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Abstract. Anomaly detection, a critical facet in data analysis, involves
identifying patterns that deviate from expected behavior. This research
addresses the complexities inherent in anomaly detection, exploring chal-
lenges and adapting to sophisticated malicious activities. With applica-
tions spanning cybersecurity, healthcare, finance, and surveillance, anoma-
lies often signify critical information or potential threats. Inspired by the
success of Anomaly Generative Adversarial Network (AnoGAN) in image
domains, our research extends its principles to tabular data. Our con-
tributions include adapting AnoGAN’s principles to a new domain and
promising advancements in detecting previously undetectable anomalies.
This paper delves into the multifaceted nature of anomaly detection, con-
sidering the dynamic evolution of normal behavior, context-dependent
anomaly definitions, and data-related challenges like noise and imbal-
ances.
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1 Introduction

Anomaly detection identifies unexpected patterns in data across various do-
mains, often referred to as anomalies, outliers, or contaminants. It finds appli-
cations in cybersecurity, safety-critical system monitoring, fraud detection in
finance and healthcare, and military surveillance for non-traditional enemy ac-
tivities.

Anomaly detection, distinct from noise accommodation and removal [5], ad-
dresses unwanted noise in data. Noise, defined as irrelevant data phenomena
hindering interpretation, requires elimination before analysis. Conversely, noise
accommodation shields statistical model estimates from outlier impacts.

Anomaly detection plays a vital role across various domains by uncovering
crucial insights from data anomalies [19, 20, 33, 9, 36, 14, 17]. An unusual net-
work traffic pattern [2] may indicate a security breach, while abnormal MRI
scans [31] could signal the presence of tumors. Anomalies in aviation sensors [3]
may highlight potential aircraft component issues, and deviations in credit card
transactions often signify fraudulent activity. Anomaly detection finds practical
1 Both authors contributed equally to this research.
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applications in manufacturing, finance, and medical imaging, relying on models
to identify abnormal patterns amidst regular data. Despite extensive research,
managing complex, high-dimensional data remains a challenge. Various com-
munities have developed specialized anomaly detection techniques tailored to
specific domains.

Generative Adversarial Networks (GANs), introduced by Ian Goodfellow [10]
and colleagues, have emerged as a powerful modeling approach for handling
high-dimensional data. Anomaly Generative Adversarial Network (AnoGAN)
integrates traditional anomaly detection methods with GAN architecture, en-
abling it to generate data while simultaneously learning typical data properties
for anomaly detection.

Our main contributions in this paper can be summarized as follows:

– How do different reconstruction errors affect the performance of GAN for
anomaly detection in tabular data, and what thresholds or criteria can be
established for effective detection?

– How does the performance of a GAN-based anomaly detection model with
the optimal reconstruction error, trained on single-class data, compare to
traditional anomaly detection methods in terms of accuracy and efficiency?

1.1 Challenges in Anomaly Detection

Identifying anomalies in datasets presents several challenges. Firstly, distin-
guishing abnormal patterns from normal ones requires algorithms that mini-
mize false positives while effectively detecting anomalies. Defining "normal" be-
havior is complex and evolves over time, necessitating adaptable baseline mod-
els. Anomaly detection must also adapt to recognize malicious activities acing
as normal behavior, balancing adaptability and resilience. Furthermore, nor-
mal behavior changes dynamically, requiring systems that learn and update ac-
cordingly. Context-dependent anomaly definitions add another layer of complex-
ity, demanding models that contextualize data based on specific circumstances.
Data-related challenges, including handling noisy or imbalanced datasets, ad-
dressing blind spots, and implementing preprocessing techniques, further com-
plicate anomaly detection. Finally, managing the general complexity inherent in
anomaly detection, such as balancing sensitivity and specificity and adapting to
changing conditions, requires expertise in machine learning, data analysis, and
domain knowledge.

1.2 Overview of GANs

The introduction of Generative Adversarial Networks (GANs) (Figure 2) by Ian
Goodfellow and associates [10] offers a strong modeling approach for addressing
the problem of high-dimensional data. Two adversarial networks, a generator
(G) and a discriminator (D) are involved in conventional GANs. While D learns
to distinguish between actual data and samples provided by G, G is in charge
of modeling the data by learning a mapping from latent random variables z
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(derived from Gaussian or uniform distributions) to the data space. GANs are
seeing increasing use in speech and medical imaging, where they have shown
empirical success as natural image models.

Fig. 1. GANs, or Generative Adversarial Networks, are intricate deep neural network
structures consisting of two networks, namely the generator and discriminator. These
networks work in opposition to each other, which is why they are called "adversarial."
The generator accepts random numbers as input and produces an image. This generated
image is then presented to the discriminator, along with a continuous stream of images
sourced from the genuine, ground-truth dataset. [?]

Anomaly Generative Adversarial Network (Figure 3), or AnoGAN [29], is
a cutting-edge anomaly detection method that blends features of conventional
anomaly detection approaches with generative adversarial networks (GANs).
The GAN architecture is expanded to include anomaly detection with AnoGAN,
which enables the model to produce data while concurrently learning the prop-
erties of typical data to detect anomalies.

AnoGAN’s versatility enables its application across diverse domains for anomaly
detection. Particularly in medical imaging, finance, and cybersecurity, it excels in
identifying irregular patterns. In finance, it detects fraud by recognizing unusual
transaction behaviors, while in cybersecurity, it spots anomalies in network traf-
fic. Its adaptability to time series data facilitates predictive maintenance, antic-
ipating equipment breakdowns. In text analysis, it identifies abnormal language
patterns. Overall, AnoGAN offers a flexible solution for anomaly detection in
various industries, from healthcare to industrial process monitoring.

2 Related Work

In recent years, numerous approaches have emerged in the field of deep learning-
based anomaly detection and object detection [16, 18, 6, 39, 1, 21, 13, 15, 24, 35, 8,
41, 32, 22, 11, 26, 27, 25, 28, 23, 12]. Researchers have [4] comprehensively reviewed
deep learning techniques for anomaly detection, emphasizing the promise and
adaptability of these models across diverse data types. Their work echoes the sen-
timent of Zhou and Paffenroth [40], who proposed an anomaly detection method
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Fig. 2. Framework for identifying anomalies. This framework involves two main stages
of model training: generative adversarial training, which results in a trained generator
and discriminator, and encoder training, which yields a trained encoder. Both of these
training phases are executed using normal or "healthy" data. Subsequently, the frame-
work is used for anomaly detection, where it is applied to both unseen healthy cases
and anomalous data. [29]

utilizing autoencoders, this method employs neural network architectures to re-
construct input data. Anomalies are identified when the reconstruction error
surpasses a predefined threshold, enabling effective detection of deviations from
normal patterns. They demonstrated their efficacy in capturing non-linear trans-
formations and achieving impressive detection rates. Further, Ruff et al. extended
the applicability of one-class classification using deep neural networks, shedding
light on the strength of deep architectures in isolating normal from anomalous
patterns. Their approach extends the scope of one-class classification through the
integration of deep neural networks. The model is trained on normal instances,
enhancing its ability to discern anomalies by learning complex patterns inherent
in the normal data distribution. In the context of Generative Adversarial Net-
works (GANs), Zenati [37] introduced an adversarially-trained one-class classi-
fier, which proved pivotal in benchmark datasets. They introduced an adversarial
element to one-class classification, this method employs a classifier trained to dis-
tinguish between normal and anomalous samples. Adversarial training enhances
the model’s robustness, making it more adept at discerning subtle anomalies.

Fig. 3. Statistical values of the data collected from the Google campus for the Variable
Air Volume devices [30]
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In another critical development, researchers [7] explored the time series impli-
cations in anomaly detection, emphasizing the temporal dynamics of data. This
method addresses anomalies by considering temporal dependencies. It accounts
for patterns evolving over time, enabling the identification of deviations from
expected temporal sequences. Moreover, there has been a growing interest [38]
into hybrid models, merging traditional statistical methods with deep learning,
establishing a bridge between classical and contemporary methodologies.

3 Methodology

The methodology is executed systematically, beginning with rigorous data col-
lection and preprocessing to ensure the quality of the dataset. Our methodol-
ogy tackles the issue of prediction randomness in CTGAN models, attributed
to the Gumbel Softmax activation, which is essential for ensuring stable train-
ing. Instead of eliminating the Gumbel Softmax, we mitigate this randomness
through the implementation of a hard Gumbel Softmax approach, enhancing
the precision and reliability of the model’s outputs. AnoGAN methodology is
then applied for anomaly detection, involving the optimization of noise vectors
through backpropagation using Mean Squared Error (MSE) loss. This process re-
sults in an anomaly score that reflects disparities between synthetic and original
samples. Further refinement includes the determination of an optimal threshold
through Receiver Operating Characteristic (ROC) analysis, enhancing the dis-
criminative capacity of the framework. The investigation of individual feature
differences between normal and synthetic samples concludes this methodological
phase, offering detailed insights into the detected anomalies within structured
datasets.

3.1 Dataset

The Smart Buildings Anomaly Detection dataset [30], covers 14 days from Octo-
ber 8 to 21, 2019, at a Google campus in California. It includes 60,425 (Figure 4)
observations from 15 Variable Air Volume (VAV) devices, with 1,921 instances
(3.2%) showing anomalies. These devices, designed to regulate air temperature,
have two operational modes: a stricter comfort mode on weekdays (6:00 am to
10:00 pm) and a more relaxed eco mode during off-hours. The data is enriched
with temporal markers like the day and hour.

3.2 Data preprocessing

In the initial phase of our methodology, the raw dataset is subjected to a thor-
ough preprocessing pipeline to enhance its suitability for subsequent analysis.
The dataset, once loaded undergoes a series of transformations for optimal util-
ity. Initially, irrelevant features, namely ’dow’ (day of the week) and ’hod’ (hour
of the day), are removed to streamline the dataset.
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Further refinement includes categorizing the data into specific classes, with
anomalies identified by the class label ’0’ being segregated into an exclusive
dataframe for testing. Concurrently, data instances classified as normal are com-
piled into a distinct dataframe, as our training exclusively focuses on normal
data.

To standardize and normalize the dataset, the Min-Max scaling technique is
applied, rescaling feature values to a specified range (-1 to 1). This transforma-
tion is particularly valuable for maintaining the integrity of the anomaly and
normal data distributions while preparing them for integration into the subse-
quent anomaly detection framework.

The multimodal input data undergoes processing via a Gaussian Mixture
Model to derive multiple unimodal representations. This methodology enhances
the stability of training Generative Adversarial Networks (GANs) by facilitating
the learning of a broader array of simpler distributions, as opposed to a singular
complex distribution.

p(x) =
∑M

i=1 πiN (x|µi, Σi) → GMM Transformation

where p(x) is the probability density function of the data x modeled as a mixture
of M Gaussian distributions, πi are the mixing coefficients, µi and Σi are the
mean and covariance of the i-th Gaussian component, respectively.

3.3 CT-GAN Implementation and Randomness Handling

In our research methodology, the utilization of the original CT-GAN (Condi-
tional Tabular Generative Adversarial Network) (Figure 5) [34] implementation
plays a pivotal role in generating synthetic samples for anomaly detection. CT-
GAN is a specialized GAN variant designed for tabular data, aiming to faithfully
reproduce the statistical characteristics of the given dataset. However, the orig-
inal CT-GAN implementation introduces a layer of unpredictability during the
testing phase, manifested in the randomness inherent in the predictions gen-
erated by the generator. To address this challenge and enhance the stability
of the generated samples, we employ a modified softmax gumbel activation.
This modification is instrumental in mitigating the unpredictable nature of the
test predictions, ensuring a more consistent and reliable generation of synthetic
samples. The application of the softmax gumbel activation contributes to the
robustness and effectiveness of our anomaly detection framework by providing
a more controlled and deterministic generation process for the synthetic data.
Figure 6 shows the KDE for both the real and generated data after applying
CT-GAN.
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Original Gumbel Softmax

Gi = − log(− log(Ui)) where Ui is Uniform(0, 1) and Gi is Gumbel Noise

hi =
li +Gi

τ
where τ is Temperature Scaling Constant and li is logits

yi =
exp(hi)∑
j exp(hj)

Softmax on noised and scaled logits

Hard Gumbel Softmax

yi =
exp(li/τ)∑
j exp(lj/τ)

Temperature Scaling and softmax on logits

yhard,i =

{
1 if i = argmaxj yj

0 otherwise
Selecting the max component

y = stop_gradient(yhard − y) + y Straight through Estimator

3.4 Optimizing Noise Vector and Anomaly Scoring

In this phase of our methodology, the focus is on refining the generated syn-
thetic samples to closely mirror the characteristics of the original data. For a
given sample, we initiate the optimization process of the noise vector, a critical
parameter in the generative process. The objective is to adjust the noise vector
such that the generator produces synthetic samples that are the most similar to
the corresponding original samples.

To quantify the dissimilarity between the synthetic and original samples, we
employ the Mean Squared Error (MSE) loss during the backpropagation process
to optimize the latent vector. We tried several other loss-measuring functions
but MSE worked the best for the data. The MSE loss serves as a measure of
the average squared differences between corresponding elements of the synthetic
and original samples. This penalizes larger differences and allows us to capture
the nuances and intricacies of the data distribution, facilitating a more precise
evaluation of the generative process.

The computed MSE loss between the original sample and generated sample
serves as the anomaly score, representing the magnitude of deviation between the
two samples. This score becomes a crucial metric for distinguishing normal from
anomalous samples. Leveraging this anomaly score, we establish a threshold that
optimally discriminates between normal and anomalous instances, determined
through Area Under Curve-Receiver Operating Characteristic (AUC-ROC) anal-
ysis. This meticulous threshold determination enhances the discriminative power
of our anomaly detection framework.

Furthermore, delving into individual feature differences between normal and
synthetic samples provides insights into the specific aspects contributing to de-
tected anomalies. By scrutinizing these differences, we gain a nuanced under-
standing of the reasons behind the anomalies, allowing for more informed and
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Fig. 4. The figure provides a visual representation of the Kernel Density Estimation
(KDE) for both the real and generated datasets. The KDE serves as a smoothed prob-
ability density function, offering insights into the underlying distribution of the data.
Specifically, the KDE for the real data showcases the probability density across dif-
ferent values, illustrating the distribution’s characteristics and patterns. On the other
hand, the KDE for the generated data, produced by the Generator component of the
Generative Adversarial Network (GAN), offers a comparative view. This comparison
enables an assessment of how well the generator has learned to replicate the statistical
properties of the real data. By visually inspecting the KDE curves, one can discern the
fidelity of the generated data distribution in relation to the authentic dataset, provid-
ing a valuable tool for evaluating the performance and quality of the GAN’s generative
capabilities.

targeted interventions in subsequent stages of analysis. This comprehensive ap-
proach to anomaly scoring and threshold determination forms a robust founda-
tion for the effectiveness of our anomaly detection methodology.

4 Results

In this section, we present a comprehensive evaluation of our anomaly detection
framework based on AnoGAN, comparing its performance against two alterna-
tive methodologies, namely One-Class Support Vector Machine (OCSVM) and
k-Nearest Neighbors (KNN). The choice of OCSVM and KNN as comparative
methods reflects their widespread usage and effectiveness in anomaly detection
tasks. Table 1 captures the accuracy of all the methods implemented. Through
a rigorous analysis of the results obtained from these three approaches, we aim
to elucidate the strengths and limitations of our AnoGAN-based framework in
detecting anomalies within structured datasets.

The progression of Generative Adversarial Network (GAN) losses across
epochs is a key aspect of our findings. As the GAN undergoes training, the Gen-
erator Loss, representing the ability to generate realistic data, exhibits notable
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Methods AUC-ROC
OCSVM 55.6%
KNN 50%
AnoGAN 72%

Table 1. Comparison of Anomaly Detection Methods based on Accuracy.

fluctuations. Initially high, this loss gradually diminishes as the Generator refines
its capacity to produce more authentic samples. Simultaneously, the Discrimi-
nator Loss, indicating the Discriminator’s accuracy in distinguishing real from
generated data, follows a similar trajectory. After a certain point the loss starts
to increase but our implementation stops the progression with early stopping.
The delicate interplay between these losses is pivotal for achieving equilibrium
in GAN training and generating high quality samples.

Fig. 5. The figure illustrates the progression of Generator and Discriminator losses
over training epochs in the Generative Adversarial Network (GAN), showcasing how
the model refines generative and discriminative capabilities during learning.

Our innovative approach involves applying AnoGAN to synthetic data gen-
erated by CTGAN and normal data samples, achieving a robust anomaly de-
tection accuracy of approximately 72%. Figure 7 shows the loss over epoch for
training and Figure 8 shows the ROC curve for our method. Extended train-
ing substantially improves accuracy, reaching around 80%. This outperforms
traditional methods like KNN and OCSVM, where accuracy is comparable to
random assignment at 50%. The superior performance underscores the efficacy
of our methodology in detecting anomalies with higher precision and reliability.

Our methodology demonstrates notable efficacy in scenarios characterized
by infrequent data anomalies. The system exhibits exceptional performance,
achieving an accuracy exceeding 85% when tested on datasets featuring a mere
50 anomaly samples. The observed variance in accuracy, contingent upon the
anomaly count, can be attributed to the inherent challenge of discerning the
underlying generative function for anomalies. This task is comparatively more



10 P. Reddy and A. Singh

Fig. 6. The ROC curve visually represents the Receiver Operating Characteristic for
the Generative Adversarial Network (GAN), offering insights into its discriminative
performance and the trade-off between true positive and false positive rates

straightforward with a smaller anomaly set, where distinct patterns are easily
recognizable, as opposed to the heightened complexity associated with larger
anomaly datasets.

5 Conclusion and Future work

Our meticulously executed methodology encompasses systematic data collection
and preprocessing, ensuring dataset quality. Incorporating the original CT-GAN
implementation, we address inherent randomness in test predictions through
softmax gumbel activation, enhancing the stability of generated samples. Lever-
aging AnoGAN for anomaly detection, our approach optimizes noise vectors
using Mean Squared Error (MSE) loss, resulting in a nuanced anomaly score
reflective of synthetic-original disparities. Refinement involves ROC analysis for
threshold determination, enhancing the framework’s discriminative capacity.

Looking ahead, our research opens avenues for several promising directions.
Firstly, exploring the integration of domain-specific knowledge into the anomaly
detection process can enhance the model’s interpretability and performance. Ad-
ditionally, investigating the adaptability of our methodology to incorporate cat-
egorical variables will broaden its applicability across a wide range of domains.
Further research into refining the threshold determination process and extend-
ing the framework to handle dynamic datasets with evolving patterns could
deepen its practical applicability. The exploration of ensemble techniques and
hybrid models, combining the strengths of different anomaly detection methods,
presents another intriguing avenue for future investigation. Continuous refine-
ment and adaptation of our methodology will be essential for addressing evolving
challenges in anomaly detection across various real-world scenarios.
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