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Abstract. The EEGEyeNet dataset merges EEG data with eye-tracking
technology to advance cognitive research at the intersection of brain dy-
namics and eye movement. By developing machine learning models to
predict eye movements from EEG data, we gain insights into perceptual,
attentional, and cognitive processes. However, dataset outliers can com-
promise model integrity and accuracy. This paper explores the impact
of outliers on the state-of-the-art model and highlights the benefits of
outlier removal. After identifying and removing outliers, we refined the
dataset for better model training and accuracy. Integrating advanced
modeling methods from EEGViT and EEGViT-TCNet, we achieved a
new standard in eye-tracking precision, reducing the RMSE from 51.8
to 48.9. This research underscores the importance of data refinement in
advancing Brain-Computer Interfaces (BCI) and their applications.

Keywords: EEG, Gaze Prediction, Machine Learning, Vision Trans-
former, EEGEyeNet, Data Preprocessing

1 Introduction
Electroencephalography (EEG) is extensively employed in research fields such
as neural engineering, neuroscience, biomedical engineering, and brain-like com-
puting, with particular emphasis on brain-computer interfaces (BCIs). Analyzing
EEG signals is crucial for the progress of BCIs, as it provides valuable insights
into the intricate neural mechanisms of the human brain. Over the last decade,
a variety of machine learning and deep learning algorithms have been utilized
to process EEG data, leading to significant advancements in several applica-
tions. These applications include emotion recognition, motor imagery, mental
workload assessment, seizure detection, Alzheimer’s disease classification, sleep
stage scoring, and many more (Craik et al. (2019); Kastrati et al. (2021a); Roy
et al. (2019); Altaheri et al. (2023); Qu (2022); Gao et al. (2021); Hossain et al.
(2023); Yi and Qu (2022); Key et al. (2024); Li et al. (2024); Koome Murungi
et al. (2023); Zhou et al. (2022); Qu et al. (2020b,c,a, 2018, 2019); Saeidi et al.
(2021); Qu and Hickey (2022); Rasheed et al. (2020); Dadebayev et al. (2022);
Wang and Qu (2022); Li et al. (2020); Aggarwal and Chugh (2022)).
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EEG and deep learning research have been in close proximity for decades,
with advancements in both fields contributing to strides in our understanding
of the brain. Deep learning algorithms are particularly popular in the context
of EEG analysis due to their ability to extrapolate and generalize input infor-
mation, making them ideal for decoding the complexities and noise within EEG
signals into interpretable outputs.

The EEGEyeNet dataset has become a cornerstone in the realm of cognitive
neuroscience and machine learning, facilitating the advancement of eye-tracking
technologies through the integration of EEG data (Skoglund et al. (2022); Mu-
rungi et al. (2023); Dou et al. (2022); Wolf et al. (2022); Rolff et al. (2022);
Kastrati et al. (2023); Farago et al. (2022)). The fusion of these disciplines aims
to enhance the precision of eye position prediction, a critical aspect in under-
standing visual attention and neurological behavior. However, the integrity of the
EEGEyeNet dataset is compromised by the presence of data points exhibiting
eye positions that surpass the physical boundaries of the experimental screen,
leading to potential inaccuracies in subsequent analyses and model training.

This paper investigates the impact of such outliers on the performance of
predictive models and explores the benefits of outlier pruning to maintain the
dataset’s integrity. Through meticulous data cleaning, we identified and removed
these anomalous data points, aiming to refine the dataset for more accurate
model training. By removing only a few outliers, the model’s representation of
EEG signals is drastically improved. Extending beyond simple outlier removal,
our study incorporates advanced modeling techniques from the domains of the
EEG Vision Transformer (EEGViT) and EEGViT-TCNet to establish a new
benchmark in eye-tracking accuracy. Precise gaze estimation models have nu-
merous applications across various fields such as behavioral science, user experi-
ence (Rolff et al. (2022)), or assistive technology (Skoglund et al. (2022)). This
demonstrates the significance of reliable models, which require accurate data.

1.1 Research Question

In addressing these objectives, our study aims to answer two key questions:

– How do outliers in the EEGEyeNet Dataset affect predictions of current
state-of-the-art (SOTA) models and what do they reveal about the data?

– Can we develop a model with a specific data pruning technique to surpass the
current SOTA model by reducing the Root Mean Squared Error (RMSE)?

By addressing these questions, we contribute to the ongoing discourse on
EEG data preprocessing and model development, ultimately advancing eye-
tracking technology and its applications. Our findings are particularly relevant
to the HCI community, as they provide a pathway to more accurate and respon-
sive gaze-based interaction systems, enhancing the overall user experience and
expanding the potential of assistive technologies. The full set of source code can
be found at https://github.com/JadeW7/EEGViT-TCNet-pruned.
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Table 1. Abbreviation Table

Abbreviation Definition

AI Artificial Intelligence

ML Machine Learning

DL Deep Learning

EEG Electroencephalography

ET Eye-Tracking

BCI Brain-Computer Interfaces

HCI Human-Computer Interaction

ViT Vision Transformer

CNN Convolutional Neural Network

TCNet Temporal Convolutional Network

SOTA State Of The Art

RMSE Root Mean Squared Error

2 Related Work

2.1 Deep Learning in EEG

The history of EEG signal processing has seen a notable evolution, especially
with the advent of deep learning techniques. Traditional machine learning meth-
ods, although effective to a certain extent, often struggle to capture the intricate
and high-dimensional nature of EEG data. However, the landscape changed with
the introduction of deep learning models, notably convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), which brought about a paradigm
shift in this field.

Moreover, the application of the Transformer architecture has transcended
various domains within deep learning (Wang and Wang (2022); Fuhl et al. (2023);
Xiang and Abdelmonsef (2022); Modesitt et al. (2023); Mishra et al. (2023)).
The Vision Transformer (ViT) particularly stands out for its impact on both
Computer Vision and EEG analysis (Yang and Modesitt, 2023), showcasing its
versatility and effectiveness in handling complex data structures such as EEG
signals.

2.2 Vision Transformers

ViTs have generated significant impacts in numerous fields and are utilized
for their excellent performance in many tasks, often surpassing the results of
state-of-the-art Convolutional Neural Networks (CNNs) when trained on large
datasets (Dosovitskiy et al. (2020)). Although initially designed for classifying
images, ViTs are surprisingly accurate at analyzing EEG data due to their effec-
tiveness with grid-like data. The key to their success lies in their self-attention
mechanism, which plays a crucial role in capturing long-range dependencies.
Unlike traditional CNNs, which rely on convolutional layers to process local
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receptive fields and gradually build up global context through multiple layers,
ViTs can capture long-range dependencies in the data directly. This is achieved
through self-attention, which allows the model to weigh the importance of each
part of the input data relative to every other part, facilitating a more holistic
understanding of the data’s structure and relationships. This capability is cru-
cial for tasks requiring a comprehensive understanding of spatial and temporal
relationships within the data.

2.3 Temporal Convolutional Networks

Additionally, the Temporal Convolutional Network (TCNet) has become a fa-
vored option across different domains in deep learning, including EEG signal
processing (Ingolfsson et al., 2020). Specialized architectures such as TCNet
enhance the detection of subtle features that might be overlooked when using
CNN models alone (Bai et al., 2018). TCNet enhances temporal feature detec-
tion through causal convolutions and dilations, allowing it to handle long-range
dependencies and temporal correlations more effectively.

Fig. 1. The architecture of the EEGViT-TCNet (Modesitt et al., 2024).

2.4 Fusing Pre-trained ViTs with TCNet

The integration of pre-trained Vision Transformers (ViTs) with Temporal Con-
volutional Networks (TCNet) represents a cutting-edge methodology in the realm
of EEG regression (Modesitt et al. (2024). This fusion combines the spatial
feature extraction capabilities of ViTs with the temporal analysis strengths of
TCNet, resulting in significantly improved model performance for EEG signal
analysis. The EEGViT-TCNet model demonstrates the fastest state-of-the-art
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performance in EEG regression tasks by efficiently capturing both spatial and
temporal features of EEG data. When combining TCNet’s capabilities with pre-
trained Vision Transformer models, the model’s accuracy increased significantly
on EEG regression tasks, decreasing the RMSE by 3.6 millimeters (Modesitt
et al. (2024)). With this collaborative integration of feature extraction with the
adaptability of architectures such as ViT, a promising approach is offered for
developing models that excel across a wide range of EEG datasets (Figure 1).
The ViT component excels in learning complex spatial representations, while
the TCNet component excels in identifying complex temporal dependencies. By
pre-training the ViT on large image datasets, they ensure robust feature extrac-
tion which, when combined with TCNet’s temporal processing, leads to superior
accuracy and speed in EEG regression tasks.

3 Methods

3.1 The EEGEyeNet Dataset

Obtaining eye-tracking data involves intricate and costly procedures, demanding
specialized equipment, skilled operators, and participant approval. The integra-
tion of such data with EEG recordings further complicates the data collection
process. Consequently, studies exploring the interplay between brain activity
and eye movements often encounter limitations due to the scarcity of suitable
datasets. The introduction of the EEGEyeNet dataset (Kastrati et al. (2021b))
alleviates this challenge by providing a comprehensive dataset incorporating both
EEG and eye-tracking data. The EEGEyeNet dataset is a collection of elec-
troencephalogram and eye-tracking data of 365 participants, 190 males and 166
females, with ages ranging from 18 to 80, consisting of three benchmark tasks:
Left-right, Angle/Amplitude, and Absolute position.

Collection Method/Details EEG data was collected through the EEG Geodesic
Hydrocel system, containing 128 channels and capturing at 500 Hz. Prior to
recording, the impedance of each electrode was ensured at levels below 40 kOhm
(kilo-ohms, a unit of electrical resistance). The eye position was also recorded
with the ET EyeLink 1000 Plus, an infrared video system, also at the same sam-
pling rate of 500 Hz. Participants then maintained a stable head position via a
chin rest, placed 68 cm away from a 24-inch monitor.

Task Description While there are three tasks for which data is collected, the
pre-trained EEGViT-TCNet utilizes the large grid data, where participants are
asked to fixate on a series of dots as shown in Figure 2. 25 dots placed in all areas
of the screen are displayed in a pseudo-randomized order for 1.5 to 1.8 seconds
each. 27 dots per block were measured with a total of five random blocks repeated
6 times during the measurement, resulting in 810 stimuli for each participant.

EEGEyeNet Initial Preprocessing Because of the various external factors
(temperature, air humidity, or outside noise), the EEG data collected from each
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Fig. 2. Schematic diagram of the experimental setup and the placement of stimuli on
the screen (Kastrati et al., 2021b).

participant could have resulted in more prominent signals of interest through re-
flexive eye movements, muscular noise, or heart signals. As such, the EEG data
from the original EEGEyeNet dataset was preprocessed minimally or maximally
with the toolbox from Pedroni et al. (2019). Maximal preprocessing addresses the
aforementioned unwanted physiological signals by applying an independent com-
ponent analysis in combination with Pion-Tonachini et al. (2019), a pre-trained
classifier that allows for the removal of data that has a probability estimation
of larger than 0.8 for reflecting external activity. Minimal preprocessing involves
determining and filtering data with a 40 Hz high-pass filter and a 0.5 Hz low-
pass filter. Given that the state-of-the-art model employs minimally preprocessed
data, our focus was aligned with this approach.
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3.2 Data Preprocessing

Fig. 3. Visualization of the EEGEyeNet Absolute Position data. 15 outliers lie outside
of the designated (0-800, 0-600) range.

We conducted a meticulous data-cleaning process of the minimally preprocessed
data regarding the absolute position task on the large grid paradigm. We elimi-
nated all data points with eye positions outside the experiment screen’s dimen-
sions of 800 x 600 pixels (Kastrati et al., 2021b). As shown in Figure 3, we found
that these outliers make up 15 out of 21,464 total samples. As such, data points
with coordinates outside of this dimension can reasonably be considered errors.
This scrutiny of each data point’s x and y coordinates ensured the retention of
only valid, physically plausible samples for model training and testing.

3.3 Application of Pruned Data

Building upon the foundations laid by EEGViT and EEGViT-TCNet, our re-
search leverages the synergistic potential of Vision Transformers and Temporal
Convolutional Networks. These technologies, known for their prowess in ad-
vanced machine learning regression tasks, were integrated into our model ar-
chitecture to refine EEG-signal analysis, enhancing the precision of eye-position
predictions. We fed our cleaned data into the EEGViT-TCNet model to dis-
cern the effects of the outliers on the accuracy. Previously, the EEGViT and the
EEGViT-TCNet split the data into the same subsets for training, testing, and
validation, as shown in Figure 4.
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Fig. 4. Visualization of how the SOTA model splits the EEGEyeNet Absolute Position
data into training, validation, and testing subsets. Several outliers lie outside the des-
ignated range of (0-800, 0-600).

Figure 4 elucidates the distribution of the outliers across the training, testing,
and validation sets. The EEGViT-TCNet was trained on a subset of the data
with 5 outliers, validated on a subset of the data with 3 outliers, and tested on
a subset of the data with 7 outliers. Thus, by eliminating these outliers, we have
removed any potential adverse effect in all phases of the model development
process.

4 Results

Subsequent retraining of the state-of-the-art model on this pruned dataset yielded
significant improvements in predictive accuracy. This enhancement was mea-
sured by the Root Mean Squared Error (RMSE), representing the Euclidean
distance in millimeters between the predicted and actual gaze positions. Our
findings in Table 2 revealed a marked enhancement in model performance, with
RMSE values decreasing from 51.8 to 48.9. By removing only 15 data points,
and only 5 in the training data, or stimuli, in the dataset, 0.0007% of the total
data, there was a 6% increase in accuracy on the SOTA model.
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Table 2. Root Mean Squared Error (RMSE) loss in millimeters for different models on
the Absolute Position Task. Lower RMSE values indicate better performance as they
represent closer estimations to the actual values. The values represent the mean and
standard deviation of 5 runs. All Transformers in the table are pre-trained.

Model Absolute Position RMSE (mm)

Naive Guessing 123.3 ± 0.0

KNN 119.7 ± 0

RBF SVR 123 ± 0

Linear Regression 118.3 ± 0

Ridge Regression 118.2 ± 0

Lasso Regression 118 ± 0

Elastic Net 118.1 ± 0

Random Forest 116.7 ± 0.1

Gradient Boost 117 ± 0.1

AdaBoost 119.4 ± 0.1

XGBoost 118 ± 0

CNN 70.4 ± 1.1

PyramidalCNN 73.9 ± 1.9

EEGNet 81.3 ± 1.0

InceptionTime 70.7 ± 0.8

Xception 78.7 ± 1.6

ViT-Base 58.1 ± 0.6

EEGViT 55.4 ± 0.2

EEGViT-TCNet 51.8 ± 0.2

EEGViT-TCNet (Pruned) 48.9 ± 0.2

Our research establishes the pruned version of EEGViT-TCNet as the cur-
rent benchmark, the most accurate model for the absolute position grid task of
EEGEyeNet. In comparison to the baseline Naive Guessing model, which had
an RMSE of 123.3, the pruned EEGViT-TCNet model’s RMSE of 48.9 repre-
sents a substantial reduction, reinforcing the importance of data integrity and
preprocessing in achieving high model performance.

5 Discussion

Our study not only highlights the critical importance of data integrity but also
showcases the efficacy of combining advanced machine learning techniques, like
those in EEGViT and EEGViT-TCNet, for precise gaze estimation applications.
Demonstrated by notable enhancements in RMSE for the state-of-the-art model
in EEGEyeNet, existing outliers pose a risk to both the overall accuracy and the
integrity of the model, even throughout the training phase.
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The distribution of outliers across the training, testing, and validation sets
of the EEGViT-TCNet (Figure 4) may partially elucidate the impact of anoma-
lous points. The influence of these outliers on other models might differ from
that on the state-of-the-art model, owing not only to differences in model archi-
tecture but also to the varying methods researchers used to split the EEGEyeNet
dataset. Nonetheless, the reduction in RMSE observed when training the EEGViT-
TCNet on the cleaned data highlights the potential for similar improvements in
other models. Models previously developed for the absolute position task on the
EEGEyeNet data might also experience comparable accuracy increases. Given
that each model learns to predict absolute position uniquely, there is a possibility
for an even greater reduction in RMSE with other models.

The continuous improvement in accuracy underscores the importance of
building upon previous research, resulting in a total reduction of 74.4 RMSE
from the baseline of Naive Guessing, which was 123.3 RMSE. However, all of
the foundational research was conducted on data containing outliers. With the
identification of these outliers and the availability of pruned data, future research
can potentially achieve even greater error reduction.

Furthermore, improving the accuracy of the model is not the only objective.
By reporting these anomalies in data, researchers in intersecting fields may also
find value in these specific data outliers, leading to insights into the underlying
causes, whether that be human error, mislabeling, or genuine special circum-
stances. This can inform broader cognitive and perceptual research, providing a
more nuanced understanding of human-computer interactions.

The implications of our findings extend beyond cognitive research to prac-
tical applications in Human-Computer Interaction (HCI). Enhanced EEG and
eye-tracking models can significantly improve adaptive user interfaces, making
them more responsive and intuitive. This refinement can benefit assistive tech-
nologies, enabling better communication aids for individuals with disabilities.
Additionally, the precision improvements can elevate virtual and augmented re-
ality experiences, making interactions more seamless and immersive.

Moving forward, it would be valuable to continue exploring data preprocess-
ing techniques along with the integration of Transformers and neural network
architectures to further enhance accuracy with EEG data. Additionally, explor-
ing various deep learning techniques on different datasets for comparative studies
(An et al. (2023a,b); Jiang et al. (2023); Lu et al. (2023); Chen et al. (2024);
Gui et al. (2024); Ma (2022); Ma et al. (2024); Tan et al. (2023, 2021); Qiu et al.
(2023); Zhao et al. (2024); Zhang et al. (2022, 2023)) could provide valuable in-
sights and further enhance the field. Such advancements will not only elevate the
performance of predictive models but also expand the potential of HCI technolo-
gies, driving innovation in user-centric applications and setting new standards
for BCI development.

6 Conclusion

Through the implementation of a thorough data-cleaning process, we systemat-
ically erased outlier observations in the EEGEyeNet dataset. By excluding data
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points lying outside of the screen’s dimensions, we ensured the integrity and
reliability of the dataset.

Our results demonstrate a significant improvement in predictive accuracy,
underscoring the critical importance of data integrity in ML applications. The
reduction in RMSE for the EEGViT-TCNet model highlights the potential for
similar enhancements in other models when outliers are meticulously managed.

With ongoing development in EEG classification, the strive towards contin-
ued improvements in the accuracy of feature extraction with new architectures
reinforces the importance of meticulous data preprocessing in enhancing perfor-
mance and reliability for real-world applications. Our findings suggest that even
minor adjustments in data quality can lead to substantial gains in model ac-
curacy, which is crucial for applications in Brain-Computer Interfaces, adaptive
user interfaces, and assistive technologies.

This study not only advances our understanding of the role of data integrity
in model performance but also sets a new benchmark for EEG-ET predictive
models. The implications extend to improving the efficacy of BCIs and related
technologies, potentially benefiting individuals with disabilities and enhancing
user experiences in virtual and augmented reality environments.
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Ma, and Matjaž Perc. Complex networks and deep learning for eeg signal
analysis. Cognitive Neurodynamics, 15(3):369–388, 2021.

Shengxi Gui, Shuang Song, Rongjun Qin, and Yang Tang. Remote sensing object
detection in the deep learning era—a review. Remote Sensing, 16(2):327, 2024.

Khondoker Murad Hossain, Md Ariful Islam, Shahera Hossain, Anton Nijholt,
and Md Atiqur Rahman Ahad. Status of deep learning for eeg-based brain–
computer interface applications. Frontiers in computational neuroscience, 16:
1006763, 2023.

Thorir Mar Ingolfsson et al. Eeg-tcnet: An accurate temporal convolutional
network for embedded motor-imagery brain–machine interfaces. In 2020 IEEE
International Conference on Systems, Man, and Cybernetics (SMC). IEEE,
2020.

Chao Jiang, Bo Hui, Bohan Liu, and Da Yan. Successfully applying lottery ticket
hypothesis to diffusion model. arXiv preprint arXiv:2310.18823, 2023.

Ard Kastrati, Martyna Beata P lomecka, Damián Pascual, Lukas Wolf, Victor
Gillioz, Roger Wattenhofer, and Nicolas Langer. Eegeyenet: a simultaneous
electroencephalography and eye-tracking dataset and benchmark for eye move-
ment prediction. arXiv preprint arXiv:2111.05100, 2021a.

Ard Kastrati, Martyna Beata Plomecka, Joël Küchler, Nicolas Langer, and Roger
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