiplexing and event notification (and the associated lock

1 2 3 4 5
Memcached Operations Per Client Request

0

1

2

3

4

5

6
Go

od
pu

t (
m

illi
on

 re
qu

es
ts

)
Linux Shared Memcached
Linux Separate Memcached

Janus
Composite

(a) Goodput Comparison on Multi-tenant memcached.

102 103 104
Latency (s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
lit

y

Linux Shared Memcached
Linux Separate Memcached

Janus
Composite

(b) Latency CDF with Two Operations Per Client Request

Fig. 6: Multi-tenant evaluation where each client request requires multiple memcached operations. We compare goodput and latency CDF
results with Composite, Linux with separate memcached instance and Linux with shared memcached instance. Composite and Janus
results are with per client throughput at 75K requests per second. Both Linux comparison cases process 15K requests per second per client.

contention), over 60% of the execution time is spent in epoll.

When underloaded in Figure 5b, both Linux configurations

have greater 99th percentile latency than Composite and

Janus: 200 µs compared to around 70 µs. Linux with separate

memcached instances begins to get overloaded when per client

throughput is over 50K packets per second, while Linux with a

shared memcached instance is overloaded when the per client

throughput is greater than 30K – both hitting overload at 33%

and 20% of Janus’s capacity.

Multi-tenant memcached. Instead of making one get or

set request per packet, real-world applications often require

services that require aggregation of multiple memcached oper-

ations [52]. An edge mobile application might query multiple

times for many proximate nodes, before replying to the client.

We emulate this by allowing a single client request to be

handled by isolated tenant components that aggregate data

from multiple memcached queries. Composite and Janus

implement tenant aggregation computations in separate com-

ponents. For the Linux comparison cases, we implement

tenants as separate processes, each binding to a specific

server port to service client requests, and making requests to

the memcached server using local sockets. We evaluate the

goodput and the latency distributions of Composite, Janus,

Linux with a shared memcached instance, and Linux with

separate memcached instances. For Composite and Janus,

each client sends 75K requests per second, while for Linux

approaches, each client sends only 15K requests per second.

These are the empirical values that maximize goodput. The

evaluation is conducted on one million keys, to de-emphasize

contention in memcached.

Discussion. Figure 6a depicts the change of goodput as

increasing the number of memcached operations per client

request. Note that the client throughput for Composite and

Janus is five times larger than for Linux comparison cases.

Both Linux comparison cases achieve goodput around 1 mil-

lion rps while Composite and Janus achieve goodput over

5 million. The goodput of Linux with a shared memcached

instance drops to 500K when having three memcached opera-

tions per client request, while Linux with separate memcached

instances still maintains 1 million goodput. Janus maintains a

high goodput of over 5 million even with 5 operations (PPCs)

per request, whereas Composite drops to 3.5 million. This

indicates Janus’s ability to reduce control overheads.

Figure 6b presents the latency CDF when having two

memcached operations per client request. Composite exhibits

an average latency of 86 µs and 99th percentile tail latency

of 149 µs. Janus decreases both: with an average of 77 µs

and tail latency of 132 µs. Linux with separate memcached

instances underperforms Janus with average latency 172 µs

and 99th percentile tail around 625 µs. Linux with shared

memcached instances is already overloaded and drops around

5% of the total requests due to demultiplexing and event

notifications overheads.

VII. CONCLUSIONS

This paper introduces Janus, which provides a fast, flexible,

and secure control-plane. Janus focuses on reducing system

overhead on two core control-plane operations: PPC and thread

dispatch. Janus leverages hardware-based MPK to enable

kernel-bypass execution of PPC and thread dispatch. It inte-

grates MPK-based and traditional page-table-based protection

domains, supporting over 15 memory protection domains.

We demonstrate Janus’s ability to customize the control

plane while out-performing optimized systems, providing per-

formance improvements to existing RTOSes, and to providing

effective control-plane operations for a low-latency, high-

throughput, multi-tenant systems. Evaluation results show that

Janus effectively reduces system overhead while maintaining

strong isolation for both micro-benchmarks and real-world

applications such as memcached. Janus achieves over 5x

improvements in goodput while delivering 99th percentile

latency approximately 3x lower for memcached services.

Acknowledgements. We’d like to thank our shepherd and

reviewers for their time and effort that significantly improved

this paper. This work is supported by NSF CPS 1837382 and

ONR N000142212084. Any opinions, findings, and conclu-

sions or recommendations expressed in this material are those

of the authors and do not necessarily reflect the views of these

agencies.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” in OSDI’04: Proceedings of the 6th conference on

Symposium on Opearting Systems Design & Implementation. Berkeley,
CA, USA: USENIX Association, 2004, pp. 10–10.

[2] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the

ACM, vol. 56, pp. 74–80, 2013.

[3] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan,
“Shenango: Achieving high {CPU} efficiency for latency-sensitive dat-
acenter workloads,” in 16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 19), 2019, pp. 361–378.

[4] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Mazières, and
C. Kozyrakis, “Shinjuku: Preemptive scheduling for µsecond-scale tail
latency,” in Proceedings of the 16th USENIX Conference on Networked

Systems Design and Implementation (NSDI), 2019.

[5] J. Fried, Z. Ruan, A. Ousterhout, and A. Belay, “Caladan: Mitigating
interference at microsecond timescales,” in 14th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 20), 2020, pp.
281–297.

[6] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion, “Ix: A protected dataplane operating system for high
throughput and low latency,” in Proceedings of the 11th USENIX

Conference on Operating Systems Design and Implementation (OSDI),
2014.

[7] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe, “Arrakis: The operating system is the
control plane,” ACM Trans. Comput. Syst., vol. 33, no. 4, Nov. 2015.

[8] K. Vipin, “Cannoc: An open-source noc architecture for ecu consolida-
tion,” in 2018 IEEE 61st International Midwest Symposium on Circuits

and Systems (MWSCAS), 2018.

[9] K. Elphinstone and G. Heiser, “From L3 to seL4 what have we learnt
in 20 years of L4 microkernels?” in Proceedings of the 24th ACM

Symposium on Operating Systems Principles (SOSP), 2013, pp. 133–
150.

[10] Q. Wang, Y. Ren, M. Scaperoth, and G. Parmer, “Speck: A kernel for
scalable predictability,” in Proceedings of the 21st IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS), 2015.

[11] L. Soares and M. Stumm, “Flexsc: Flexible system call scheduling
with exception-less system calls,” in Proceedings of the conference on

Symposium on Operating Systems Design & Implementation, 2010.

[12] J. Liedtke, “Improving IPC by kernel design,” in SOSP ’93: Proceedings

of the fourteenth ACM symposium on Operating systems principles.
New York, NY, USA: ACM Press, 1993, pp. 175–188.

[13] J. Gu, X. Wu, W. Li, N. Liu, Z. Mi, Y. Xia, and H. Chen, “Harmo-
nizing performance and isolation in microkernels with efficient intra-
kernel isolation and communication,” in 2020 USENIX Annual Technical

Conference (USENIX ATC 20), 2020, pp. 401–417.

[14] J. Liedtke, “On micro-kernel construction,” in Proceedings of the 15th

ACM Symposium on Operating System Principles. ACM, December
1995.

[15] “x86 PCID Documentation. https://www.kernel.org/doc/Documentation/
x86/pti.txt.”

[16] A. Tatar, D. Trujillo, C. Giuffrida, and H. Bos, “TLB; DR: Enhancing
TLB-based Attacks with TLB Desynchronized Reverse Engineering,”
in 31st USENIX Security Symposium (USENIX Security 22), 2022, pp.
989–1007.

[17] “FreeRTOS: http://www.freertos.org, retrieved 5/1/13.”

[18] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gaza-
gnaire, S. Smith, S. Hand, and J. Crowcroft, “Unikernels: Library
operating systems for the cloud,” in Proceedings of the Eighteenth

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2013.

[19] S. Kuenzer, V.-A. Bădoiu, H. Lefeuvre, S. Santhanam, A. Jung, G. Gain,
C. Soldani, C. Lupu, S. Teodorescu, C. Raducanu et al., “Unikraft: fast,
specialized unikernels the easy way,” in Proceedings of the Sixteenth

European Conference on Computer Systems, 2021, pp. 376–394.

[20] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan,
“Shenango: Achieving high CPU efficiency for latency-sensitive data-
center workloads,” in 16th USENIX Symposium on Networked Systems

Design and Implementation, NSDI, 2019.

[21] V. A. Sartakov, L. Vilanova, and P. Pietzuch, “Cubicleos: A library os
with software componentisation for practical isolation,” in Proceedings

of the 26th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, 2021, pp. 546–558.

[22] “Intel 64 and IA-32 Architectures Software Developer Manuals.
https://www.intel.com/content/www/us/en/developer/articles/technical/
intel-sdm.html.”

[23] J. S. Chase, M. Baker-Harvey, H. M. Levy, and E. D. Lazowska, “Opal:
A single address space system for 64-bit architectures,” Operating

Systems Review, vol. 26, no. 2, p. 9, 1992. [Online]. Available:
citeseer.ist.psu.edu/58003.html

[24] G. Heiser, K. Elphinstone, J. Vochteloo, S. Russell, and J. Liedtke,
“The Mungi single-address-space operating system,” Software Practice

and Experience, vol. 28, no. 9, pp. 901–928, 1998. [Online]. Available:
citeseer.ist.psu.edu/heiser98mungi.html

[25] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler,
P. Druschel, and D. Garg, “ERIM: Secure, Efficient In-process Isolation
with Protection Keys (MPK),” in 28th USENIX Security Symposium

(USENIX Security 19), 2019, pp. 1221–1238.

[26] M. Hedayati, S. Gravani, E. Johnson, J. Criswell, M. L. Scott, K. Shen,
and M. Marty, “Hodor:Intra-Process isolation for High-Throughput data
plane libraries,” in 2019 USENIX Annual Technical Conference (USENIX

ATC 19), 2019, pp. 489–504.

[27] N. Hardy, “The confused deputy: (or why capabilities might have been
invented),” ACM SIGOPS Operating Systems Review, vol. 22, no. 4, pp.
36–38, 1988.

[28] E. Connor, T. McDaniel, J. M. Smith, and M. Schuchard, “PKU pitfalls:
Attacks on PKU-based memory isolation systems,” in 29th USENIX

Security Symposium (USENIX Security 20), 2020, pp. 1409–1426.

[29] T. Close, “Acls don’t,” HP Laboratories Technical Report, 2009.

[30] S. Jero, J. Furgala, R. Pan, P. K. Gadepalli, A. Clifford, B. Ye, R. Khazan,
B. C. Ward, G. Parmer, and R. Skowyra, “Practical principle of least
privilege for secure embedded systems,” in 2021 IEEE 27th Real-Time

and Embedded Technology and Applications Symposium (RTAS). IEEE,
2021, pp. 1–13.

[31] S. Park, S. Lee, W. Xu, H. Moon, and T. Kim, “libmpk: Software
abstraction for intel memory protection keys (intel MPK),” in 2019

USENIX Annual Technical Conference (USENIX ATC 19), 2019, pp.
241–254.

[32] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM Conference on Computer

and Communications Security (CCS), 2005.

[33] S. Proskurin, M. Momeu, S. Ghavamnia, V. P. Kemerlis, and M. Poly-
chronakis, “xmp: Selective memory protection for kernel and user
space,” in 2020 IEEE Symposium on Security and Privacy (SP). IEEE,
2020, pp. 563–577.

[34] D. Peng, C. Liu, T. Palit, P. Fonseca, A. Vahldiek-Oberwagner, and
M. Vij, “µswitch: Fast kernel context isolation with implicit context
switches,” in 2023 IEEE Symposium on Security and Privacy (SP).
IEEE, 2023, pp. 2956–2973.

[35] K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athanasopoulos,
“No need to hide: Protecting safe regions on commodity hardware,” in
Proceedings of the Twelfth European Conference on Computer Systems,
2017, pp. 437–452.

[36] J. Gu, H. Li, W. Li, Y. Xia, and H. Chen, “EPK: Scalable and efficient
memory protection keys,” in 2022 USENIX Annual Technical Conference

(USENIX ATC 22), 2022, pp. 609–624.

[37] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia, “Thwarting memory
disclosure with efficient hypervisor-enforced intra-domain isolation,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, 2015, pp. 1607–1619.

[38] X. Wang, S. Yeoh, P. Olivier, and B. Ravindran, “Secure and efficient in-
process monitor (and library) protection with intel mpk,” in Proceedings

of the 13th European workshop on Systems Security, 2020, pp. 7–12.

[39] M. Sung, P. Olivier, S. Lankes, and B. Ravindran, “Intra-unikernel
isolation with intel memory protection keys,” in Proceedings of the 16th

ACM SIGPLAN/SIGOPS International Conference on Virtual Execution

Environments, 2020, pp. 143–156.
[40] Y. Xu, C. Ye, Y. Solihin, and X. Shen, “Hardware-based domain

virtualization for intra-process isolation of persistent memory objects,”
in 2020 ACM/IEEE 47th Annual International Symposium on Computer

Architecture (ISCA). IEEE, 2020, pp. 680–692.
[41] J. S. Shapiro, J. M. Smith, and D. J. Farber, “EROS: a fast capability

system,” in Symposium on Operating Systems Principles, 1999, pp.
170–185. [Online]. Available: citeseer.ist.psu.edu/shapiro99eros.html

[42] J. B. Dennis and E. C. V. Horn, “Programming semantics for multi-
programmed computations,” Commun. ACM, vol. 26, no. 1, pp. 29–35,
1983.

[43] B. Ford and J. Lepreau, “Evolving Mach 3.0 to a migrating thread
model,” in WTEC, 1994.

[44] J. Bruno, J. Brustoloni, E. Gabber, A. Silberschatz, and C. Small, “Peb-
ble: A component-based operating system for embedded applications,”
in Proc. USENIX Workshop on Embedded Systems, 1999, pp. 55–65.

[45] G. Parmer, “The case for thread migration: Predictable IPC in a
customizable and reliable OS,” in Proceedings of the Workshop on

Operating Systems Platforms for Embedded Real-Time applications

(OSPERT), 2010.
[46] P. K. Gadepalli, R. Pan, and G. Parmer, “Slite: OS support for near zero-

cost, configurable scheduling,” in 2020 IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS). IEEE, 2020, pp. 160–
173.

[47] J. T. Humphries, N. Natu, A. Chaugule, O. Weisse, B. Rhoden, J. Don,
L. Rizzo, O. Rombakh, P. Turner, and C. Kozyrakis, “ghost: Fast &
flexible user-space delegation of linux scheduling,” in Proceedings of

the ACM SIGOPS 28th Symposium on Operating Systems Principles,
2021, pp. 588–604.

[48] D. Schrammel, S. Weiser, S. Steinegger, M. Schwarzl, M. Schwarz,
S. Mangard, and D. Gruss, “Donky: Domain Keys–Efficient In-Process
Isolation for RISC-V and x86,” in 29th USENIX Security Symposium

(USENIX Security 20), 2020, pp. 1677–1694.
[49] Z. Mi, D. Li, Z. Yang, X. Wang, and H. Chen, “Skybridge: Fast and

secure inter-process communication for microkernels,” in Proceedings

of the Fourteenth EuroSys Conference 2019, 2019, pp. 1–15.
[50] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,

D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “seL4: Formal verification of an OS kernel,”
in Proceedings of the 22nd ACM Symposium on Operating Systems

Principles. Big Sky, MT, USA: ACM, Oct 2009.
[51] “Intel Data Plane Development Kit (DPDK). http://dpdk.org/.”
[52] C. Kulkarni, S. Moore, M. Naqvi, T. Zhang, R. Ricci, and R. Stutsman,

“Splinter:{bare-metal} extensions for {multi-tenant}{low-latency} stor-
age,” in 13th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 18), 2018, pp. 627–643.

