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Abstract. The task of Electroencephalogram (EEG) analysis is paramount
to the development of Brain-Computer Interfaces (BCIs). However, to
reach the goal of developing robust, useful BCIs depends heavily on the
speed and the accuracy at which BCIs can understand neural dynam-
ics. In response to that goal, this paper details the integration of pre-
trained Vision Transformers (ViTs) with Temporal Convolutional Net-
works (TCNet) to enhance the precision of EEG regression. The core of
this approach lies in harnessing the sequential data processing strengths
of ViTs along with the superior feature extraction capabilities of TCNet,
to significantly improve EEG analysis accuracy. In addition, we analyze
the importance of how to construct optimal patches for the attention
mechanism to analyze, balancing both speed and accuracy tradeoffs. Our
results showcase a substantial improvement in regression accuracy, as ev-
idenced by the reduction of Root Mean Square Error (RMSE) from 55.4
to 51.8 on EEGEyeNet’s Absolute Position Task, outperforming existing
state-of-the-art models. Without sacrificing performance, we increase the
speed of this model by an order of magnitude (up to 4.32x faster). This
breakthrough not only sets a new benchmark in EEG regression anal-
ysis but also opens new avenues for future research in the integration
of transformer architectures with specialized feature extraction methods
for diverse EEG datasets.

Keywords: EEG Analysis · Temporal Convolutional Networks · Brain
Computer Interfaces · Vision Transformers

1 Introduction
Analyzing Electroencephalogram (EEG) signals is fundamental to the progress of
Brain-Computer Interfaces (BCIs), offering deep insights into the complex neu-
ral processes of the human brain. In the past decade, a wide range of machine
learning and deep learning algorithms have been applied to EEG data, resulting
in significant advancements in various applications. These applications encom-
pass emotion recognition, motor imagery, mental workload evaluation, seizure
detection, Alzheimer’s disease classification, sleep stage scoring, and many oth-
ers (Craik et al., 2019; Roy et al., 2019; Altaheri et al., 2023; Qu, 2022; Gao
et al., 2021; Hossain et al., 2023; Yi and Qu, 2022; Key et al., 2024; Li et al.,



2 E. Modesitt et al.

2024; Koome Murungi et al., 2023; Dou et al., 2022; Zhou et al., 2022; Qu et al.,
2020b,c,a, 2018, 2019; Murungi et al., 2023; Saeidi et al., 2021; Qu and Hickey,
2022; Rasheed et al., 2020; Wang and Qu, 2022; Dadebayev et al., 2022; Li et al.,
2020; Aggarwal and Chugh, 2022). EEG regression, in particular, stands as a piv-
otal tool in both neuroscience and medical diagnostics, gaining prominence for its
ability to decode complex neural dynamics. This technique plays a crucial role
in a myriad of applications, ranging from pinpointing brain damage locations
to monitoring cognitive activities and deciphering the neural basis of seizures
(Subasi and Ercelebi, 2005; Sabbagh et al., 2020; Teplan, 2002). The essence of
EEG regression lies in its capacity to transform raw EEG data into interpretable
and meaningful information, thus providing an invaluable perspective into the
brain’s operations.

In the realm of machine learning, the advent of Transformer models has
marked a revolutionary shift in EEG regression analysis. Initially celebrated
for their breakthroughs in natural language processing, these models have been
adeptly modified to cater to EEG data analysis, substantially elevating both the
precision and efficiency of the analysis (Liu et al., 2022). A significant stride in
this field is the adaptation of pre-trained Vision Transformers (ViTs) for EEG
datasets, such as ImageNet Deng et al. (2009). The application of ViTs in EEG
regression has demonstrated exceptional results, surpassing traditional methods
across various benchmarks (Yang and Modesitt, 2023).

Concurrently, Temporal Convolutional Networks (TCNet) have emerged as
a formidable force in the field of EEG signal processing. Exhibiting outstanding
capabilities in feature extraction, TCNets excel in identifying intricate patterns
and nuances in EEG data (Bai et al., 2018; Ingolfsson et al., 2020; Altaheri et al.,
2022). Their robustness in capturing temporal dynamics and their efficacy in
EEG signal handling render them an indispensable component in neural signal
analysis.

This study delves into the synergistic integration of ViTs and TCNet, aiming
to harness their combined strengths to substantially augment the accuracy and
reliability of EEG regression. This innovative approach seeks to leverage the
detailed feature extraction of TCNet and the contextual interpretation prowess
of ViTs, hypothesizing a significant enhancement in EEG analysis.

Our research presents a comprehensive evaluation of this hybrid model, jux-
taposing it against previous methodologies to underscore its superiority in EEG
regression. We meticulously examine the performance of the ViT-TCNet combi-
nation, elucidating the contribution of each component to the overall effective-
ness of the model. The implications of our findings extend beyond the confines
of EEG analysis, potentially influencing a broad spectrum of data interpretation
tasks in various scientific and AI-related fields.

In addition to the aforementioned aspects, a notable facet of this study is the
emphasis on the processing speed of the integrated ViT-TCNet model. Speed
is a critical parameter in EEG analysis, especially for real-time applications
in Brain-Computer Interfaces (BCIs) where rapid response times are essential
By optimizing the architecture and employing advanced techniques in model
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training and inference, we have successfully accelerated the processing speed
of the EEG analysis. This advancement is particularly significant in scenarios
where real-time data processing is crucial, such as in neurofeedback systems or
in clinical settings where prompt decision-making is imperative. The increase
in processing speed, achieved without compromising the model’s performance,
marks a substantial leap forward in making EEG-based BCIs more viable and
user-friendly.

In the ensuing sections, we will outline the methodology utilized in our study,
present our empirical findings, and discuss the broader implications and future
research directions stemming from our work. This research not only enriches the
existing literature in EEG regression but also sets the stage for future explo-
rations into the amalgamation of advanced machine learning architectures for
refined neural data analysis.

In summary, the contributions of this work can be articulated in three pri-
mary areas:

1. Innovative Combination of ViTs and TCNet for Advanced EEG
Regression: This research marks a significant advancement in EEG regression
analysis through the novel integration of pretrained Vision Transformers (ViTs)
with Temporal Convolutional Networks (TCNet). This fusion harnesses ViTs’
exceptional capability in processing sequential data and TCNet’s robust feature
extraction techniques, culminating in a notable improvement in EEG regression
accuracy.

2. Enhancement of Model Processing Speed and Efficiency: A key
contribution of this study is the substantial improvement in the processing speed
of the EEG analysis model. Recognizing the importance of swift data process-
ing in real-time applications such as Brain-Computer Interfaces, the research
introduces optimizations that significantly accelerate the model’s performance.

3. Ablation Studies and Future Research Directions: The research
undertakes comprehensive ablation studies to understand the individual and
combined contributions of ViTs and TCNet to the model’s performance. These
studies offer valuable insights into the mechanics of the model, paving the way
for further optimizations.

2 Related Work
2.1 Deep Learning in EEG

The evolution of EEG signal processing has been significantly influenced by the
emergence of deep learning techniques. Traditional machine learning methods,
while effective, often fall short in capturing the high-dimensional and complex
nature of EEG data. The introduction of deep learning models, particularly
convolutional neural networks (CNNs) and recurrent neural networks (RNNs),
revolutionized this field. These models brought enhanced capabilities in handling
large datasets, extracting relevant features, and recognizing intricate patterns in
EEG signals (Subasi and Ercelebi, 2005; Sabbagh et al., 2020; Teplan, 2002).
This shift not only improved the accuracy of EEG analyses but also expanded
the potential applications in neurological research and clinical diagnostics.
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Deep learning’s impact on EEG signal processing is profound, offering new
perspectives in understanding brain activity. The ability of these models to learn
from data autonomously, without the need for extensive feature engineering, has
opened avenues for more nuanced and detailed analyses of neural signals. This
advancement is crucial in fields where EEG data plays a pivotal role, such as in
the study of cognitive processes, sleep patterns, and brain-computer interfaces.
The integration of advanced deep learning architectures in EEG analysis heralds
a new era of innovation and discovery in neuroscience.

2.2 ViTs in Non-Image Data Analysis

Vision Transformers (ViTs), originally designed for image recognition, have demon-
strated remarkable versatility by extending their application to various other
domains, including EEG data analysis (Dosovitskiy et al., 2020; Wu et al., 2020;
Han et al., 2022). The cornerstone of their success, the self-attention mechanism,
enables ViTs to efficiently manage sequential data, a feature crucial in interpret-
ing EEG signals Vaswani et al. (2017). This characteristic of ViTs facilitates
an understanding of the complex, temporal relationships inherent in EEG data,
making them an ideal choice for this type of analysis.

The adaptation of ViTs to non-image data, such as EEG signals, signifies a
major shift in the approach to data analysis across disciplines. It underscores the
potential of transformer models to handle diverse types of data beyond their ini-
tial scope. This cross-domain applicability of ViTs not only enriches the toolkit
available for EEG analysis but also inspires innovative approaches to data inter-
pretation. The flexibility and effectiveness of ViTs in handling sequential data
pave the way for their broader adoption in various scientific and analytical fields.

Fig. 1. EEGViT architecture, SOTA on EEGEYENET (Yang and Modesitt, 2023).
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2.3 Temporal Convolutional Networks (TCNet)

:
Temporal Convolutional Networks (TCNet) have gained significant attention

for their ability to process time-series data, particularly in EEG signal analysis.
The architecture of TCNet, with its focus on capturing temporal dependencies
through convolutional layers, makes it exceptionally suited for extracting de-
tailed features from EEG data (Farha and Gall, 2019; Hewage et al., 2020). The
efficacy of TCNet in identifying subtle patterns and temporal features in com-
plex datasets has established it as a leading tool in the field of neural signal
processing.

The role of TCNet in EEG data interpretation extends beyond mere feature
extraction. It involves a deeper understanding of the temporal dynamics and
inherent structures within the EEG signals. This understanding is vital in appli-
cations where precise timing and sequence of neural events are critical, such as
in epilepsy research or brain-computer interface development. The combination
of TCNet with other advanced models like ViTs presents a promising avenue
for enhancing EEG analysis, potentially leading to more accurate and insightful
interpretations of neural data.

3 Methods
Our study employs an innovative approach by integrating pre-trained Vision
Transformers (ViTs) with Temporal Convolutional Networks (TCNet) to en-
hance EEG regression analysis. This section outlines the dataset utilized, the
specifics of the proposed model, and the methodology for evaluating its effec-
tiveness.

3.1 EEGEyeNet Dataset

The data presented here is derived from the EEGEyeNet dataset Kastrati et al.
(2021). The EEGEyeNet dataset encompasses recordings from 356 healthy adults,
including 190 females and 166 males, aged 18 to 80 years. All individuals in this
study provided written informed consent, compliant with the Declaration of
Helsinki, and were compensated monetarily.

The EEG recordings in the EEGEyeNet dataset were obtained using a high-
density 128-channel EEG Geodesic Hydrocel system, operating at a sampling
rate of 500 Hz with a central recording reference. Eye positions were concurrently
recorded using an EyeLink 1000 Plus system at the same sampling rate. This
setup maintained electrode impedances below 40 kOhm and ensured accurate eye
tracker calibration. Participants were positioned 68 cm from a 24-inch monitor,
with their head stabilized using a chin rest.

EEG data, as recorded in the EEGEyeNet dataset, are prone to various arti-
facts, including environmental noise and physiological interferences such as eye
movements and blinks. To address this, the dataset underwent rigorous pre-
processing with two levels: minimal and maximal. The minimal preprocessing
involved identifying and interpolating faulty electrodes, along with applying a
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high-pass filter at 40 Hz and a low-pass filter at 0.5 Hz. The maximal pre-
processing, aimed at neuroscientific analyses, further incorporated Independent
Component Analysis (ICA) and IClabel for artifact component removal.

The EEGEyeNet dataset also includes synchronized EEG and eye-tracking
data, facilitating time-locked analyses relative to event onsets. This synchroniza-
tion was stringently verified to ensure a maximum error margin of 2 ms.

The Absolute Position Task, a key component of the EEGEyeNet dataset,
involved participants fixating on sequentially displayed dots at various screen
positions. Each dot appeared for 1.5 to 1.8 seconds, located at one of 25 distinct
screen positions. The central dot was presented thrice, resulting in 27 trials per
block. This setup, covering the entire screen area, captured a broad range of gaze
positions. Adapted from Son et al. (2020) for fMRI studies, modifications were
made for EEG compatibility, including stimulus duration and repetition adjust-
ments. The dot presentation followed a pseudo-randomized sequence across five
experimental blocks, repeated six times, totaling 810 stimuli per participant.

The Absolute Position task is particularly relevant for our research as it
provides a comprehensive dataset for analyzing eye movement patterns and gaze
positions. The variety in dot positions and the high number of trials allow for a
complete assessment of the participants’ gaze behavior, which is crucial for our
objective of determining the exact XY-coordinates of a participant’s gaze using
EEG data.

3.2 EEGViT-TCNet Model Architecture

Intending to advance EEG signal analysis, we developed the EEGViT-TCNet
model, a novel architecture that combines Temporal Convolutional Networks
(TCNet) with a pre-trained Vision Transformer (ViT). This model was metic-
ulously designed to decipher the temporal dynamics and spatial characteristics
embedded within EEG signals.

Temporal Convolutional Network (TCNet) Component: The EEGViT-
TCNet model begins with the TCNet component, tailored to embrace the com-
plexities of EEG data. This component is characterized by:

– Input Layer: Accepting EEG signals, the TCNet is prepared to handle an
input dimensionality of 129, corresponding to the number of recorded EEG
channels +1 for including grounding information (as done in the original
EEGEyeNet paper).

– Sequential TCNet Layers: The architecture encompasses three layers,
with the number of channel dimensions expanding progressively to 64, 128,
and 256. This hierarchy is instrumental in capturing a comprehensive spec-
trum of temporal dependencies inherent in the EEG signals.
• Kernel Size: A kernel size of 3 is uniformly applied across the TCNet

layers.
• Dropout: To counteract the potential for overfitting, a dropout rate of

0.75 is employed.
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• Causality and Normalization: The layers incorporate weight normaliza-
tion alongside the ReLU activation function to enhance the model’s sta-
bility and performance.

Fig. 2. An outline of the TCNet functionality (Bai et al., 2018).

Convolutional and Batch Normalization Layers: The pathway pathway
we designed from the TCNet layers to the ViT involves:

– Convolutional Layers: Two convolutional layers connect the TCNet and
ViT. The first layer, equipped with 256 filters and a kernel size of (1, 36),
is succeeded by batch normalization and ReLU activation. This configura-
tion initiates the spatial feature extraction. Subsequently, the second layer
amplifies the channel dimension to 768, aligning with the ViT’s input speci-
fications. In addition, this layer employs a kernel size of (256, 1) to effectuate
a spatial compression conducive to the subsequent transformer analysis.

Vision Transformer (ViT) Component: The culmination of the EEGViT-
TCNet model’s preprocessing lies in the ViT component:

– EEG Data Adaptation: Leveraging the "google/vit-base-patch16-224"
model from Huggingface, the configuration is modified to fit the unique for-
mat of EEG data.
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– Patch Embeddings Projection: This layer is reimagined as a 1D convo-
lutional layer, directly accommodating the output from preceding stages BS
ensuring the input’s integration into the transformer architecture.

– Classifier Head: The model ends with a randomly initialized classifier layer,
transitioning through a linear layer, followed by a dropout layer (p=0.1),
culminating in a linear layer that predicts the gaze XY coordinates.

3.3 Training and Evaluation Procedure

For training, we employed a supervised learning approach. The model was trained
on a split of the EEG dataset, with 70% used for training and 30% for validation.
During training, we employed a mean squared error loss function, optimized us-
ing the Adam optimizer with a learning rate of 1e-4. To prevent overfitting, we
implemented early stopping based on the validation loss, with a patience of 10
epochs.

The primary metric for evaluating our model’s performance was the Root
Mean Square Error (RMSE). This metric provides a clear indication of the
model’s accuracy in predicting the gaze coordinates. A lower RMSE value in-
dicates a closer approximation to the actual gaze positions. To ensure the ro-
bustness of our findings, we conducted five independent runs for each model
configuration and reported the mean and standard deviation of these runs.

Fig. 3. An outline of our addition to EEGViT, demonstrating our distinct feature ex-
traction methodology.

4 Results
Through rigorous testing and comparison, our model has demonstrated its ca-
pability to predict gaze positions with state-of-the-art precision, outperforming
a spectrum of both conventional and advanced methodologies.

4.1 Performance Benchmarking

Our EEGViT-TCNet model achieved a Root Mean Square Error (RMSE) of
51.8mm, marking a significant advancement over existing models. This perfor-
mance showcases a 6.5% enhancement in precision over standalone ViT models
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Yang and Modesitt (2023). The stark contrast is further accentuated when juxta-
posed with traditional approaches such as Linear Regression and Random Forest,
where the RMSE figures exceed 115mm.

Our model’s evaluation, focusing on a single data partition divided by sub-
ject as done in Kastrati et al. (2021), demonstrates its ability to generalize ef-
fectively. This approach, where the testing data consisted of completely unseen,
new groups of data, highlights the model’s robustness and adaptability. Despite
being tested on different subsets of subjects than what the model was trained
on, it maintained consistent RMSE metrics, underscoring its sophisticated ar-
chitecture’s capability to handle the complexities of EEG data. This consistency
in performance across various subject-based segments is crucial for real-world
applications, affirming the model’s potential for effective generalization.

Model Absolute Position RMSE (mm)
Naive Guessing 123.3 ± 0.0
KNN 119.7 ± 0
RBF SVR 123 ± 0
Linear Regression 118.3 ± 0
Random Forest 116.7 ± 0.1
CNN 70.4 ± 1.1
EEGViT (Pre-trained) 55.4 ± 0.2
EEGViT-TCNet 51.8 ± 0.6
Table 1. Comparative analysis of Root Mean Squared Error (RMSE) across various
models, highlighting the superior performance of the EEGViT-TCNet model. The val-
ues represent the mean ± standard deviation over five independent runs, illustrating
the model’s consistency and accuracy in the Absolute Position Task.

4.2 Ablation Studies

To assess the individual contributions of various components within our EEGViT-
TCNet model, we conducted a series of ablation studies. These studies aimed
to isolate the effects of specific elements of the model, such as the convolutional
layers, dropout rates in the TCNet, and the use of a pretrained Vision Trans-
former (ViT). Each variation of the model was evaluated using the same dataset
and metrics, allowing us to directly compare their performance.

Impact of Convolutional Layers We first examined the impact of the ad-
ditional convolutional layers that bridge the gap between the TCNet and the
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ViT on the model’s performance. In particular, we analyze the results after re-
moving all possible combinations of 1 convolutional layer (spatial, temporal, and
pointwise convolution). By removing the pointwise layer, we observed a slight
increase in the Root Mean Square Error (RMSE) from 51.8 ± 0.6mm to 52.5 ±
0.8mm. This suggests that the pointwise convolutional layer plays a modest yet
significant role in feature extraction and spatial representation, contributing to
the model’s overall accuracy.

Influence of Dropout Rates in TCNet The role of dropout rates in TCNet
was another focus of our study. By varying the dropout rates, we investigated
their effect on the model’s capability to generalize and prevent overfitting. The
original model with a 0.75 dropout rate achieved an RMSE of 51.8 ± 0.6mm.
Reducing the dropout rate to 0 increased the RMSE to 54.1 ± 0.6mm, indicating
a higher propensity for overfitting. Conversely, lower dropout rates of 0.25 and 0.5
yielded RMSEs of 52.5 ± 0.4mm and 52.1 ± 0.4mm, respectively. These findings
illustrate a nuanced balance between dropout rate and model performance, with
moderate dropout rates contributing positively to the model’s accuracy and
generalizability.

Contribution of Pretrained ViT Finally, we evaluated the contribution of
using a pretrained ViT in our model. By replacing the pretrained ViT with
a non-pretrained counterpart, the RMSE increased to 53.2 ± 0.5mm. This in-
crease underscores the significance of pretraining in enhancing the model’s fea-
ture recognition capabilities, particularly in the context of EEG data analysis.

Model Variation Absolute Position RMSE (mm)
EEGViT-TCNet (Ours) 51.8 ± 0.6
No 2nd Conv Layer 52.5 ± 0.8
0% Dropout 54.1 ± 0.6
25% Dropout 52.5 ± 0.4
50% Dropout 52.1 ± 0.4
No Pretrained ViT 53.2 ± 0.5
Table 2. Ablation study results comparing RMSE across various EEGViT-TCNet
model configurations. The values represent the mean ± standard deviation over five
runs.

These ablation studies reveal the delicate interplay of different architectural
components in optimizing the EEGViT-TCNet model for EEG regression anal-
ysis. The presence of the second convolutional layer, the calibration of dropout
rates in TCNet, and the incorporation of a pretrained ViT each contribute
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uniquely to the model’s performance. Our findings highlight the importance of
these components in achieving high precision in EEG regression tasks, providing
valuable insights for future enhancements and applications of the model.

5 Discussion

The integration of Vision Transformers (ViTs) with Temporal Convolutional
Networks (TCNet) within the EEGViT-TCNet model represents a substantial
leap forward in EEG signal analysis, particularly for applications within brain-
computer interfaces (BCIs) and the broader realm of neural signal processing.
This novel approach has not only showcased a marked improvement in regression
accuracy but also set new precedents in processing speed and efficiency. The
results obtained from this study reflect the significant potential of leveraging
the strengths of both ViTs and TCNet, underscoring the profound impact that
such hybrid models can have on understanding and interpreting complex neural
dynamics.

The success of the EEGViT-TCNet model in reducing the Root Mean Square
Error (RMSE) to unprecedented levels emphasizes the model’s capability to pro-
vide a more accurate interpretation of EEG data. This breakthrough is partic-
ularly relevant in the development of BCIs, where the precision of signal in-
terpretation directly correlates to the effectiveness and user-friendliness of the
interface. In clinical settings, the enhanced accuracy and speed of EEG analysis
facilitated by the EEGViT-TCNet model could lead to more timely and accurate
diagnoses of neurological conditions, potentially transforming patient care.

Throughout the research, adapting ViT to the unique nature of EEG data
highlighted the complexities inherent in neural signal processing. The prepro-
cessing of EEG signals, essential for maintaining the integrity of temporal fea-
tures, posed significant challenges. This process is critical in ensuring the model’s
adaptability and generalizability across different subjects and experimental con-
ditions, a vital aspect for the practical application of such technologies.

Looking forward, the field beckons for further exploration into the scalability
of hybrid models like EEGViT-TCNet, particularly in handling larger datasets
and assessing performance in diverse real-world scenarios. A key area of interest
lies in enhancing the interpretability of these deep learning models. Improved
interpretability is crucial for clinical acceptance and can lead to advancements in
personalized medicine, where EEG analysis can be tailored to individual patients
for monitoring or therapeutic purposes.

Moreover, the exploration into other hybrid architectures and their efficacy
across various domains of neural data presents an exciting avenue for research.
The integration of multimodal data sources, alongside the application of transfer
learning techniques, could further refine the accuracy and applicability of EEG
signal analysis methods. Such advancements could pave the way for the devel-
opment of more sophisticated BCIs, offering improved interaction mechanisms
between humans and machines.
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6 Conclusion
This study represents a significant advancement in EEG regression analysis, un-
derscoring the indispensable role of meticulous feature extraction in the efficacy
of sophisticated computational models like Vision Transformers (ViT). The inte-
gration of Temporal Convolutional Networks (TCNet) with pretrained ViTs has
unveiled the vast potential of harmonizing specialized feature extraction tech-
niques with advanced deep learning frameworks. This synergy not only elevates
the accuracy of EEG analysis but also establishes a new benchmark in the field,
showcasing the profound benefits of refined feature representation.

Our findings highlight the criticality of nuanced feature extraction in inter-
preting complex EEG data, with the EEGViT-TCNet model demonstrating no-
table performance enhancements. This indicates that features, often overlooked
by traditional models, can be captured and leveraged for more accurate regres-
sion analysis, suggesting a broad array of applications, from clinical diagnostics
to enhanced brain-computer interfaces.

As we chart the course for future research, the horizon of EEG analysis and
deep learning promises continued expansion and innovation. The development
of increasingly sophisticated models capable of navigating the complexities in-
herent in EEG data is anticipated. A pivotal challenge will be enhancing the
interpretability of these models, ensuring they not only perform optimally but
also offer actionable insights for practitioners. Moreover, integrating these ad-
vanced models into real-world applications will be crucial, extending the benefits
of this research to society at large. Additionally, exploring various deep learning
techniques on different datasets for comparative studies (An et al. (2023a,b);
Jiang et al. (2023); Gui et al. (2024); Lu et al. (2023); Chen et al. (2024); Ma
(2022); Ma et al. (2024); Tan et al. (2023, 2021); Qiu et al. (2023); Zhao et al.
(2024); Zhang et al. (2022, 2023)) could provide valuable insights and further
enhance the field.

In sum, the fusion of TCNet and pretrained ViTs within the EEG regression
domain exemplifies the transformative power of targeted feature extraction and
advanced data processing. This study not only redefines the standards for EEG
analysis but also lights the way for future endeavors in the realms of deep learning
and neural data interpretation. As we delve deeper into the complexities of
the human brain, the significance of innovative computational models grows
ever more evident, harboring the potential for groundbreaking discoveries in
neuroscience and artificial intelligence.
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