
Challenges and Opportunities for Efficient
Serverless Computing at the Edge ∗

Phani Kishore Gadepalli1,2, Gregor Peach2, Ludmila Cherkasova1, Rob Aitken1, Gabriel Parmer2
1 Arm Research, San Jose, CA 95134, USA

2 The George Washington University, Washington, DC, USA
phanikishoreg@gwu.edu, peachg@gwu.edu, lucy.cherkasova@arm.com, rob.aitken@arm.com, gparmer@gwu.edu

Abstract—Serverless computing frameworks allow users to
execute a small application (dedicated to a specific task) with-
out handling operational issues such as server provisioning,
resource management, and resource scaling for the increased
load. Serverless computing originally emerged as a Cloud
computing framework, but might be a perfect match for IoT
data processing at the Edge. However, the existing serverless
solutions, based on VMs and containers, are too heavy-weight
(large memory footprint and high function invocation time) for
operating efficiency and elastic scaling at the Edge. Moreover,
many novel IoT applications require low-latency data processing
and near real-time responses, which makes the current cloud-
based serverless solutions unsuitable. Recently, WebAssembly
(Wasm) has been proposed as an alternative method for running
serverless applications at near-native speeds, while having a
small memory footprint and optimized invocation time. In
this paper, we discuss some existing serverless solutions, their
design details, and unresolved performance challenges for an
efficient serverless management at the Edge. We outline our
serverless framework, called aWsm, based on the WebAssembly
approach, and discuss the opportunities enabled by the aWsm
design, including function profiling and SLO-driven perfor-
mance management of users’ functions. Finally, we present
an initial assessment of aWsm performance featuring average
startup time (12µs to 30µs) and an economical memory footprint
(ranging from 10s to 100s of kB) for a subset of MiBench
microbenchmarks used as functions.

Keywords-Cloud computing, Serverless, FaaS, IoT, Edge com-
puting, WebAssembly, Wasm, performance management, SLOs.

I. INTRODUCTION

The surge of Industrial IoT and next generation technolo-
gies (such as self-driving cars, smart cities, smart grid, etc.)
enable a growing number of novel applications that require
data processing systems with new performance characteristics
of low (near real-time) execution latency and high quality of
service (QoS):
• Imagine a smart city with an automated street and traffic

lights system that “senses” the traffic flows and aims to
optimize the efficiency of the overall system as well as
intelligently react to medical and fire department emer-
gency requests for meeting their needs and Service Level
Objectives (SLOs).

• Imagine a world where communicating cars and related
data services can alert drivers about dangerous road con-
ditions: “Black ice on the road in front of you (right lane
in 200 meters)”.

∗ This work was mostly completed during P. K. Gadepalli’s summer
internship in 2019 at Arm Research. G. Parmer, P. K. Gadepalli, and G.
Peach are partially supported by NSF No. CNS-1815690 and CPS-1837382.

Both of these applications should process a large amount of
new data coming from multiple diverse sources in near real-
time in order to support the desired functionality. Real-time
performance is expected for detection and control in many
industrial and enterprise systems. Some scenarios require
a response within 10ms [1]. If data analysis and control
logic are implemented in the Cloud, such systems will be
unable to meet the real-time service requirements. Time-
critical applications, such as automotive, simply cannot rely
on connectivity and the Cloud – such applications have to be
run locally “on-device”.

Multiple recent trends and related technological challenges
motivate our interest to efficient serverless computing at the
Edge. Though Cloud computing provides a good solution for
applications designed at human perception speeds, it becomes
inadequate for latency-sensitive IoT applications that rely on
fast, automated decision making with no human in the loop.
To satisfy the performance requirements of such workloads,
we must provide a new way of processing their data closer to
the source; i.e. providing Cloud functionality at the Edge. Ad-
ditionally, this approach would be useful for supporting data
security and privacy issues. No one wants their data breached,
and the risk of that is higher when data is constantly shifted
between Cloud and device. Users are increasingly demanding
privacy and control of their data, and Edge computing is able
to address these multiple concerns. The critical difference
and challenge, when comparing Edge computing to Cloud, is
that the Edge represents a resource-constrained environment,
and therefore Edge resources need to be carefully shared
between multiple tenants and efficiently managed to support
a desirable IoT data processing functionality.

Serverless computing, also known as Function-as-a-Service
(FaaS), offers a new execution model, which enables users to
run their code (a small application dedicated to a specific
task; e.g. a single-unit function) without being concerned
about operational issues. This way, the user is relieved from
any involvement in the server provisioning and resource
management. Serverless applications are intended to be event-
driven and stateless. For example, FaaS could be instantiated
(triggered by the described condition) to execute a predefined
function and shut down when finished. In a commercial
system, a user is charged on a per-invocation basis, without
paying for unused or idle resources. Being supported by
unlimited Cloud resources, serverless computing represents
a form of utility computing with access to elastic scaling
via available on-demand computational resources. Since the
appearance of Amazon Lambda in 2014 [2], many major
cloud providers have offered serverless platforms, including

HYPERVISOR

SCHED MEM DEV

HW

VIRTUAL HW

GUEST OS

SCHED MEM DEV

LANGUAGE LIBRARIES

S
TA

C
K

H
E
A

P

Fn

VM

OS

SCHED MEM DEV

HW

CONTAINER MANAGER

S
TA

C
K

H
E
A

P

Fn

CONTAINER

LANGUAGE LIBRARIES

OS

SCHED MEM DEV

HW

S
TA

C
K

H
E
A

PFn
(.so)

NATIVE WASM RUNTIME

LANGUAGE LIBRARIES

(a) (b) (c) (d)

OS

SCHED MEM DEV

HW

aWsm RUNTIME

SCHED ASYNC I/O

LANGUAGE LIBRARIES

PROFILING

S
TA

C
K

H
E
A

P Fn

S
TA

C
K

H
E
A

P Fn

APPLICATION MANAGER

PROCESS

PROCESS

(A.so) (B.so)

Fig. 1: (a) VM-based serverless. (b) Container-based serverless. (c) Native WASM-based serverless implementation. (d) aWsm approach
for efficient serverless execution at the Edge. (Yellow color indicates the serverless function sandboxes, Green color represents shared
layers and services between sandboxes in different approaches, and Orange color reflects control modules used for function performance
management: scheduling and profiling.)

Google Cloud Functions [3], Microsoft Azure Functions [4],
and IBM Cloud Functions [5].

The existing serverless frameworks host function instances
in short-lived Virtual Machines (VMs) or containers, which
support application process isolation and resource provi-
sioning. These frameworks are somewhat heavy-weight for
operating on Edge systems and not efficient for providing low
latencies, especially when functions are instantiated for the
first time. Startup delays vary across different platforms; e.g.
from 125ms for AWS Lambda to 1sec for Microsoft Azure
Functions [6]. To achieve better efficiency, these platforms
cache and reuse containers for multiple function calls within
a given time window; e.g. 5 minutes. Some users send
artificial requests to avoid container shutdown. In the Edge
environment, the long-lived and/or over-provisioned contain-
ers/VMs can quickly exhaust the limited node resources and
become impractical for serving a large number of IoT devices.
Therefore, supporting a high number of serverless functions
while providing a low response time (say 10ms) is one of the
main performance challenges for resource-constrained Edge
computing nodes.

WebAssembly (Wasm) [7] is a nascent technology that
provides a strong memory isolation (through sandboxing) at
near-native performance with a much smaller memory foot-
print. Wasm enables the users to write functions in different
languages, which are compiled into a platform-independent
bytecode. Wasm runtimes have a power to leverage various
hardware and software technologies for providing isolation [8]
and managing desirable resource allocations.

In this paper, we discuss existing serverless technologies
and their related performance challenges, and highlight the
recent trend of utilizing the Wasm approach to enable efficient
serverless computing at the Edge. We outline the design of
aWsm (pronounced as awesome) – a novel Wasm-based
framework for serverless execution at the Edge, that we
are working on. The proposed design opens up a set of
interesting opportunities for elaborate profiling and SLO-
driven performance management of users’ functions. Finally,
we present an initial performance characterization of aWsm
with average function startup time (12µs to 30µs) and its
economical memory footprint (10s to 100s KB) for a subset

of MiBench microbenchmarks [9] used as functions. The
remainder of the paper presents our results in more detail.

II. EXISTING TRADITIONAL APPROACHES TO
SERVERLESS

In this section, we describe two existing, traditional ap-
proaches used for serverless implementation: VM-based and
Container-based frameworks.

A. VM-based Approaches

Virtualization leverages software to abstract the physical
hardware from guest operating system(s) [10]. A hypervisor
or a virtual machine monitor (VMM) allows creation and
deletion of virtual machines (VMs) and multiplexing the
hardware resources among those VMs. Infrastructure as a
service (IaaS) is a cloud framework which offers VMs,
storage, network and other compute resources to the cus-
tomers as a service. These customers manage only their
operating systems, storage, network, and applications, but
not the underlying cloud hardware infrastructure that enables
IaaS. Though VM-like isolation is the current standard for
multi-tenant hardware sharing [6], VMs are too heavy-weight
for serverless function execution.

Figure 1(a) depicts a serverless function execution in a VM
environment. An instance of a function is a combination of
its code, memory (stack and heap), its language runtime and
the library dependencies (depicted as yellow boxes in Fig-
ure 1(a)). Function footprint is significantly smaller compared
to a footprint of a provisioned VM, which includes guest OS,
virtual hardware resources (provisioned to a VM a priori and
not necessarily required by a function).

All the yellow boxes in Figure 1(a) constitute a function in
a VM environment. The serverless functions are transient and
short-lived. They typically have a small memory footprint.
While VMs are often the opposite – requiring gigabytes
of memory and significantly longer startup and shutdown
times. Additional virtualization overheads for control trans-
fer between the guest OS and the hypervisor as well as
for supporting the hierarchical scheduling (orange boxes in
Figure 1(a)) are quite significant too.

Since VM provisioning might take tens of seconds, server-
less computing providers use inventive optimization tech-

niques for provisioning the function execution environment
faster. For example, via maintaining different VM pools:
(1) a warm pool of VMs (i.e., already instantiated VMs)
which could be assigned to a new tenant and his functions,
and (2) an active pool of VMs that were recently used for
executing a function and are saved to serve the function future
invocations.

Microsoft Azure Functions [4] provide multiple serverless
hosting plans for the customers with an option to host
functions in VMs. In a VM-based hosting plan, the customers
are charged hourly for having the VM instance running –
much like the traditional IaaS billing approach.

There have been other efforts to provide lighter-weight
VMs and significantly faster startup times than traditional
VMs, by Amazon Firecracker [11] and Kata Containers [12].
Amazon Firecracker is a minimalistic VMM that uses Linux
kernel-based virtual machine (KVM) to manage its light-
weight microVMs with memory footprint of 5MB and startup
latency of about 125ms. It is one of the enabling tech-
nology behind the leading serverless cloud platform AWS
Lambda [2].

AWS Lambda has two models of isolation and sandboxing
of serverless functions [13]:
• Using dedicated AWS EC2 instances (traditional VMs) to

isolate different AWS accounts, while individual function
invocations are sandboxed using the traditional container
approaches [14];

• Using Firecracker microVMs to provide sandboxing envi-
ronments for different function invocations.

B. Container-Based Approaches
Containers provide a standard way to package the user

application’s code, configurations, and all the dependencies
into a single object. Containers share an operating system
installed on the server hardware as shown in Figure 1(b). Con-
tainers are run as resource-isolated processes. The containers
are isolated from each other using the underlying system
using security features such as Linux chroot, control groups
(cgroups), and namespaces.

Linux Containers (LXC) [14], Dockers [15], and Win-
dows Containers [16] are different container runtimes, which
containarize the applications into processes with a dedicated
filesystem, providing a full execution environment, while
sharing the host binaries and libraries, where appropriate.
Many leading cloud providers like Amazon, Google, Mi-
crosoft, IBM and others use this technology for enabling
platform as a service (PaaS) and more recently the FaaS [17],
[18], [19], [6], [13].

Figure 1(b) depicts a serverless function execution in a
containerized environment. Each function (yellow boxes) is
packaged into a container image with the language runtime
and the dependencies including libraries. The language run-
times and the library dependencies are not shared between
multiple functions or even multiple container sandboxes of a
single function, thereby impacting the memory footprint of
each function and the function latencies. The green layers
are shared between different functions and the underlying OS
controls container/function scheduling in this framework. The
container manager controls creation, deletion, starting, and
stopping containers in the serverless environment. In some

cases, to enable strong isolation between customers, these
containers are hosted in dedicated per customer VMs [2], [4].

We believe that the existing VM/container solutions are
highly inefficient for enabling low latency functions and
economically utilizing the limited Edge resources.

III. PERFORMANCE MANAGEMENT CHALLENGES

The startup latency (i.e. the latency for initiating a function
instance) in a FaaS platform can vary significantly even for
the same function, from a few milliseconds to several seconds,
depending on a variety of factors. A function execution
might be a “warm-start”, reusing a VM/container from the
previous event of the same function, or it might be a “cold-
start”, where a new VM/container has to be launched, the
function host process needs to be started, etc. Cold-start
latency is one of the major concerns when there is a need
to support a predictable function performance. Moreover,
cold-start latency depends on many additional factors: the
language used for programming the function, the size of
the allocated memory, the amount of code, the number and
types of libraries and their dependencies, the configuration
of the function environment itself, etc. While many of these
factors are under a developer’s control and are considered
for optimization [20], [21], one can achieve only a limited
reduction of the startup latency incurred as a result of a cold-
start.

The next challenging issue is to choose the right amount of
resources (memory and compute power) for executing your
function. Requesting the “right” amount of compute is not
always possible in the serverless frameworks. For example
currently in AWS Lambda, the user can only provide a
memory setting. The minimum allocated amount of memory
is 128MB, with 64MB of increments (with maximum memory
size of 3GB). Once a user selects a memory size, AWS
allocates the CPU quota proportionally. Does the function
runtime performance scale proportionally to the memory
setting? Multiple papers and experiments [22], [6], [23], [24]
show that while, generally, function performance scales with
a memory size, it often exhibits inconsistent behavior. What
if your function has a small memory footprint but you would
like it to finish faster? Current resource provisioning schemas
can be inflexible, inefficient, and lead to unpredictable per-
formance outcomes.

Many current serverless computing platforms suffer from
a lack of performance isolation [6] between the functions,
which makes their performance less consistent and pre-
dictable.

Moreover, function performance depends on the type of
hardware used for the deployed function instance. The Cloud
infrastructure is often heterogeneous [6], [25] as a result of
data center infrastructure upgrades, and this heterogeneity
may significantly impact performance of different invocations
of the same function.

To enable efficient serverless computing at the Edge, a
serverless framework has to support performance manage-
ment capabilities such as:
• Profiling function performance and needed resources (on

the underlying hardware) for support of a desirable func-
tion response/execution time;

• Guaranteeing predictable function performance;

• Efficiently utilizing multi-core hardware;
• Intelligently scheduling submitted function requests: as-

signing and managing the right amount of computing
resources, with possible preemption of functions already
running in the system, to achieve specified function SLOs
(Service Level Objectives), e.g., in a form of soft execution
deadlines.

In the next section, we outline the design of our serverless
solution for supporting these desirable capabilities.

IV. LEVERAGING WEBASSEMBLY FOR
SERVERLESS AT THE EDGE

A. Applying Wasm to Serverless Computing

The existing techniques for enabling serverless in the Cloud
computing environments are often inefficient for resource-
constrained Edge environments and low-latency support of
executed serverless functions. In this section, we describe a
recent trend of applying WebAssembly for serverless comput-
ing to enable fast function startup, efficient handling of in-
vocations, minimizing memory consumption, and supporting
strong security, while also providing fine-grain and accurate
billing to the customers.

1) Introducing WebAssembly: WebAssembly (Wasm) [7]
is a language-, architecture-, and platform-independent low-
level bytecode designed to serve as a compilation target
for code written in various high-level languages like C,
C++, Rust, and many others for deployment of client and
server applications on the Web. Wasm was intended to serve
as an alternative to JavaScript for web browser execution
while providing strong memory-safe, sandboxed execution
environment. A key goal of Wasm is to enable near-native
application speed by taking advantage of common hardware
capabilities available on a wide range of platforms. Google’s
V8 [26] and Emscripten [27] enable Wasm execution in a
browser by compiling a program written in Wasm supported
lanaguage or in WebAssembly Text Format (.wat) [28] to
a JavaScript interpreter using the sandboxing and execution
environment based on JavaScript VMs.

2) WebAssembly using JavaScript VMs: A serverless
framework [29] based on V8, Emscripten, and VM2 [30]
demonstrates Wasm ability to enable the serverless func-
tion execution at the Edge. Though the JavaScript-backend
framework demonstrates significant improvements in startup
latencies of Wasm functions, the overall function performance
is significantly slower (2x to 5x times of native perfor-
mance) [29]. This is due to the overheads and complexities
in JavaScript virtual machine backend and its sandboxing
mechanisms. The serverless functions are often registered
once and have thousands of invocations per day, therefore the
use of JavaScript JIT compilation introduces the additional
(significant) overhead in the execution time of each function
invocation.

3) Native WebAssembly Runtimes: There has been a sig-
nificant effort in adopting Wasm for a native execution, as
it is a portable target for compilation of various high-level
languages. Wasm standard does not necessarily make web-
specific assumptions and there has been significant work to
standardize the WebAssembly System Interface (WASI) [31]
to run Wasm outside Web. The goal of WASI is to create a

system interface that allows the Wasm binaries to be truly
platform independent (by being able to run across different
native platforms).

There are a number of Wasm runtimes [32] for pro-
grams written in different languages: all focused on enabling
the native execution of Wasm. Fastly (www.fastly.com) has
announced Lucet [33], [34] that provides a compiler and
runtime to enable native execution of Wasm applications,
and Lucet can instantiate a Wasm module within 50µs, with
just a few kilobytes of memory overhead. Fastly’s Terrarium
project [35] offers a multi-language, browser-based editor and
a deployment platform based on Lucet.

These existing systems demonstrate the ability of Wasm
runtimes to enable serverless functions have lightweight sand-
box isolation and pushes the edge computing beyond the
limitations of existing serverless implementations.

Figure 1(c) depicts execution of a Wasm function using
a native Wasm runtime. The Wasm functions are Ahead-
of-Time (AoT) compiled to enable the compiler and the
language runtimes to leverage the platform software and hard-
ware mechanisms [8] for providing strong inter- and intra-
sandbox memory-safety. The AoT compilation to shared-
objects significantly improves the startup latencies of native
Wasm function executions and enables code sharing between
multiple Wasm invocations.

The application manager is typically a separate process that
enables multiple Wasm-based function runtimes as separate
processes on these systems. These native Wasm runtimes
enable multiple sandboxes of a function in a single process
and are significantly lighter weight than VMs/containers (yel-
low boxes in Figure 1(c)). The native language runtime, the
libraries, and the OS are shared among multiple functions and
sandboxes (shown as green boxes in Figure 1(c)). Often the
performance and execution properties of different function in-
vocations are not controlled in these existing Wasm runtimes.
A system interface support in the native Wasm runtime in
Figure 1(c) enables the serverless functions to leverage the
OS functionality. However, it is important to note that the
OS scheduler has control (orange box in Figure 1(c)) over
functions executing as seperate processes, and therefore the
performance of different functions.

B. The Novel aWsm Framework and Its Approach to Server-
less Performance Management

The aWsm is a native Wasm compiler and a runtime
framework. The aWsm compiler is Rust-based and uses
LLVM intermediate representation (IR) to enable hardware-
or software-based sandbox isolation checks. The aWsm
runtime leverages the AoT compiled Wasm shared-objects
to enable multiple functions and their invocations within a
single process. Figure 1(d) depicts the aWsm runtime and
its sandboxing mechanism. Multiple functions (e.g., A.so and
B.so) are dynamically loaded into the aWsm runtime. The
yellow boxes in Figure 1(d) are instances of different func-
tions in separate light-weight Wasm sandboxes. The language
runtime, library dependencies, and the OS functionality are
shared and available to different functions running in the
aWsm runtime. The runtime bypasses the Linux kernel to
take full control over the execution properties of different
function invocations. Asynchronous, event-based I/O is used

to enable the sandboxes to wait on I/O completion while
allowing different sandboxes to efficiently utilize the CPU.

Function Execution Control in aWsm: The complexity of
Linux kernel has been growing quadratically with time [36]
which has a significant impact on the performance of the
applications and security of the system (increased attack
surface). The pervasive integration of Internet of Things
(IoT) devices makes the traffic at edge devices significantly
higher and susceptible to the edge system’s processing delays.
The overheads in the Linux kernel interactions significantly
impact the serverless computation and therefore the end-
to-end latency for every invocation. This forms a strong
motivation for aWsm runtime to take a drastic approach,
and provide its own isolation and scheduling facilities for
the management and servicing of function executions.

Providing scheduling of requests and function execution
along with sandbox-based isolation has multiple benefits.
Some of the benefits include,

• Flexible scheduling policy: The runtime has the complete
power in scheduling the sandboxes. The aWsm runtime
scheduling can be configurable (is independent of the
underlying OS scheduler) to facilitate different temporal
guarantees to functions of various importance and critical-
ity requirements. The orange box “SCHED” in Figure 1(d)
is a part of the aWsm runtime unlike Figures 1(a), (b), (c),
where the OS scheduler controls the execution properties
of the function sandboxes.

• Fast sandbox switches: The sandboxing mechanism in
aWsm enables fast context-switches between sandboxes
at user-level thus removing the system call overhead in
the case of co-operative sandbox switches similar to M:1
user-level threads (or green threads) [37].

• Control over preemption: The runtime scheduler leverages
POSIX “signals” to control the preemption in the sandbox
executions. This enables the runtime to have fine-grained
control over the function execution, to provide accurate
accounting and performance profiling of multiple functions
and their invocations. The OS-level software interrupts
(like SIGALRM and SIGUSR1) are leveraged by the
aWsm runtime to enable control over preemption.

• Multi-core execution control: Sharing of resources and
locks in the Linux kernel could induce significant cache-
coherency and inter-processor interrupt (IPI) interference
in a multi-core execution [38] which could directly im-
pact the function execution latencies. The aWsm runtime
partitions the function invocation workload across cores
thus limiting sharing of resources and providing better
predictability properties.

• Management control: The single shared aWsm runtime
captures the performance characteristics of different func-
tion executions in its profiling module (“PROFILING” box
in Figure 1(d)).

We believe that the ability of performance profiling and
control over execution properties of multiple functions will
enable aWsm runtime to provide strong SLO-driven latency
and predictability guarantees to functions at the edge.

C. Initial Performance Evaluation of aWsm: Startup Latency
and Memory Footprint

To evaluate the function startup performance and memory
footprint characteristics in our aWsm prototype, we use a
subset of benchmarks in MiBench [9] and a null function.

The null function is a simple C program that returns from
the main and has no other library dependencies.

The benchmark applications are used as a proxy for
serverless functions, without the external interface for re-
quest/response. We randomly select a subset of MiBench
benchmarks from different categories with the same input data
set from [9]:
• basicmath test performs simple mathematical calculations

with the input data containing fixed set of constants.
• bitcount tests the bit manipulation abilities by counting the

number of bits in an array of integers and the input data
is an array of integers with equal numbers of 1’s and 0’s.

• crc3 performs a 32-bit Cyclic Redundancy Check (CRC)
on a file. The input file is a large speech file.

• qsort sorts a large array of strings into ascending order
using quick-sort algorithm with the input data containing
a small list of words.

• sha benchmark is a the SHA secure hash algorithm that
produces 160-bit message digest for a given input. The
input data is a large ASCII text file of an article found
online.

• stringsearch benchmark searches for given words in
phrases using a case insensitive comparison algorithm.

• susan benchmark is an image recognition package and was
developed for recognizing corners and edges in brain MRI.
The input data is a complex picture.

As a testbed environment we use Intel i5-5200U CPU
running at @2.20GHz with 8 GB physical memory on a single
core (all the experiments were executed on a single core).

Benchmark Memory Startup time (in µs) Cold-start
Name Footprint Average 95%-tile (in µs)

null 18KB 12 15 193

basicmath 90KB 29 39 186
bitcount 120KB 29 39 185
crc32 103KB 30 35 395
qsort 148KB 19 22 260
sha 103KB 26 30 187
stringsearch 179KB 26 29 297
susan 177KB 20 24 209

TABLE I: Memory footprint and function invocation startup times
over thousand iterations of different benchmarks in aWsm.

Table I shows the average startup cost of different bench-
marks and the memory footprint of these benchmarks com-
piled and executed in aWsm. The startup latency of each
benchmark is a measure of time taken to create a sand-
box, allocate a fixed size stack (32MB), linear memories
(16MB initially, 4GB maximum), and populate the linear
memory. The function sandboxes are allocated a dedicated
stack memory and reserved a contiguous virtual address space
of maximum of 4GB for linear memory using mmap. The
linear memory is initially allocated 16MB and expands within
the reserved contiguous virtual address space.

Discussion: As shown in Table I, the memory footprint of a
null function is 18KB, and the memory footprints of selected
benchmarks range between 90KB to 180KB, reflecting much
smaller memory footprints of serverless functions compared
to the size of the VM/container execution environment re-
quired to capture all the necessary dependencies.

The average startup latency of a null function is ap-
proximately 10µs, and within 20µs-30µs for other selected
benchmarks. Additionally to the average startup latencies
Table I shows the 95%-tile of startup times, which falls within
22µs-39µs for the selected benchmarks. This narrow latencies
range reflects a much higher performance predictability in
the functions performance delivered by the aWsm serverless
framework.

In the Edge environment, the aWsm runtime loads a
predefined set of functions and their library dependencies at
the startup, and therefore, a function invocation will only incur
the “cold-start” latency once: for the first-time after the start
of the aWsm runtime. The “cold-start” latencies of functions
in aWsm are significantly smaller (0.2ms-0.4ms) than for
traditional VMs/containers cold-starts.

These numbers reflect a promising aWsm runtime per-
formance. We believe that aWsm runtime together with
customizable profiling, modeling, and scheduling intelligence
will provide an attractive implementation option for an effi-
cient serverless execution at the Edge.

V. CONCLUSION AND FUTURE WORK

Serverless computing is emerging as a new compelling
framework for IoT data processing at the Edge. In this paper,
we discuss the state-of-the-art serverless platforms, based on
VMs and containers, and list the number of challenges related
to running these solutions at the Edge. Then we analyze
the latest serverless implementation based on WebAssem-
bly, which is proposed as an alternative method for run-
ning serverless applications at near-native speeds, while also
having a small memory footprint and optimized invocation
time. We outline our design of aWsm – a novel Wasm-
based framework for serverless execution at the Edge. aWsm
bypasses the Linux kernel and takes a full control on func-
tions executions and their management: including profiling,
scheduling, and resource allocations. The proposed design
opens up a set of interesting opportunities for elaborate and
easily customizable SLO-driven performance management of
users’ functions.

In our future work, we plan to further utilize these op-
portunities: (i) build a profiling module to track and ana-
lyze functions’ performance, (ii) experiment with different
scheduling strategies to support the SLO-based classes of
functions, (iii) provide customized interfaces to offer a variety
of function scheduling and admission control policies, and
(iv) leverage Arm hardware features to improve memory-
safety of function sandboxes and their execution performance.

REFERENCES

[1] “White Paper of Edge Computing Consortium,
https://www.iotaustralia.org.au/wp-content/uploads/2017/01/White-
Paper-of-Edge-Computing-Consortium.pdf,” 2017.

[2] “AWS Lambda: https://aws.amazon.com/lambda/,” 2019.
[3] “Google Cloud Functions: https://cloud.google.com/functions/,” 2019.
[4] “Microsoft Azure Functions: https://azure.microsoft.com/en-

us/services/functions/,” 2019.

[5] “IBM Cloud Functions: https://cloud.ibm.com/functions,” 2019.
[6] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking Behind

the Curtains of Serverless Platforms,” in USENIX ATC, 2018.
[7] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,

D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the Web
Up to Speed with WebAssembly,” in PLDI, 2017.

[8] C. Disselkoen, J. Renner, C. Watt, T. Garfinkel, A. Levy, and D. Stefan,
“Position Paper: Progressive Memory Safety for WebAssembly,” in
HASP, 2019.

[9] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “MiBench: A Free, Commercially Representative
Embedded Benchmark Suite,” in WWC-4, 2001.

[10] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield,
P. Barham, and R. Neugebauer, “”Xen and the Art of Virtualization”,”
in SOSP, 2003.

[11] “Firecracker: https://firecracker-microvm.github.io/,” 2019.
[12] “Kata Containers: https://katacontainers.io/,” 2019.
[13] “Security Overview of AWS Lambda,” 2019. [Online]. Available: https:

//d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf
[14] “Linux Containers: https://linuxcontainers.org/,” 2019.
[15] “Docker: https://www.docker.com/,” 2018.
[16] “Windows Containers: https://docs.microsoft.com/en-

us/virtualization/windowscontainers/about/,” 2019.
[17] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.

Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless Computation
with OpenLambda,” in HotCloud, 2016.

[18] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Menezes Carreira, K. Krauth, N. Yadwadkar,
J. Gonzalez, R. A. Popa, I. Stoica, and D. A. Patterson,
“Cloud Programming Simplified: A Berkeley View on Serverless
Computing,” 2019. [Online]. Available: http://www2.eecs.berkeley.edu/
Pubs/TechRpts/2019/EECS-2019-3.html

[19] W. Wong, “VM, Containers, and Serverless Pro-
gramming for Embedded Developers,” 2017. [Online].
Available: https://www.electronicdesign.com/embedded-revolution/
vm-containers-and-serverless-programming-embedded-developers

[20] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-
Dusseau, and R. Arpaci-Dusseau, “SOCK: Rapid Task Provisioning
with Serverless-Optimized Containers,” in USENIX ATC, 2018.

[21] J. Thalheim, P. Bhatotia, P. Fonseca, and B. Kasikci, “Cntr: Lightweight
OS containers,” in USENIX ATC, 2018.

[22] “Choosing the right amount of memory for your AWS Lambda
Function: https://blog.symphonia.io/the-occasional-chaos-of-aws-
lambda-runtime-performance-880773620a7e ,” 2018.

[23] J. Kim and K. Lee, “FunctionBench: A Suite of Workloads for
Serverless Cloud Function Service,” in CLOUD, 2019.

[24] “The Occasional Chaos of AWS Lambda Runtime Performance:
https://medium.com/@raupach/choosing-the-right-amount-of-memory-
for-your-aws-lambda-function-99615ddf75dd,” 2018.

[25] Z. Zhang, L. Cherkasova, and B. T. Loo, “Platform Selection for
MapReduce Processing in the Cloud,” in ICCAC, 2015.

[26] “Google V8: https://v8.dev/,” 2019.
[27] “Emscripten: https://emscripten.org/index.html,” 2019.
[28] “WebAssembly Text Format: https://webassembly.org/docs/text-

format/,” 2019.
[29] A. Hall and U. Ramachandran, “An Execution Model for Serverless

Functions at the Edge,” in IoTDI, 2019.
[30] “VM2: https://github.com/patriksimek/vm2,” 2019.
[31] L. Clark, “Standardizing WASI: A System Interface to Run WebAssem-

bly Outside the Web,” 2019. [Online]. Available: https://hacks.mozilla.
org/2019/03/standardizing-wasi-a-webassembly-system-interface/

[32] “WebAssembly Runtimes: https://github.com/appcypher/awesome-
wasm-runtimes,” 2019.

[33] “Announcing Lucet: Fastly’s native WebAssembly compiler and
runtime,” 2019. [Online]. Available: https://www.fastly.com/blog/
announcing-lucet-fastly-native-webassembly-compiler-runtime

[34] “Lucet: https://github.com/fastly/lucet,” 2019.
[35] “Terrarium: https://wasm.fastlylabs.com/,” 2019.
[36] R. Koller and D. Williams, “Will Serverless End the Dominance of

Linux in the Cloud?” in HotOS, 2017.
[37] “Many-to-One / Green Threads: https://docs.oracle.com/cd/E19455-

01/806-3461/6jck06gqe/,” 2019.
[38] P. K. Gadepalli, G. Peach, G. Parmer, J. Espy, and Z. Day, “Chaos: a

System for Criticality-Aware, Multi-core Coordination,” in RTAS, 2019.

https://d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf
https://d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-Security.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
https://www.electronicdesign.com/embedded-revolution/vm-containers-and-serverless-programming-embedded-developers
https://www.electronicdesign.com/embedded-revolution/vm-containers-and-serverless-programming-embedded-developers
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime

	Introduction
	Existing Traditional Approaches to Serverless
	VM-based Approaches
	Container-Based Approaches

	Performance Management Challenges
	Leveraging WebAssembly for Serverless at the Edge
	Applying Wasm to Serverless Computing
	Introducing WebAssembly
	WebAssembly using JavaScript VMs
	Native WebAssembly Runtimes

	The Novel aWsm Framework and Its Approach to Serverless Performance Management
	Initial Performance Evaluation of aWsm: Startup Latency and Memory Footprint

	Conclusion and Future Work
	References

