
Sorting Algorithms Practice Quiz

Multiple Choice Questions
1. Which of the following is true about the Bubble Sort algorithm?

A) It is the most efficient sorting algorithm.

B) It works by repeatedly swapping adjacent elements that are in the wrong order.

C) Its best-case time complexity is O(n^2).

D) It is often used for sorting large datasets because of its efficiency.

2. In the context of Quicksort, what is the 'pivot'?

A) An element used to divide the array into smaller parts.

B) The final sorted array.

C) A sorting technique used in the partitioning process.

D) The smallest element in the array.

3. Which of the following statements about Mergesort is correct?

A) Mergesort is not a stable sort.

B) Mergesort has a worst-case time complexity of O(n log n).

C) Mergesort is an in-place sorting algorithm.

D) Mergesort's performance is greatly affected by the choice of the pivot element.

4. Selection Sort works by:

A) Repeatedly finding the minimum element and moving it to the end of the array.

B) Swapping adjacent elements that are out of order.

C) Partitioning the array into sorted and unsorted regions and repeatedly selecting the

smallest element from the unsorted region.

D) Dividing the array into smaller arrays and merging them back together in order.

True/False Questions
5. The space complexity of Quicksort in its general implementation is O(n).

6. Bubble Sort is more efficient than Quick Sort for large datasets.

7. Selection Sort makes O(n) swaps in the worst-case scenario.

Short Answer Questions
8. Explain why Mergesort is preferred over Quicksort for linked lists.

9. Describe how the partitioning process works in Quicksort.

Coding Questions
10. Implement the partition function used in the Quicksort algorithm in Java.

11. Write a Java method to perform Bubble Sort on an array of integers.

Analysis Questions
12. Given an array partially sorted such that the elements are at most k positions away from

their sorted position, which sorting algorithm would be the most efficient, and why?

13. For an array consisting of only a small number of unique elements, which sorting

algorithm would you recommend, and what would be your rationale behind this choice?

Answers

Multiple Choice Questions
1. B) It works by repeatedly swapping adjacent elements that are in the wrong order.

2. A) An element used to divide the array into smaller parts.

3. B) Mergesort has a worst-case time complexity of O(n log n).

4. C) Partitioning the array into sorted and unsorted regions and repeatedly selecting

the smallest element from the unsorted region.

True/False Questions
1. False - The space complexity of Quicksort in its general implementation is O(log n)

due to the stack space used by recursion.

2. False - Quick Sort is generally more efficient than Bubble Sort for large datasets due to

its better average and worst-case time complexities.

3. True - Selection Sort makes O(n) swaps in the worst-case scenario, which is one of its

advantages in scenarios where writing to memory is a costly operation.

Short Answer Questions
1. Mergesort is preferred over Quicksort for linked lists because Mergesort can

efficiently access and merge lists without needing random access, as is required by

Quicksort. Furthermore, Mergesort guarantees O(n log n) time complexity, which is

beneficial for linked lists.

2. In Quicksort, the partitioning process involves selecting a pivot element and then

rearranging the elements in the array so that all elements less than the pivot come

before it, while all elements greater than the pivot come after it. This effectively places

the pivot in its correct sorted position in the array.

Coding Questions
1. The partition function typically involves initializing two indices that scan the array

from both ends, moving towards each other, and swapping elements to ensure all

elements less than the pivot are on one side, and all greater are on the other.

2. The Bubble Sort method involves nested loops where each element is compared to its

adjacent element and swapped if they are in the wrong order. This process is repeated

until the array is sorted.

Analysis Questions
1. An algorithm like Insertion Sort would be most efficient for this scenario because it

can sort the array in O(kn) time, which is efficient when k is small relative to n.

2. For an array with a small number of unique elements, a three-way partitioning

Quicksort or even Counting Sort could be efficient. Three-way Quicksort can handle

duplicates more efficiently, while Counting Sort can be advantageous if the range of

unique elements is limited.

Pseudocode Questions

Pseudocode Questions
14. Given the following pseudocode for a sorting algorithm, identify which sorting

algorithm it represents and explain why:

for i from 1 to length(A)

 key = A[i]

 j = i - 1

 while j >= 0 and A[j] > key

 A[j + 1] = A[j]

 j = j - 1

 A[j + 1] = key

15. Consider the following pseudocode for a recursive algorithm:

function recursiveSort(A, low, high)

 if low < high

 mid = (low + high) / 2

 recursiveSort(A, low, mid)

 recursiveSort(A, mid + 1, high)

 merge(A, low, mid, high)

Identify the sorting algorithm and describe the role of the 'merge' function.

16. Analyze the following pseudocode and determine which sorting algorithm it

implements. Additionally, discuss the choice of the pivot element:

function quickSort(A, low, high)

 if low < high

 pi = partition(A, low, high)

 quickSort(A, low, pi - 1)

 quickSort(A, pi + 1, high)

function partition(A, low, high)

 pivot = A[high]

 i = (low - 1)

 for j = low to high - 1

 if A[j] < pivot

 i = i + 1

 swap A[i] with A[j]

 swap A[i + 1] with A[high]

 return i + 1

Answers to Pseudocode Questions
1. The pseudocode represents the Insertion Sort algorithm. This is identified by the

iterative process where each element in the array is compared with its predecessors,

and then inserted into its correct position in the sorted portion of the array. The key

steps indicating this are the inner loop that shifts elements one position to the right to

make space for the 'key' element and the insertion of the 'key' into its correct position.

2. The pseudocode describes the Mergesort algorithm. Mergesort is a divide-and-

conquer algorithm that recursively divides the array into two halves, sorts each half,

and then merges the sorted halves back together. The 'merge' function is crucial as it

combines two sorted arrays (the two halves) into a single sorted array by comparing

the elements of both halves and arranging them in order.

3. This pseudocode outlines the Quicksort algorithm. Quicksort is also a divide-and-

conquer algorithm, characterized by selecting a 'pivot' element and partitioning the rest

of the array around this pivot such that elements less than the pivot are moved to its

left, and elements greater than the pivot are moved to its right. The choice of the pivot

as the last element in the array ('pivot = A[high]') is a common strategy, but it can lead

to worst-case performance (O(n^2) time complexity) if the array is already sorted or

nearly sorted. Therefore, other strategies like choosing a random element or the median

of three as the pivot are often used to improve the average-case performance.

