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1. Background:
• Built upon EdgeOS:
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Evaluation
Experiment setup:

• Power Edge R740 servers.
• Two socket Intel(R) Xeon(R) Platinum 8160 CPUs @2.10GHz each with 24 cores.
• Intel X710 for10GbE NIC.
• Compare Linux, EdgeOS and Edge-RT



Evaluation
Workload description:
1. Bimodal workloads.
2. Light computation ���� =  40��, �������� =  10��, (Kalman filtering)
3. Heavy computation ���� =  5��, �������� =  500��, (ML inference)
4. EdgeRT ∆����ℎ =  8��, ∆����� =  250��.
5. 480 clients/chains, chain length 4, 1920 FWPs in total.
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• Multi-tenant: Strong FWP-based isolation.
• Density: throughput-centric implementation.
• Deadlines:

• FWP inheritance of packet deadlines,
• Bounded deadline inversions,
• End-to-end packet deadline scheduling.
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• Density: throughput-centric implementation.
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Conclusion

Edge-RT: strong foundation for the real-time edge



Questions and Comments?

                      ? || /* */



• A summary of edge-cloud configurations

Existing Technologies

Edge Configurations Deadline-aware Preemptivity Client Isolation Computation Chain Dynamic Workloads Scalability

CFS not deadline-aware preemptive process-based per-client chain supported > 2000

DPDK + OVS/SR-IOV not deadline-aware non-preemptive process-based no chain supported ~ 256

SCHED_DEADLINE per-thread preemptive process-based no chain not supported < 1000

eBPF + XDP not deadline-aware non-preemptive no isolation no chain not supported -

EdgeOS not deadline-aware preemptive FWP-based per-client chain supported > 2000

Edge-RT per-packet preemptive FWP-based per-client chain supported > 2000


