
A SmartNIC-based Load Balancing and Auto
Scaling Framework for Middlebox Edge Server

Zhen Ni, Cuidi Wei, Timothy Wood
Department of Computer Science
The George Washington University

Washington D.C., USA
{leonizhen, cuidi, timwood}@gwu.edu

Nakjung Choi
Network System and Security Lab
Bell Labs Core Research, Nokia

New Jersey, USA
nakjung.choi@nokia-bell-labs.com

Abstract—Edge Cloud servers running network functions for
cellular carriers must provide both high performance and high
resource efficiency. Recent research has focused on load balancing
across multiple servers in a large data center, yet load balancing
within a single host has been neglected. Multi-core servers make
use of multi-queue NICs in order to distribute incoming packets
to different CPUs; however, existing approaches can lead to
an unfair distribution of work since different flows may have
significant variations in size and processing time. While the
NIC has the detailed information about incoming traffic, it
lacks knowledge about the server’s resources which prevents the
hardware from fully supporting auto scaling and load balancing
features. These problems are exacerbated for edge middlebox
servers running virtual network functions, where processing
latency is critical.

SmartNICs offer a unique opportunity to resolve this problem
with their increased programmability and flexibility. In this paper
we present SmartLB - a programmable hardware framework
to explore how middlebox servers can work together with
SmartNICs to provide a cross-layer solution. Our evaluation
shows that SmartLB can increase flow-level fairness, reduces tail
latency, and support auto scaling feature for high performance
network functions.

Index Terms—Edge Computing, SmartNIC, NFV, Load Bal-
ance, Auto Scale

I. INTRODUCTION

Modern enterprises deploy middlebox services to improve
security and performance in their networks [1]. These mid-
dlebox servers run multiple replicas of each network function
(NF) to meet the demand. Cloud providers deploy the multi-
queue network card to distribute incoming packets to those
NFs. While different CPUs poll packets from different queues,
the NIC still needs a strategy to decide the packet distribution
across all these RX queues. However the current approach
can lead to serious unfairness of workload assignments. This
is because the real-world network contains elephant and mice
flows, and different flows may have significant variations in
processing time. Many of the popular load balancer approaches
are designed for data centers, which focus on balancing the
workloads across multiple computing servers but do not deal
with the flow balance on one single host. Current middlebox
servers have been struggling from the unbalance problem, with
some cores always busy and other cores remaining idle [2].

Receive Side Scaling (RSS) has been widely used for years
by state-of-art multi-core systems for flow distribution on the

single host. In RSS, the NIC implements a hash function and a
packet header’s hash value is used to select a CPU. However,
RSS may cause imbalance between different CPU cores since
it tries to equalize the number of flows assigned to each core,
not necessarily the number of packets. Thus a mix of elephant
and mice flows can lead to significant differences in processing
time, but RSS is not aware of the CPU states. Overloaded
CPUs could still receive packets from RSS distribution, and
cause high latency or packet drops [3] [4].

In addition, with the explosive growth of cloud, service
providers deploy the auto scaling feature to better fit the
network status. The service manager starts new instances of
NFs during peak hours, and shuts down needless replicas while
receiving light traffic to save the cost. However the current
packet distribution techniques lack sufficient support for NFs
to scale up and down. This is because common approaches,
such as RSS, are in stateless mode and do not store the flow
information. Any scaling up or down might make the packets
from a flow be distributed to a different NF and lead to the
loss of flow affinity.

Edge cloud is a type of distributed cloud computing that
processes data at the periphery of the network, which is
particularly useful for network operators running 5G and next
generation wireless services. Instead of having a large scale
central data center deal with all the tasks, edge cloud moves
partial computing resources and data storage to the distributed
stations that are closer to the source. The edge computing
can avoid the overhead caused by transmitting all the data
to the central cloud [5]. However compared to a normal
cloud, the industry is making edge-customized servers with
limited resources, e.g., Nokia AirFrame Open Edge Server [6].
This has brought significant challenges to edge providers with
traditional hardware-based network functions and could lead to
network congestion when facing heavy workload in the local
area [7] [8].

The SmartNIC offers a great solution for the edge cloud to
better utilize its limited computing resources. The SmartNIC,
also called programmable NIC, is a new type of network
interface card that provides programmability in the hardware
layer, releasing some pressure from the CPU. Similar to CPUs
and GPUs, the SmartNICs have multiple micro processing
cores that can process packets before they get DMA’d into



host memory. The SmartNIC grants edge-based middlebox
servers the possibility to deploy the in-network data processing
dynamically. Tasks can be offloaded to the SmartNIC to
improve the overall resource utilization and perform better
against heavy workloads.

In this paper we seek a way to use SmartNICs on mid-
dlebox edge servers to optimize the performance and reduce
latency. We present the design and evaluation of SmartLB, a
SmartNIC-based approach that makes better decisions, while
reducing load on the CPU. The SmartLB framework contains
a load balancer and an auto scaler that are fully deployed on
the SmartNIC. The SmartNIC itself does not know the host
utilization information, so we build a communication channel
that enables better cooperation. In summary, our contributions
are:

� We offload the load balancing task to the SmartNIC to
achieve high performance without consuming any host
resources.

� We design a dynamically weighted algorithm to assign
flows to ports to better balance the load between them.

� We build a communication channel between the host
and SmartNIC to cooperatively scale up the number of
network functions.

� We construct a stateful flow table that protects flow
affinity when scaling up or down.

We deploy SmartLB on the Netronome Agilio CX 2x10GbE
SmartNIC [9] and evaluate the framework using the Open-
NetVM [10] NFV platform and the Snort [11] intrusion
detection NF. We show that SmartLB framework can quickly
respond to the signal sent from host, improve the flow distri-
bution fairness by up to 20%, and reduce the tail latency by
more than 15%.

II. BACKGROUND AND RELATED WORK

Network Functions Virtualization: Traditional NFs need
to run on dedicated hardware and bring difficulty for the
engineers to do NF development and maintenance. Network
Functions Virtualization (NFV) provides a new way to develop
network functions in the virtualized environment, such as VMs
and containers. Modern cloud providers and network operators
use NFV technology to improve the service flexibility and save
the maintenance cost against the explosive increase of user
requests. [12] [13]

NFV Load Balancing: NFV allows multiple NFs to run
on the single physical host at the same time. Many state-of-
art NFV platforms deploy multiple RX and TX queues on the
generic NIC to deal with the flow distribution in the multi-
tenant environment. However the NIC still needs a strategy
to fairly send the incoming flows to different CPUs. RSS
is a common methodology that has been widely used by
current systems. RSS uses a stateless hash function and a pre-
defined indirection table to randomly pick a destination for
the incoming traffic. However, the RSS approach could lead
to CPU congestion because different flows might take different
time to process and the generic NIC does not know the
utilization information from NFs. It is also possible for RSS

to break the flow affinity when facing the NF scaling, because
the hash-based solution is stateless and does not store the flow
information [4]. RSS++ introduces an optimized RSS-based
solution to deal with load balancing [3]. RSS++ modifies the
original RSS approach by adding new load balancing timer and
bucket reassignment to move flows between cores. However,
RSS++ is a software approach running on a dedicated core
that consumes computing resource which is limited in the
edge cloud. RSS++ also lacks detail about its flow migration,
which might cause trouble that one single flow is truncated
and distributed to multiple cores.

Data Center Load Balancing: Data centers use different
load balancing techniques to distribute network traffic across
multiple servers. There are two main approaches exist: static
algorithms, which do not take into account the state of the
different servers, and dynamic algorithms, which are usually
more general and efficient, but require exchanges of infor-
mation between the different computing units, at the risk
of a loss of efficiency. Common load balancers, such as
Google’s Maglev, try to spread the work evenly to improve
the efficiency and optimize the overall performance [14]. In
Google’s network environment, packets are distributed to the
Maglev machines via Equal Cost Multipath (ECMP) and each
Maglev machine matches the packets to their corresponding
services and spreads them evenly to the service endpoints.
Maglev is a stateful approach that stores the flow information
in a per-connection state and can be used for future packets.
Another type of load balancers, such as Beamer, use the
stateless technique to achieve flow distribution [15]. Beamer
can be implemented in both software and hardware with
P4, and its software prototype is twice faster than Google’s
Maglev. In this paper we borrow the idea from data center
load balancing techniques like Maglev and Beamer, to design
a stateful load balance framework with dynamic algorithms
that runs on the hardware.

SmartNIC: SmartNIC is the special type of network inter-
face card that supports user-defined program or various data
plane applications to be implemented on it. The SmartNIC
usually has micro processing cores on the chip to perform
data plane operations, and can be treated as Data Processing
Unit (DPU). There are many different SmartNIC vendors on
the market, which lead to a variety of hardware structures and
software programming models. In this project, we are using
the Agilio CX SmartNICs designed by Netronome [9]. This
card is equipped with 60 programmable flow processing cores
and 48 packet processing cores, and over 19MB of memory on
the chip. The Netronome card supports the P4 programming
language [16] for flow distribution, and also C language as a
plugin to develop data plane program on the flows or packets.

There are many projects using the SmartNIC with NFV
systems. P4NFV is a unified P4 switch abstraction framework
that leverages a host-local SDN Agent to improve the overall
resource utilization [17]. The P4NFV project provides an
innovative idea to accelerate network processing with the
SmartNIC. The Lemur paper introduces a new way of execut-
ing NF chains across heterogeneous hardware while meeting



the Service Level Objectives (SLOs) [18]. Lemur offloads NF
chains back to the hardware accelerator but remains the flex-
ible deployment and low latency. Researchers from Stanford
propose a packet scheduling approach on their SmartNIC [19].
Their framework shares coherent memory with the host server,
and instantly incorporates host load feedback into its schedul-
ing decisions. E3 [20] explores what Microservices could be
run on SmartNIC with achieving better energy efficiency. They
compare the performance of Microservices on SmartNIC and
on the host which shows the SmartNIC has lower energy
consumption. Also, FlowBlaze [21] builds complex stateful
packet processing functions in hardware and hides low level
implementations. Pontarelli declares that FlowBlaze could
yields 40Gb/s with lower power usage.

III. SYSTEM DESIGN

In this section we present SmartLB, a hardware-based load
balancer that supports the NF auto scaling feature on the host
without breaking flow affinity. Our contribution contains two
main aspects:

� SmartNIC-based stateful load balancer to distribute in-
coming flows to different cores;

� Dynamic auto scaler to cooperate with the host NFs;
Problem Formulation: Our design targets Edge NFV

systems where multiple replicas of a middlebox service are
deployed on a single host. Each replica runs on its own
dedicated core(s) and retrieves packets directly from the NIC,
either using support for multi-queue NICs or SRIOV (Single
Root I/O Virtualization) interfaces. Assigning ports and cores
to each replica in this way is important for high performance
NFV since it allows optimizations such as having packet data
go directly into the correct CPU cache with techniques like
Intel DDIO [22].

Typically NFV load balancing is achieved through RSS,
which randomly assigns flows to queues or ports based on
a hash of their 5-tuple. However, this approach poses two
problems: first, RSS tries to randomize the number of flows
sent to each NF which can cause severe unbalance if there
is a skewed workload where some flows have significantly
more packets than others; second, RSS is stateless, so if the
NFV platform adjusts the number of replicas, it will break
flow affinity and direct flows to replicas which may not have
the necessary state to process them. Alternatively, a software-
based load balancer can be deployed within the host’s NFV
framework, but this requires dedicating more CPU resources
and eliminates the caching benefits of having NFs directly
receive packets.

SmartLB aims to overcome all of these challenges. Figure 1
shows the structure of SmartLB. The framework consists of
a stateful load balancer and a dynamic auto scaler, which are
both deployed on to a proagrammable NIC. The load balancer
uses a weighted algorithm to forward incoming flows to ports
dynamically, and a state table to store the flow distribution
result. The stateful design guarantees flow consistency during
scaling. SmartLB provides communication channel so the NIC

SmartNIC

Host

OpenNetVM Manager

NF 1 NF 2 NF n……

physical port 0 physical port 1

virtual port 1 virtual port 2 virtual port n

P4 Pipeline

Scaling 
Monitor

Stateful Load 
Balancer Dynamic Auto Scaler

Fig. 1: System Design

packet 1

src ip 1, dst ip 1

packet 2

src ip 2, dst ip 2

SmartNIC

slow path

port 1

port 2

port 3

port n

fast path key value
Flow Table

h2 p3

(h3) (pn)
Weighted 
Algorithm

hash(src, dst)

update(key, value)

Fig. 2: Stateful Load Balancer

can cooperate with the host when scaling NF replicas up or
down.

A. Stateful Load Balancer

The core of SmartLB’s design is an algorithm to dynami-
cally assign weights to ports in order to balance the incoming
load across them. A port’s weight represents the probability of
the corresponding port to be assigned a new flow in the next
period. SmartLB initializes the weight for each port to equally
share the total value (256, in our implementation) when the
system starts. For example if there are two NFs running, both
ports get a initial weight of 128. Their weights are then used to
determine the intervals [0,127] and [128,255] which means the
two ports have a equal chance to receive incoming flows from
the load balancer. When a packet comes into the pipeline and
is determined to be from a new flow, we generate a random
number between 0 and 255. The new flow is distributed to the
virtual port whose corresponding weight interval covers the
random number.

In order to dynamically update the ranges assigned to each
NF, we also maintain counters for each virtual interface to keep
track of the number of packets received on each interface. The
weight, wi, of each port is dynamically updated at the end of
each measurement period using:

wi =
256 ∗ (total − counti)

total ∗ (n− 1)

where total is the total number of packets received the
SmartNIC, and n is the number of the total active ports. Thus
the new weights are based on the inverse ratio of the packet
counters, so a port which had heavy load in the last period will



be assigned a relatively small weight for the next period so
that it can release some processing pressure. In the same way,
those ports which receive less packets in the current period
will be assigned larger weights and are more likely to receive
new flows in the next round. We let SmartLB dynamically
update the weights every second in our evaluation. Every time
this weight update happens, we reset all the counters to make
sure each round is a fresh iteration.

After a new flow is randomly assigned using the weights
defined above, SmartLB must record the decision in a state
table in the SmartNIC’s memory space. In the table, the key
is the hash of source and destination IP address and the value
is a unique index that corresponds to each virtual port. With
the state table lookup, the later packets within the same flow
can be directly forwarded without going through the algorithm
again. The state table ensures we protect the flow affinity,
because the packets will always be forwarded to the same
virtual port if there is a hit in the table lookup. We clear the
table entry for each flow after the connection is closed to make
sure there is always enough memory for active flows.

SmartLB is implemented with P4, which defines the
pipeline, and C, which builds the stateful data structure and
weight calculation algorithm. The P4 pipeline controls the flow
of processing between when a packet arrives at the physical
ports and gets DMA’d into the host’s memory. We define P4
parsers to extract the header information for the hash functions.
Parsers are also used to map those bits in the actual packet
into the P4-defined representations, such as metadata. The
AgilioCX SmartNICs that we use allow P4 to call custom
actions written in C, allowing us to add our more complex
stateful functionality that cannot easily be supported in P4
alone.

There are four different kinds of memory on the AgilioCX
SmartNIC’s chip:

� Local Memory.
� Cluster Local Scratch (CLS).
� Cluster Target Memory (CTM).
� Internal Memory (IMEM).
� External Memory (EMEM).

SmartLB implements the state table in EMEM, which has
enough size to support 1.6 million tables entries and latency of
150-500 cycles. All the other data structures are implemented
in the IMEM for lower latency.

Figure 2 shows how SmartLB processes the slow and fast
paths. When a packet arrives at a physical port, the pipeline
extracts IP headers, calculates the hash, and looks up the flow
table. If the lookup returns a miss, such as packet 1 in the
figure, the packet gets sent to the slow path. Its hash value
is passed to the weighted algorithm. The algorithm decides a
port to forward, and returns its index. Then the hash value and
port index are updated in the flow table for the future packets
of the same flow. If the lookup returns a hit, such as packet 2
in the figure, it directly reports the port index to the P4 ingress
controller. The P4 ingress controller will read the value from
the flow table and controls the hardware to forward packets to
the correct port.

B. Dynamic Auto Scaling

An edge cloud data center will need to scale services up or
down automatically based on time, utilization, or users’ needs.
From a practical perspective, the industry is taking a hierar-
chical approach for different time-scale automation, e.g., non-
RT RIC, near-RT RIC in ORAN framework [23]. Similarly,
we envision that each server controller can balance workload
based on a local observation/decision in the range satisfying
a policy given by high-layer decision-making entities. When
replicas are added or removed from a host, we need to ensure
the load balancer adapts appropriately without breaking per-
flow consistency. Our use of a SmartNIC to offload the load
balancer makes this more challenging since the NFs and load
balancing software are running in two distinct platforms.

To resolve this challenge, we leverage the fact that the
SmartNIC can observe all outgoing packets in order to create
a communication channel from host to NIC. During the
system initialization SmartLB enables the maximum number
of SRIOV interfaces, but only a subset of these ports will be
marked as “active”. All the other unused ports will remain in
sleep mode and receive no packets; since SRIOV are virtual
interfaces this incurs no overhead to the system. A global
variable “activated” is maintained to represent the number of
activated virtual port. In the main P4 pipeline we design a
scaling program that listens on all egress traffic. This program
sits at stage 0, which has higher priority than all other
functionalities like table lookup or weight update.

On the host side, the NFV management framework is
responsible for determining when to scale up the number
of replicas. Our implementation extends the OpenNetVM NF
Manager [10] to define a utilization threshold for auto scaling,
but our design is applicable to other NFV frameworks as
well as more complex scaling algorithms. At run time, the
NF manager monitors the utilization data of all CPU cores.
If the utilization of a CPU meets a high/low threshold, the
hypervisor decides to scale up/down one replica of the NF.
After the NF is initialized (or ready to be deactivated), the
NFV framework sends out a special packet as the ”scaling
signal” to the SmartNIC through the virtual port that should be
enabled/disabled. We encode the signal in the Ethertype field
in the Ethernet header frame. For example, we put 0x7777 in
the Ethertype field for scaling up, and put 0x8888 for scaling
down (these numbers are not used by common protocols).

The scaling program running on the SmartNIC checks the
Ethertype value of all egress packets. If it observes the special
flag, the port control function will be called to activate or
deactivate the corresponding virtual port. The main P4 pipeline
will also get notified, causing it to reset the weight of the target
port. If scaling down, we set the weight to zero to make sure
that no new flows will be assigned to this port in the future.
The port will not get deactivated until the SmartLB observes
the FIN of a TCP connection or the flows reach a timeout
value. When scaling up, SmartLB rebalances the weights for
all ports so new flows will be assigned to the newly activated
port.



IV. EVALUATION

SmartLB aims to better balance the incoming network flows,
and perform higher throughput than state-of-art approaches. In
this section we prepare several experiments to demonstrate the
power and efficiency of SmartLB. We ask three main questions
to our framework in the evaluation:

� How does the load balance algorithm work comparing to
RSS?

� How does the SmartNIC perform against same software-
based functions?

� Is the dynamic auto scaler ”smart” enough to process the
request from the host?

In our experimental setup, we physically connect three
servers as source server, middlebox server, and destination
server. The middlebox is an HP ProLiant GL160 G6 server
with two Intel Xeon X5650 CPUs @ 2:67 GHz and one
Netronome Agilio CX 2x10GbE SmartNIC. The server runs
Ubuntu 16:04 with Linux kernel version 4.4.0. On this middle-
box server, we run OpenNetVM platform and multiple copies
of Snort intrusion detection NFs on the platform. Both the
source and destination servers are equipped with the Intel @
82599ES 10 Gigabit Ethernet Controllers to send and receive
the traffic.

A. Weighted Algorithm Analysis

First, we evaluate the effectiveness of SmartLB’s load
balance algorithm under a skewed workload. We run an Nginx
web server that stores several files with different sizes. On
the source server, we use the WRK2 http client [24] to send
requests to the Nginx web server through the middlebox server
to download the files. We control the file size and limit the data
transfer rate to generate two different types of flows. A light
flow is 200KB/s and lasts one second, while a heavy flow is
73MB/s and lasts ten seconds. In this evaluation, we repeatedly
create 3 heavy flows and vary the number of concurrent light
flows for different test cases. On the host we run 4 copies of
the snort NF and do inspection workloads on all packets. We
deploy the algorithm in a software version and compare it with
the traditional RSS approach by monitoring the throughput
received by each snort application. We measure the evaluation
result in four metrics: Max/Min throughput, Jain’s Fairness
Index (JFI), finished requests, and 99% latency comparison.

Figure 3a shows the throughput received by the heaviest
snort divided by the throughput from the lightest snort. We
gather this metric every second and report the average statistics
over each experiment. When Max/Min is higher, it means there
is more load imbalance between the most and least loaded
snort applications. This ratio is used to illustrate the unbalance
level of the framework. We constantly generate 3 heavy flows,
and change the number of light flows, shown as the x-axis, to
control the skewness level of the whole network traffic. As the
number of light flows increases, the skewness level of the total
traffic decreases because the light flows are easier to balance
even with a random algorithm like RSS. The result shows
that our weighted framework is able to achieve less RX rate

difference between the heaviest and lightest port, which shows
a stronger load balance ability against regular RSS approach.
Our algorithm achieves 13% to 20% improvement for network
traffic with different skewness levels.

Figure 3b shows the JFI results between the two mecha-
nisms. JFI is a metric commonly used to show fairness in
congestion control algorithms. The closer JFI is to 1, the
more balanced the flows are on each snort. Our weighted load
balancer is always closer to 1 compared to RSS. The result
shows that our weighted algorithm can provide better fairness
against RSS approach while forwarding the same network
flows to ports.

Since a heavy request could consume a whole snort appli-
cation, a bad load balancer might forward upcoming flows to
a busy snort that causes traffic congestion and drops packets
if the queue is full which would lead to throughput decrease.
Figure 3c shows the number of finished heavy requests of both
mechanisms in three minutes. We generate heavy workloads
to the middlebox server in order to make the snort applications
busy and test the ability of the load balancer to find a relatively
idle port. The result proves that with our weighted algorithm
the system is able to finish at least 10% more heavy requests
during the period whereas RSS drops packets leading to lower
throughput.

Next we measure the tail latency of the two mechanisms
when processing different skewness levels of network flows.
Figure 3d shows the 99% response time of the latency sensitive
light flows. Our weighted algorithm has much less time cost
comparing to the RSS, which means the weighted algorithm
achieves quicker response than RSS. This is because SmartLB
faster balances the skewed flows with better fairness to avoid
the potential traffic congestion. Incoming flows are processed
smoothly with less waiting time and leads to lower response
time. We pick one of the workloads with 3 heavy flows and
300 light flows and demonstrate the distribution of the request
latencies in figure 3e. The graph show that our weighted
algorithm has overall less latency time than RSS.

B. SmartNIC vs Software Load Balancer Overhead

Next we evaluate the efficiency of offloading the load
balancer to the SmartNIC versus a software approach on the
host CPU. We run the same weighted load balancer algorithm
on both platforms and compare the performance. For the
traffic generation, we use Pktgen on the source server to send
several captured pcap files with different sizes of packets to
the middlebox server at the full rate of 10Gbits/sec. On the
middlebox server, we prepare three different mechanisms to
compare the throughput:

� Bridge NFs without any load balancer
� SmartNIC-based load balancer + bridge NFs
� Software load balancer NF + bridge NFs

We deploy the bridge NFs to simply receive incoming packets
and send out the same port without any extra computation.
Since the Bridge NFs are easily able to meet the 10Gbps
rate, this ensures that we measure the performance of the
load balancer itself and not the network functions. We use



(a) Max/Min Throughput (b) JFI (c) Completed Requests

(d) 99th Percentile Latency (e) Latency Distribution

Fig. 3: Weighted Load Balancer vs RSS

the first setup as a baseline of this evaluation without any
load balancer. In the second case, we run our load balancer
framework on the SmartNIC and bridge NFs on the host. In the
third case, we program the same load balancer functionality
and run it as a network function on the OpenNetVM platform
with 1 CPU core dedicated to the load balancer. In all the
three mechanisms we have the bridge NFs mirror packets to
the sender, and we collect the receive throughput from Pktgen
on the source server.

Figure 4 shows the percent of the 10Gbps traffic rate
which can be achieved by each of the three mechanisms. The
baseline, can meet the 100% rate for all sizes of packets.
Neither the SmartNIC or host-based load balancers are able to
meet the full line rate for small pacekts because of the flow
lookup required for stateful load balancing. The SmartNIC
achieves about 40% higher throughput than the SW-based
approach for small packets, and even more importantly, it frees
up resources on the host since there is no need to dedicate a
core to the software load balancer. For 256 byte and larger
packets, the SmartNIC is able to meet the line rate, and we
expect that as SmartNIC hardware improves, offloading load
balancer functionality will become even more beneficial.

C. Auto Scaler Analysis

Finally, we evaluate the performance of the auto scaling
feature. In this test we take the example of scaling applications
up when facing heavy workloads. On the host, we run three
replicas of the snort application at the beginning. We deploy
four virtual ports on the SmartNIC but only the first three are
activated for the snort NFs and the last one remains in sleep
mode. We generate traffic from Pktgen on the source server

Fig. 4: SmartNIC vs Software

and send to the middlebox. We assign packet analysis jobs to
all the snort applications and increase the TX rate to make the
CPU utilization meet the auto scale threshold.

Figure 5 shows the performance of the auto scaler. The x-
axis represents time in second, and the y-axis is the number
of packets per second received by each snort application.
Figure 5a shows the throughput of all the NFs. The first three
snort applications keep busy processing incoming packets, and
the hypervisor makes the decision to scale up one more snort at
the 6th second. The new snort gets initialized and triggers the
scale up signal. The SmartNIC receives the signal, and activate
the fourth virtual port for the new snort. The result shows
that the whole process takes less than 2 seconds to re-balance
the throughput for all snort applications. Figure 5b shows
the total throughput received by the system. The auto scaler



(a) Snort Throughput

(b) Total Throughput with Auto Scaler

Fig. 5: Auto Scaler Analysis

can increase the receiving rate and improve the bottleneck
from traffic congestion. The new snort NF can quickly reduce
some pressure from other busy replicas and increase the total
throughput of the middlebox.

V. CONCLUSION

In this paper we introduced SmartLB, a dynamic SmartNIC-
based load balancing and auto scaling framework, that builds a
reliable communication channel between hardware and host,
and guarantees the flow affinity during the NF scale up or
down. We focus on deploying and improving the load balance
and auto scale feature for modern middlebox edge servers.
We evaluate our framework to compare against the common
solution RSS, and demonstrate the ability to achieve better
distribution fairness, higher performance and lower latency.

Acknowledgements: This work was supported in part
by Nokia Bell Labs and NSF Grants CNS-1814234, CNS-
1823270, and CNS-1837382.

REFERENCES

[1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network pro-
cessing as a cloud service,” in Proceedings of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, SIGCOMM ’12, (New York, NY, USA),
p. 13–24, Association for Computing Machinery, 2012.

[2] Y. T. Woldeyohannes, A. Mohammadkhan, K. K. Ramakrishnan, and
Y. Jiang, “Cluspr: Balancing multiple objectives at scale for nfv resource
allocation,” IEEE Transactions on Network and Service Management,
vol. 15, no. 4, pp. 1307–1321, 2018.

[3] T. Barbette, G. P. Katsikas, G. Q. Maguire, and D. Kostić, “Rss++:
Load and state-aware receive side scaling,” in Proceedings of the
15th International Conference on Emerging Networking Experiments
And Technologies, CoNEXT ’19, (New York, NY, USA), p. 318–333,
Association for Computing Machinery, 2019.

[4] A. Rucker, M. Shahbaz, T. Swamy, and K. Olukotun, “Elastic rss: Co-
scheduling packets and cores using programmable nics,” in Proceedings
of the 3rd Asia-Pacific Workshop on Networking 2019, APNet ’19, (New
York, NY, USA), p. 71–77, Association for Computing Machinery, 2019.

[5] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[6] “Airframe open edge server.” https://www:nokia:com/networks/products/
airframe-open-edge-server. [ONLINE].

[7] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646,
2016.

[8] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-based load balancing for fast datacenter networks,” ACM
SIGCOMM Computer Communication Review, vol. 45, no. 4, pp. 465–
478, 2015.

[9] “Netronome - Smart NICs.” https://www:netronome:com. [ONLINE].
[10] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi,

K. Ramakrishnan, and T. Wood, “OpenNetVM: A platform for high
performance network service chains,” in HotMiddlebox, ACM, 2016.

[11] “Snort.” https://www:snort:org/. [ONLINE].
[12] “Vmware vcloud nfv.” https://docs:vmware:com/en/VMware-vCloud-

NFV/index:html. [ONLINE].
[13] Z. Lv and W. Xiu, “Interaction of edge-cloud computing based on sdn

and nfv for next generation iot,” IEEE Internet of Things Journal, vol. 7,
no. 7, pp. 5706–5712, 2020.

[14] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-
Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and J. D. Hosein,
“Maglev: A fast and reliable software network load balancer,” in 13th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 16), (Santa Clara, CA), pp. 523–535, 2016.

[15] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu, “Stateless data-
center load-balancing with beamer,” in 15th fUSENIXg Symposium on
Networked Systems Design and Implementation (fNSDIg 18), pp. 125–
139, 2018.

[16] “P4 language consortium.” https://p4:org/. [ONLINE].
[17] A. Mohammadkhan, S. Panda, S. G. Kulkarni, K. K. Ramakrishnan,

and L. N. Bhuyan, “P4nfv: P4 enabled nfv systems with smartnics,” in
2019 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), pp. 1–7, 2019.

[18] J. Yen, J. Wang, S. Supittayapornpong, M. A. M. Vieira, R. Govindan,
and B. Raghavan, “Meeting slos in cross-platform nfv,” in Proceed-
ings of the 16th International Conference on Emerging Networking
EXperiments and Technologies, CoNEXT ’20, (New York, NY, USA),
p. 509–523, Association for Computing Machinery, 2020.

[19] J. T. Humphries, K. Kaffes, D. Mazières, and C. Kozyrakis, “Mind the
gap: A case for informed request scheduling at the nic,” in Proceedings
of the 18th ACM Workshop on Hot Topics in Networks, HotNets ’19,
(New York, NY, USA), p. 60–68, Association for Computing Machinery,
2019.

[20] M. Liu, S. Peter, A. Krishnamurthy, and P. M. Phothilimthana,
“E3: Energy-efficient microservices on smartnic-accelerated servers,” in
2019 fUSENIXg Annual Technical Conference (fUSENIXgfATCg 19),
pp. 363–378, 2019.

[21] S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone, M. Spaziani, V. Br-
uschi, D. Sanvito, G. Siracusano, A. Capone, M. Honda, et al., “Flow-
blaze: Stateful packet processing in hardware,” in 16th fUSENIXg
Symposium on Networked Systems Design and Implementation (fNSDIg
19), pp. 531–548, 2019.

[22] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Argyraki, S. Rat-
nasamy, and S. Shenker, “ResQ: Enabling SLOs in Network Function
Virtualization,” pp. 283–297, 2018.

[23] “O-ran alliance.” https://www:o-ran:org. [ONLINE].
[24] G. Tene, “Wrk2.” https://github:com/giltene/wrk2.


