
Edge-RT: OS Support for Controlled
Latency in the Multi-Tenant, Real-

Time Edge

Wenyuan Shao, Bite Ye, Huachuan Wang, Gabriel
Parmer and Yuxin Ren

{shaowy, bitye, hcwang, gparmer, ryx}@gwu.edu

Main purpose of interacting with cloud:
1. Offload computations to the cloud.
2. Aggregate data from multiple clients.

Interacting with the Cloud

Main purpose of interacting with cloud:
1. Offload computations to the cloud.
2. Aggregate data from multiple clients.

Interacting with the Cloud
Large-scale Cloud

Cloud RTT: 20-50ms

Autonomous Vehicles (AVs)

Internet

Main purpose of interacting with cloud:
1. Offload computations to the cloud.
2. Aggregate data from multiple clients.

Interacting with the Cloud
Large-scale Cloud

Cloud RTT: 20-50ms

Autonomous Vehicles (AVs)

Internet

Cameras Sensors

Main purpose of interacting with cloud:
1. Offload computations to the cloud.
2. Aggregate data from multiple clients.

Interacting with the Cloud
Large-scale Cloud

Cloud RTT: 20-50ms

Autonomous Vehicles (AVs)

Internet

Cameras Sensors

Problem:
For both examples, multiple clients
require real-time responses from
the cloud.

Main purpose of interacting with cloud
1. Offload computations to the cloud.
2. Aggregate data from multiple clients.

Interacting with the Cloud
Large-scale Cloud

Cloud RTT: 20-50ms

Autonomous Vehicles (AVs)

Internet

Cameras Sensors

Problem:
For both examples, multiple clients
require real-time responses from
the cloud.

Core Challenges:
1. Huge and unpredictable latency.
2. WAN bandwidth is running out.

What is Edge cloud?

Why Edge cloud?

Interacting with the Edge
Large-scale Cloud

Autonomous Vehicles (AVs)

Internet

Cameras Sensors

Edge RTT: 1ms

Edge Cloud

What is Edge cloud?
1. Compute assets co-located with client devices.
2. Scale: few servers up-to a rack of servers.

Why Edge cloud?

Interacting with Edge
Large-scale Cloud

Autonomous Vehicles (AVs)

Internet

Cameras Sensors

Edge RTT: 1ms

Edge Cloud

What is Edge cloud?
1. Compute assets co-located with client devices.
2. Scale: few servers up-to a rack of servers.

Why Edge cloud?

Interacting with Edge
Large-scale Cloud

Autonomous Vehicles (AVs)

Internet

Cameras Sensors

Edge RTT: 1ms

Edge Cloud

What is Edge cloud?
1. Compute assets co-located with client devices.
2. Scale: few servers up-to a rack of servers.

Why Edge cloud?

Interacting with the Edge
Large-scale Cloud

Autonomous Vehicles (AVs)

Internet

Cameras Sensors

Edge RTT: 1ms

Edge Cloud

Challenges of the Cloud:
1. Huge and unpredictable latency.
2. WAN bandwidth is running out.

What is Edge cloud?
1. Compute assets co-located with client devices.
2. Scale: few servers up-to a rack of servers.

Why Edge cloud?

Interacting with the Edge
Large-scale Cloud

Autonomous Vehicles (AVs)

Internet

Cameras Sensors

Edge RTT: 1ms

Edge Cloud

co-locatedChallenges of the Cloud:
1. Huge and unpredictable latency.
2. WAN bandwidth is running out.

Edge-Cloud Solutions:
1. 1ms RTT with 5G.
2. Using local bandwidth.

What is Edge cloud?
1. Compute assets co-located with client devices.
2. Scale: few servers up-to a rack of servers.

Why Edge cloud?

Interacting with the Edge
Large-scale Cloud

Autonomous Vehicles (AVs)

Internet

Cameras Sensors

Edge RTT: 1ms

Edge Cloud

Challenges of the Cloud:
1. Huge and unpredictable latency.
2. WAN bandwidth is running out.

Edge-Cloud Solutions:
1. 1ms RTT with 5G.
2. Using local bandwidth.

What is Edge cloud?
1. Compute assets co-located with client devices.
2. Scale: few servers up-to a rack of servers.

Why Edge cloud?

Interacting with the Edge
Large-scale Cloud

Autonomous Vehicles (AVs)

Internet

Cameras Sensors

Edge RTT: 1ms

Edge Cloud

Core Challenges of the Edge:
1. Multi-tenancy.
2. High density dynamic workload.
3. Deadline-aware.

Challenges of the Cloud:
1. Huge and unpredictable latency.
2. WAN bandwidth is running out.

Edge-Cloud Solutions:
1. 1ms RTT with 5G.
2. Using local bandwidth.

Multi-tenancy on the Edge

Large-scale Cloud

Edge Cloud

Internet

Edge RTT: 1msCloud RTT: 20-50ms

Robot A Robot B AV A AV B

NF1

NF2

NF3

NF1

NF2

• Network slicing → tenants sharing server capacity.
• Client isolation.
• Tenant isolation.

• Network slicing → tenants sharing server capacity.
• Client isolation.
• Tenant isolation.

Multi-tenancy on the Edge

Large-scale Cloud

Edge Cloud

Internet

Edge RTT: 1msCloud RTT: 20-50ms

Robot A Robot B AV A AV B

NF1

NF2

NF3

NF1

NF2

NF3

NF1

NF2

NF1

NF2

Client Isolation

Multi-tenancy on the Edge

Large-scale Cloud

Edge Cloud

Internet

Edge RTT: 1msCloud RTT: 20-50ms

Robot A Robot B AV A AV B

NF1

NF2

NF3

NF1

NF2

NF3

NF1

NF2

NF1

NF2

Client Isolation
Tenant Isolation

• Network slicing → tenants sharing server capacity.
• Client isolation.
• Tenant isolation.

Multi-tenancy on the Edge

Large-scale Cloud

Edge Cloud

Internet

Edge RTT: 1msCloud RTT: 20-50ms

Robot A Robot B AV A AV B

NF1

NF2

NF3

NF1

NF2

NF3

NF1

NF2

NF1

NF2

• Network slicing → tenants sharing server capacity.
• Client isolation.
• Tenant isolation.

What is Edge cloud?
1. Compute assets co-located with client devices.
2. Scale: few servers up-to a rack of servers.

Why Edge cloud?

Interacting with the Edge
Large-scale Cloud

Autonomous Vehicles (AVs)

Internet

Cameras Sensors

Edge RTT: 1ms

Edge Cloud

Core Challenges of the Edge:
1. Multi-tenancy.
2. High density dynamic workload.
3. Deadline-aware.

Challenges of the Cloud:
1. Huge and unpredictable latency.
2. WAN bandwidth is running out.

Edge-Cloud Solutions:
1. 1ms RTT with 5G.
2. Using local bandwidth.

Large-scale Cloud

Edge Cloud

Internet

Edge RTT: 1ms

Cloud RTT: 20-50ms

Robot A Robot B AV A AV B

NF1

NF2

NF3

NF1

NF2

NF1

NF2

NF3

NF1

NF2

S1 S2 Sn

NF1

NF2

NF3

NF1

NF2

NF3

NF1

NF2

NF1

NF2

E1

High Density Workload

NF1

NF2

NF3

NF1

NF2

NF3

NF1

NF2

NF1

NF2

Large-scale Cloud

Edge Cloud

Internet

Edge RTT: 1ms

Cloud RTT: 20-50ms

Robot A Robot B AV A AV B

E1

High Density Workload

NF1

NF2

NF3

NF1

NF2

NF1

NF2

NF3

NF1

NF2

S1 S2 Sn

Challenging for the Edge to achieve line-rate response time
and support high density workloads with significantly less
hardware resources.

What is Edge cloud?
1. Compute assets co-located with client devices.
2. Scale: few servers up-to a rack of servers.

Why Edge cloud?

Interacting with the Edge
Large-scale Cloud

Autonomous Vehicles (AVs)

Internet

Cameras Sensors

Edge RTT: 1ms

Edge Cloud

Core Challenges of the Edge:
1. Multi-tenancy.
2. High density dynamic workload.
3. Deadline-aware.

Challenges of the Cloud:
1. Huge and unpredictable latency.
2. WAN bandwidth is running out.

Edge-Cloud Solutions:
1. 1ms RTT with 5G.
2. Using local bandwidth.

Deadline-aware Scheduling

Load balancer

Firewall

Firewall

ML inference

packet ingress

packet egress

Why challenging?
1. Chains of computations span cores.
2. Must meet end-to-end deadline of packets.

Deadline-aware Scheduling

Load balancer

Firewall

Firewall

ML inference

E

Core0

Core1

packet ingress

packet egress

Why challenging?
1. Chains of computations span cores.
2. Must meet end-to-end deadline of packets.

Deadline-aware Scheduling

Load balancer

Firewall

Firewall

ML inference

E

Core0

Core1

deadline

packet ingress

packet egress

Why challenging?
1. Chains of computations span cores.
2. Needs to meet end-to-end deadline of packets.

Existing Technologies
1. Optimize throughput by reducing system overhead.

• Kernel bypass networking.
• In-kernel Sandbox.

2. Thread-based deadline-aware scheduling.

Existing Technologies
1. Optimize throughput by reducing system overhead.

• Kernel bypass networking.
• In-kernel Sandbox.

2. Thread-based deadline-aware scheduling.

Kernel bypass Networking
Data Plane Development Kit (DPDK)

User Space

Kernel Space

Network Hardware

Application

Linux
Kernel

Without DPDK With DPDK

Application
DPDK

Linux
Kernel

Server hardware

NIC

Kernel bypass Networking
Data Plane Development Kit (DPDK)
• Achieving isolation between tenants.

1. DPDK + Single Root I/O Virtualization (SR-IOV)

2. DPDK + Open vSwitch (OVS)

Virtual

Hypervisor

Physical

DPDK + SR-IOV

ApplicationApplication

Server hardware

NICvNIC

Hypervisor

VM1 VM2

vNIC

Kernel bypass Networking
Data Plane Development Kit (DPDK)
• Achieving isolation between tenants.

1. DPDK + Single Root I/O Virtualization (SR-IOV)
Multi-tenancy:
Scalability:
Deadline-aware:

2. DPDK + Open vSwitch (OVS)

Virtual

Hypervisor

Physical

DPDK + SR-IOV

Server hardware

NICvNIC

Hypervisor

≤ 256 vNIC

Application

VM1

Application

VM2

vNIC

Kernel bypass Networking
Data Plane Development Kit (DPDK)
• Achieving isolation between tenants.

1. DPDK + Single Root I/O Virtualization (SR-IOV)
Multi-tenancy:
Scalability:
Deadline-aware:

2. DPDK + Open vSwitch (OVS)

Virtual

Hypervisor

Physical

DPDK + OVS

Application

Server hardware

Application

NIC

OVS
DPDK

Application

VM1

Application

VM2

Kernel bypass Networking

Virtual

Hypervisor

Physical

DPDK + OVS

Application

Server hardware

Application

NIC

OVS
DPDK

Application

VM1

Application

VM2
Data Plane Development Kit (DPDK)
• Achieving isolation between tenants.

1. DPDK + Single Root I/O Virtualization (SR-IOV)
Multi-tenancy:
Scalability:
Deadline-aware:

2. DPDK + Open vSwitch (OVS)
Multi-tenancy
Scalability:
Deadline-aware

In-kernel Sandbox
extended Berkeley Packet Filter (eBPF)

User Space

Kernel Space

Network Hardware

Application

Server hardware

NIC

eBPF
program

Linux Kernel

inject

Verification

In-kernel Sandbox
extended Berkeley Packet Filter (eBPF)
• Evaluation:

Multi-tenancy:

Deadline-aware:

User Space

Kernel Space

Network Hardware

Application

Server hardware

NIC

eBPF
program

Linux Kernel

inject

Verification

Existing Technologies
1. Optimize throughput by reducing system overhead.

• Kernel bypass networking.
• In-kernel Sandbox.

2. Thread-based deadline-aware scheduling.

Thread-based Scheduling.

T1

TimeArrive time PeriodDeadline

Periodic tasks with known execution timeSCHED_DEADLINE
Multi-tenancy:

Scalability:

Dynamic workload:

Thread-based Scheduling.
SCHED_DEADLINE

Multi-tenancy:

Scalability:

Dynamic workload:

T1

TimeArrive time PeriodDeadline

Periodic tasks with known execution time

Thread-based Scheduling.
SCHED_DEADLINE

Multi-tenancy:

Scalability:

Dynamic workload:

T1

TimeArrive time PeriodDeadline Deadline

Aperiodic tasks with unknown execution time

Thread-based Scheduling.

T1

TimeArrive time PeriodDeadline deadline

Aperiodic tasks with unknown execution time

Core Problem:
 Schedule tasks instead of packets.

SCHED_DEADLINE
Multi-tenancy:

Scalability:

Dynamic workload:

Edge-RT
1. Background:

• Built upon EdgeOS:
1. Light-weighted isolation abstraction: feather weight process (FWP),
2. DPDK-based fast networking,
3. Fast memory movement between FWPs.

2. End-to-end deadline packet scheduling.

Edge-RT
FWP1

input output1. Background:
• Built upon EdgeOS:

1. Light-weighted isolation abstraction: feather weight process (FWP).
2. DPDK-based fast networking.
3. Fast memory movement between FWPs.

2. End-to-end deadline packet scheduling.

Edge-RT
FWP1

input output

FWP2

input output

1. Background:
• Built upon EdgeOS:

1. Light-weighted isolation abstraction: feather weight process (FWP).
2. DPDK-based fast networking.
3. Fast memory movement between FWPs.

2. End-to-end deadline packet scheduling.

1. Background:
• Built upon EdgeOS:

1. Light-weighted isolation abstraction: feather weight process (FWP).
2. DPDK-based fast networking.
3. Fast memory movement between FWPs.

2. End-to-end deadline packet scheduling.

Edge-RT
FWP1

input output

FWP2

input output

1. Background:
• Built upon EdgeOS:

1. Light-weighted isolation abstraction: feather weight process (FWP).
2. DPDK-based fast networking.
3. Fast memory movement between FWPs.

2. End-to-end deadline packet scheduling.

Edge-RT
FWP1

input output

FWP2

input output

1. Background:
• Built upon EdgeOS:

1. Light-weighted isolation abstraction: feather weight process (FWP).
2. DPDK-based fast networking.
3. Fast memory movement between FWPs.

2. Goal: End-to-end deadline scheduling of packets.

Edge-RT
FWP1

input output

FWP2

input output

End-to-end Packet Scheduling

8

D1 = 8 D2 = ∞1. Deadline inheritance.
• Thread inherit deadline from the packet.

2. Schedule chains of computations.

FWP1 FWP2

1. Deadline inheritance.
• Thread inherit deadline from the packet.

2. Schedule chains of computations.

End-to-end Packet Scheduling
D1 = ∞

8

D2 = 8

FWP1 FWP2

1. Deadline inheritance.
• Thread inherit deadline from the packet.

2. Schedule chains of computations.

End-to-end Packet Scheduling

Stage1 Stage2 Stage3

Core1 Core2 Core3

1. Deadline inheritance.
• Thread inherit deadline from the packet.

2. Schedule chains of computations.

End-to-end Packet Scheduling

S2

S3

Core1

Core2

Core3

Stage1 Stage2 Stage3

Core1 Core2 Core3

Time

S1

1. Deadline inheritance.
• Thread inherit deadline from the packet.

2. Schedule chains of computations.

End-to-end Packet Scheduling

Time

S1

S2

S3

End-to-end deadline

D1 D2 D3

Core1

Core2

Core3

Stage1 Stage2 Stage3

Core1 Core2 Core3

S3

1. Deadline inheritance.
• Thread inherit deadline from the packet.

2. Schedule chains of computations.
• Same deadline for all stages.
• Makes no assumption based on WCET.

End-to-end Packet Scheduling

Time

S1

S2

S3

End-to-end deadline

D1 = D2 = D3 = De

Core1

Core2

Core3

Stage1 Stage2 Stage3

Core1 Core2 Core3

1. Deadline inheritance.
• Thread inherit deadline from the packet.

2. Schedule chains of computations.
• Same deadline for all stages.
• Makes no assumption based on WCET.

End-to-end Packet Scheduling

Time

S1

S2

End-to-end deadline

higher priority
De

Core1

Core2

Core3

Stage1 Stage2 Stage3

Core1 Core2 Core3

S3

Remaining Challenges

1. Frequent thread activation and deactivation.

2. Frequent (inter-core) event notification.

3. EDF policy overheads for frequent activation.

Optimization

1. Deadline-aware batching.

2. Periodic Event Notification.

3. Constant-Time EDF.

1. Frequent thread activation and deactivation.

2. Frequent (inter-core) event notification.

3. EDF policy overheads for frequent activation.

Deadline-aware batching
1. Deadline inheritance of multiple packets.
2. Priority inversions (∆����ℎ).
3. Batching with controlled size.

12

10

15

12

20

FWP2FWP1

D1 = 15 D2 = 10

Deadline-aware batching
15

12

10

8

12

20

1. Deadline inheritance of multiple packets.
2. Priority inversions (∆����ℎ).
3. Batching with controlled size.

FWP2FWP1

D1 = 20 D2 = 10

1. Deadline inheritance of multiple packets.
2. Priority inversions (∆�����).
3. Batching with controlled size.

Deadline-aware batching
15

12

10

8

12

20

Scheduled earlier than they should be

D1 = 20 D2 = 10

FWP2FWP1

Deadline-aware batching

12

10

50

12

10

?

 ∆����ℎ= 5

1. Deadline inheritance of multiple packets.
2. Priority inversions (∆����ℎ).
3. Batching with controlled size.

FWP2FWP1

D1 = 50 D2 = 10

Deadline-aware batching

12

10

50

12

10

(��, ��), � ∈ [�� − ∆����ℎ, ��]

1. Deadline inheritance of multiple packets.
2. Priority inversions (∆����ℎ).
3. Batching with controlled size.

FWP2FWP1

D1 = 50 D2 = 8

Deadline-aware batching

Caused by System overhead

1. Deadline inheritance of multiple packets.
2. Priority inversions (∆����ℎ).
3. Batching with controlled size.

Deadline-aware batching
1. Deadline inheritance of multiple packets.
2. Priority inversions (∆����ℎ).
3. Batching with controlled size.

Batching reduces system overhead

Deadline-aware batching

Caused by priority inversion

1. Deadline inheritance of multiple packets.
2. Priority inversions (∆����ℎ).
3. Batching with controlled size.

Optimization

1. Deadline-aware batching.

2. Periodic Event Notification.

3. Constant-Time EDF.

1. Frequent thread activation and deactivation.

2. Frequent (inter-core) event notification.

3. EDF policy overheads for frequent activation.

Optimization

1. Deadline-aware batching.

2. Periodic Event Notification.

3. Constant-Time EDF.

1. Frequent thread activation and deactivation.

2. Frequent (inter-core) event notification.

3. EDF policy overheads for frequent activation.

Constant-time EDF Scheduling (CT-EDF)
1. Quantize time into fixed quanta.
2. Using array to track each quanta.
3. Priority inversion (∆������).

Constant-time EDF Scheduling (CT-EDF)

...

Current

1. Quantize time into fixed quanta.
2. Using array to track each quanta.
3. Priority inversion (∆������).

D = 10 D = 50 D = 55 D = 100

Constant-time EDF Scheduling (CT-EDF)
1 01 0 0 0 0 0

0 00 0 0 1 0 0 0 01 0 0 0 1 0

...

...

Current

1. Quantize time into fixed quanta.
2. Using array to track each quanta.
3. Priority inversion (∆������).

D = 50 D = 55 D = 100D = 10

Constant-time EDF Scheduling (CT-EDF)
1 01 0 0 0 0 0

0 00 0 0 1 0 0 0 01 0 0 0 1 0

...

...

Current

1. Quantize time into fixed quanta.
2. Using array to track each quanta.
3. Priority inversion (∆������).

(��, ��), � ∈ [�� − ∆������, ��]

D = 50 D = 55 D = 100D = 10

Priority Inversions
Edge-RT achieves line-rate throughput by creating bounded deadline inversions:
1. Batching (∆����ℎ).
2. Periodic event notification (∆�����).
3. CT-EDF (∆������).

Priority Inversions
Edge-RT achieves line-rate throughput by creating bounded deadline inversions:
1. Batching (∆����ℎ).
2. Periodic event notification (∆�����).
3. CT-EDF (∆������).

Time

S1 S2 S3

� ∈ [�� − ���(∆����ℎ, ∆������), ��]

∆����� ∆�����

System Architecture

Composite �-kernel

Hardware

NIC

Physical

Kernel

User-level

DPDK

NIC rx NIC tx

MMA

DPDK rx DPDK tx

FWPs
flow table

FWPs FWPs

CT-EDF Scheduler

System Architecture

Composite �-kernel

Hardware

NIC

Physical

Kernel

User-level

DPDK

NIC rx NIC tx

MMA

DPDK rx DPDK tx

FWPs
flow table

FWPs FWPs

CT-EDF Scheduler

notification queue

System Architecture

Composite �-kernel

Hardware

NIC

Physical

Kernel

User-level

DPDK

NIC rx NIC tx

MMA

DPDK rx DPDK tx

FWPs
flow table

FWPs FWPs

CT-EDF Scheduler

notification queue

Evaluation
Experiment setup:

• Power Edge R740 servers.
• Two socket Intel(R) Xeon(R) Platinum 8160 CPUs @2.10GHz each with 24 cores.
• Intel X710 for10GbE NIC.
• Compare Linux, EdgeOS and Edge-RT

Evaluation
Workload description:
1. Bimodal workloads.
2. Light computation ���� = 40��, �������� = 10��, (Kalman filtering)
3. Heavy computation ���� = 5��, �������� = 500��, (ML inference)
4. EdgeRT ∆����ℎ = 8��, ∆����� = 250��.
5. 480 clients/chains, chain length 4, 1920 FWPs in total.

Utilization Sensitivity

Fig.1. The behavior of light tasks with increasing utilization Fig.2. The behavior of heavy tasks with increasing utilization

Fig.1. The behavior of light tasks with increasing utilization Fig.2. The behavior of heavy tasks with increasing utilization

Utilization Sensitivity

Fig.1. The behavior of light tasks with increasing utilization Fig.2. The behavior of heavy tasks with increasing utilization

Utilization Sensitivity

Fig.1. The behavior of light tasks with increasing utilization Fig.2. The behavior of heavy tasks with increasing utilization

Utilization Sensitivity

Fig.1. The behavior of light tasks with increasing utilization Fig.2. The behavior of heavy tasks with increasing utilization

Utilization Sensitivity

Conclusion
Edge-RT provides a solution for the multi-tenant, dense, latency-sensitive edge cloud.
• Multi-tenant: Strong FWP-based isolation.
• Density: throughput-centric implementation.
• Deadlines:

• FWP inheritance of packet deadlines,
• Bounded deadline inversions,
• End-to-end packet deadline scheduling.

Edge-RT provides a solution for the multi-tenant, dense, latency-sensitive edge cloud.
• Multi-tenant: Strong FWP-based isolation.
• Density: throughput-centric implementation.
• Deadlines:

• FWP inheritance of packet deadlines,
• Bounded deadline inversions,
• End-to-end packet deadline scheduling.

Conclusion

Edge-RT: strong foundation for the real-time edge

Questions and Comments?

 ? || /* */

• A summary of edge-cloud configurations

Existing Technologies

Edge Configurations Deadline-aware Preemptivity Client Isolation Computation Chain Dynamic Workloads Scalability

CFS not deadline-aware preemptive process-based per-client chain supported > 2000

DPDK + OVS/SR-IOV not deadline-aware non-preemptive process-based no chain supported ~ 256

SCHED_DEADLINE per-thread preemptive process-based no chain not supported < 1000

eBPF + XDP not deadline-aware non-preemptive no isolation no chain not supported -

EdgeOS not deadline-aware preemptive FWP-based per-client chain supported > 2000

Edge-RT per-packet preemptive FWP-based per-client chain supported > 2000

