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Abstract. In the field of EEG-based gaze prediction, the application of
deep learning to interpret complex neural data poses significant chal-
lenges. This study evaluates the effectiveness of pre-processing tech-
niques and advancements in model architecture on EEG Vision Trans-
formers (ViTs) pretrained model. We introduce a novel method, which
combines depthwise separable convolutional CNNs with Vision Trans-
formers, enriched by a pre-processing strategy involving data clustering.
The new approach demonstrates superior performance, establishing a
new benchmark with a Root Mean Square Error (RMSE) of 51.5 mm.
This achievement underscores the impact of pre-processing and model
refinement in enhancing EEG-based applications.
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1 Introduction

Electroencephalogram (EEG) data, with its multidimensional architecture, captures an
abundance of details regarding brain functions, providing various perspectives on nu-
merous neurological events [42]. Despite the widespread use of machine learning re-
gression models for EEG data, their complexity and expensive data collection process
often hinder these models from effectively understanding the data’s complex structures
[8]. The EEGEyeNet dataset, with its extensive collection of EEG and eye tracking (ET)
data, emerges as a significant asset in this field, enabling in-depth gaze behavior study
and laying the groundwork for benchmarking gaze prediction approaches [19]. Lever-
aging the EEGEyeNet dataset, the Hybrid Vision Transformer (ViT) has showcased its
potential in gaze prediction, challenging conventional convolution-based approaches
[45]. As a contribution to the field, our study delves into how alterations in EEGViT de-
sign, combined with pre-processing techniques, can amplify the accuracy in predicting
absolute eye position. Following our findings, we propose a new model which obtains
better than state of the art performance on EEGEyeNet abosolute eye position.

⋆ Both authors contributed equally to this work, Prof Qu is the research mentor for this project.
⋆⋆ Full source code is available at this Github Link

https://github.com/matthewlkey/EEG-LiT
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1.1 Research Questions

To further elucidate our direction within this evolving landscape, we formulate two
pivotal research questions (RQs):

RQ 1: In what ways does incorporating depthwise separable convolution into EEG-
based gaze prediction models influence their predictive accuracy?

RQ 2: What impact do advancements in pre-processing techniques have on the ac-
curacy of EEG-based gaze prediction models?

2 Related Work

The analysis of EEG data has a long history and has been employed in various aspects of
human-computer interaction (HCI), including research on sleep, emotion, gaming, and
clinical applications[9,39,1,12,15,23,20,29,34,46,11,52,43,32,36,37,35,38,33]. Gaze pre-
diction, with its extensive applications in human behavior analysis, advertising, and
human-computer interactions, has garnered significant attention. The traditional re-
liance on Convolutional Neural Networks (CNNs) for this task has been reconsidered
due to their limitations in capturing complex EEG patterns [4][28][30]. The introduc-
tion of the EEGViT model, incorporating Transformer blocks, represents a significant
shift, offering a promising alternative to conventional convolutional approaches [45].

The integration of Vision Transformers (ViTs) with EEG-based gaze prediction
marks a notable advancement, utilizing deep learning to navigate the intricacies of brain
data interpretation. The effectiveness of both pure and hybrid transformer models in
gaze estimation has been showcased, illustrating their capability in extracting detailed
spatial features [7]. Such models, including the GazeTR, demonstrate the versatility of
transformers, adapting well across different data modalities and enhancing the accuracy
of human gaze prediction.

Transformers have also been applied beyond gaze prediction, notably in EEG signal
analysis for tasks like epileptic seizure prediction. This broadens the scope of trans-
former applications from their origins in NLP to encompass the analysis of temporal
and spatial EEG signal features, highlighting their adaptability and potential in han-
dling complex EEG data [13].

Furthermore, exploring the synergy between CNNs and transformers has opened
new avenues for EEG data processing. This combined approach leverages CNNs for
local feature extraction and transformers for global dependency modeling, as demon-
strated in Transformer-guided CNNs (TGCNN) for seizure prediction. Such innovations
underline the potential of integrating CNN and transformer architectures to achieve
higher accuracy and better generalization in EEG-based applications, including gaze
prediction [13] [7].

This evolving landscape underscores the promise of combining CNNs and trans-
formers in EEG data analysis, guiding our research towards optimizing such integra-
tions. By harnessing the strengths of both architectures, we aim to set new standards
in EEG-based gaze prediction and neural data interpretation, contributing to the field’s
advancement.



Advancing EEG-Based Gaze Prediction 3

Fig. 1: Large Grid Experimental Setup: This image illustrates the schematic view
of the experimental setup and the stimuli placement on the screen. It gives a visual
representation of how participants interacted with the stimuli during the eye-tracking
events [19].

3 Methods

Our research extends the work presented in [45], focusing on the utilization of pre-
processing and depthwise-separable convolution techniques in EEG-based gaze predic-
tion methodologies.

Data Pre-Processing: Pre-processing techniques have become crucial in enhancing the
performance of pre-trained Vision Transformer models, as noted in studies by Chen
et al. (2021) [5] and Li et al. (2021) [24]. We observed that the EEGEyeNet dataset
contains noise. During the original data collection, the EEGEyeNet procedures required
participants to focus on specific target positions. Kastrati et al. (2021) [19] reported
that, with the computer monitor used in the experiment, 1 pixel equates to 0.5 mm.
However, we identified x and y label positions in the dataset that are as much as 100
pixels (or 5 cm) away from any known target position (see Figure 2). This significant
discrepancy led us to hypothesize that participants were indeed looking at the target
positions, suggesting a potential issue with the eye tracking system. The inaccuracies
could be due to the system’s malfunction or improper calibration.

Another potential source of error might stem from the disparity in the granularity of
the data collected. The EEG data were captured at a frequency of 500 Hz, equivalent to
500 times per second. In contrast, the eye tracking data were recorded at a much lower
frequency, once per second [19]. Therefore, if a participant’s gaze was in transit to a
target point when captured, the recorded eye position might not accurately represent
the entire second during which the brainwave data were collected. Unfortunately, with
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the available data, it is impossible to determine the exact position of the participant’s
eyes throughout each sample.

To address the discrepancy in eye tracking location, we employed K-means cluster-
ing to reconcile the differences between the label position and the actual target position.
By updating the true label position with the centroids, as illustrated in Figure 3, we align
it with the cluster center position, thereby enhancing the accuracy of our dataset.

Fig. 2: Clustering showing the difference between the label positions and the target
position

Depthwise-separable convolutional neural networks (DS-CNNs): Early studies [21]
highlighted that initial layers of CNNs are adept at detecting edges or specific colors in
natural images. In recent years, research aiming to gain a deeper understanding of how
Convolutional Neural Networks (CNNs) operate has largely shifted towards analyzing
the features learned by convolutional layers rather than the weights themselves [48],
[47]. While examining the learned features of convolutional layers is a logical approach,
the interpretation of the filter weights in the deeper layers of CNNs remains a chal-
lenge. Meanwhile, Depthwise-Separable Convolutional Neural Networks (DS-CNNs)
have been rising in prominence within the field of computer vision and demonstrated
state-of-the-art accuracy while requiring significantly fewer parameters and computa-
tional operations than traditional CNNs, owing to the reduced computational demands
of DS-CNNs [16].

The application of depthwise separable convolution in EEG data analysis, as demon-
strated in various studies, shows its potential in enhancing model performance through
efficient feature extraction from multichannel EEG signals. The high accuracy rates
achieved in emotion recognition tasks using publicly available EEG datasets, as cited
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in the works by Li et al. [22] and further supported by studies [17], [44], underscore
its effectiveness in reducing computational load while maintaining or improving per-
formance score.

Building on these findings, the application of depthwise separable convolution could
be extended to the EEGEyeNet dataset. EEGEyeNet, being a comprehensive dataset
for gaze estimation and other EEG-based analyses, could benefit significantly from
the effective feature extraction capabilities of depthwise separable convolution. This
approach may enhance the accuracy, especially in tasks requiring the analysis of spa-
tial EEG signal characteristics. The potential for improved performance in EEG-based
predictive modeling with reduced computational demands makes depthwise separable
convolution a promising technique for exploration in this dataset.

We apply depthwise separable convolution by expanding the the previous work [45]
where the authors developed a hybrid Vision Transformer architecture named EEGViT,
specifically tailored for EEG analysis. This model integrates a traditional two-step con-
volution operation during the patch embedding process. The first step involves a convo-
lutional layer employing a 1×T kernel to capture temporal events across channels, acting
as band-pass filters for EEG signals. This layer emphasizes the extraction of frequency
bands of interest in the EEG data. Following this, the second step involves a depthwise
convolutional layer with a C×1 kernel, designed to filter inputs across multiple channels
at the same point in time. The model segments input images into C×T patches, which
undergo a row-by-row linear projection, transforming each column vector into a scalar
feature.

Building on previous study, we introduce an additional depthwise separable con-
volution layer in our approach. This layer incorporates both depthwise and pointwise
convolutions. Following this enhancement, our systematic approach for EEG data clas-
sification begins with a 2D convolution layer employing 256 filters of size (1, 36),
featuring a stride of (1, 36) and padding of (0, 2). This layer is tasked with extracting
temporal features from EEG signals. Subsequently, the depthwise separable convolu-
tion layer, comprising 256 filters for the depthwise part and 512 filters for the pointwise
part, processes spatial information across channels. The architecture further integrates
a Vision Transformer (ViT), modified with a custom depthwise convolution layer us-
ing 512 filters of size (8, 1). The process concludes with a classifier that includes a
linear layer, a dropout layer, and a final linear layer, responsible for outputting logits
that indicate class probabilities in a binary classification task. The incremental addition
of the depthwise separable convolution layers in on the previous approach has proven
to be effective in generating enhanced spatial features. These improved features effec-
tively contribute to the model’s ability to refine its performance and improve its scoring
accuracy.

Evaluation Metrics: To maintain consistency and ensure comparability with prior work,
all methods, whether applied individually or in combination, will be gauged using the
root mean squared error (RMSE).

Early Stopping: In addition to these techniques, we employ a type of early-stopping
during training for improved performance. The SOTA EEG-ViT model was trained on
a static number of 15 epochs [45]. However, the authors did not take advantage of the
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Fig. 3: The centroids used to correct training data labels.

Method Description
Method 1 EEGVIT Pre-trained with

DS-CNNs
Method 2 EEGVIT Pre-trained with

Clustered Data
Method 3 EEGVIT Pre-trained with

Clustered and DS-CNNs

Table 1: Descriptions of the various methods used in the study.

validation set to detect when the model was overfitting to the training data. During
training, our algorithm will run for 15 epochs and then output the trained model based
on the epoch that has the best validation score. This will protect against overfitting and
encourage higher overall accuracy.

As outlined in Table 1, our study employs several methods to address the problem
at hand. Each method has been tailored to optimize performance based on the specific
characteristics of the dataset and the goals of the analysis.

Method 1: EEGVIT Pre-trained with DS-CNNs: This approach leverages a pre-trained
EEGVIT model, further refined using depthwise-separable convolutional neural net-
works as an additional layer. Known for their superior spatial feature extraction ca-
pabilities (citation is needed), DS-CNNs enable the model to effectively identify and
process complex patterns in EEG channels. This method addresses Research Question
1 by demonstrating the impact of depthwise separable convolutions techniques on the
accuracy score in EEG data.
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Fig. 4: EEGViT Architecture Overview: A specialized Vision Transformer (ViT)
structure tailored for raw EEG signal input. This architecture utilizes a dual-step con-
volution process to produce patch embeddings. After this initial step, positional embed-
dings are integrated and the combined sequence is subsequently passed through the ViT
layers [45]. The design of the positional embedding and ViT layer is adapted from [10].

Method 2: EEGVIT Pre-trained with Clustered Data: By clustering the data prior to
training, we can ensure that the model is exposed to the most representative and diverse
examples. This pre-processing step helps in improving the generalization capability
of the EEGVIT model by focusing on the underlying distribution of the dataset. This
method addresses Research Question 2 by demonstrating the impact of data processing
techniques on the accuracy score in EEG data.

Method 3: EEGVIT Pre-trained with Clustered and DS-CNNs: This method integrates
the techniques of data clustering with depthwise-separable convolutional neural net-
works (DS-CNNs) to harness the advantages of both approaches. By clustering the EEG
data, the model can focus on learning from more homogeneous subsets, which improves
its efficiency in recognizing underlying patterns. When combined with the DS-CNNs,
known for their enhanced feature extraction with fewer parameters and computational
efficiency, this strategy significantly boosts the model’s capacity to identify intricate
and subtle patterns within the EEG channels. This dual approach integrates the find-
ings from both research questions to enhance the pre-training phase, laying a robust
foundation for the model. This integration aims to boost the accuracy and improve the
generalization capabilities of EEG data analysis.

4 Dataset

The EEGEyeNet dataset comprises data from 27 participants with a total of 21,464 sam-
ples [19]. The primary focus is on the "Absolute Position" task where the objective is to
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ascertain the exact gaze position in terms of XY-coordinates on the screen. Each sample
corresponds to a one-second duration where a participant engages in a single fixation
on the Large Grid paradigm (Figure 1). The performance is assessed by measuring the
Euclidean distance between the actual and predicted gaze positions in the XY-plane.

5 Results

As shown in Table 2, the previous highest achievement on the EEGEyeNet dataset’s
absolute position task was an RMSE (Root Mean Square Error) of 55.4 ± 0.2 mm, as
reported by [45]. The results from all three methods, as described in Table 2, demon-
strated improved performance in terms of RMSE. In Method 1, where we implemented
depthwise separable convolution, we achieved 53.5 mm. In Method 2, which applied
’EEGVIT Pre-trained with Clustered Data,’ we achieved an RMSE of 52.9 mm. This
result indicates the positive impact of data clustering on model accuracy. Finally, in
Method 3, where we combined both methods by training the model with depthwise sep-
arable convolution on the clustered data, we achieved an even better RMSE of 51.5±0.2
mm, reinforcing the effectiveness of these combined strategies.

Model Absolute Position RMSE (mm)
Naive Guessing 123.3 ± 0.0
CNN 70.4 ± 1.1
PyramidalCNN 73.9 ± 1.9
EEGNet 81.3 ± 1.0
InceptionTime 70.7 ± 0.8
Xception 78.7 ± 1.6
VIT - Base 61.5 ± 0.6
VIT - Base Pre-trained 58.1 ± 0.6
EEGVIT 61.7 ± 0.6
EEGVIT Pre - trained 55.4 ± 0.2

Method 1 53.5 ± 0.6
Method 2 53.4 ± 0.8
Method 3 51.5 ± 0.2

Table 2: RMSE Comparisons for Absolute Position Task: Root Mean Squared Error
(RMSE) was converted to millimeters at a ratio of 2 pixels/mm. Lower RMSE values
signify better accuracy, aligning closer to true values. Displayed values represent the
average and standard deviation from 5 trials. [45].

6 Discussion

These results collectively suggest that specialized pre-training involving data cluster-
ing and DS-CNNs can significantly improve the accuracy of deep learning models in
estimating absolute positions from EEG data.
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Fig. 5: Classification Performance Metrics by Cluster: This figure presents a detailed
breakdown of classification metrics including precision, recall, F1-score, and support
for 25 clusters, highlighting the performance of each cluster in the model evaluation.
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Fig. 6: Visual of Test Error for Absolute Eye Position Showing Positions within 55.4
RMSE (Blue) and Positions Above 55.4 RMSE (Red).

Understanding Test Error: One of the pivotal aspects of our study was the introduc-
tion of new visualization techniques that will help both computer scientists and neuro-
scientists understand the test error. During our training, we discovered a way to better
understand the test error. Where is the test error coming from? Which eye positions
have more error? Which eye positions had less error? We created a new visual in order
to help us answer these questions (See Figure 6). For example, in Figure 6, we see that
the eye positions on the top left and bottom right are more difficult for the model to per-
form well on compared to the bottom left and upper right-hand corners. Insights from
neuroscientists and other subject matter experts will be critical in order to improve per-
formance in these positions. In this same figure, faint lines between test locations and
true labels show the distance between the target and predicted values. Notably, there
are fewer red lines between the "inner" positions and the "outer" positions. This could
mean that the model is good at determining the difference between someone looking
at the center of the screen as opposed to the outside of the screen, though we did not
quantify these results.

Understanding EEG-ViT Performance: In order to understand the original EEG-
VIT model, our team expanded the use of clustered eye positions shown in Figure 3 by
converting the model into a classifier. So, instead of predicting a location on a screen,
the adjusted classification model would predict one of the 25 centroids shown in Figure
3.

In the given classification report in 5, the original EEGViT model’s discrimina-
tive ability is quantified across multiple classes, with individual performance metrics
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Fig. 7: Confusion matrix across 25 clusters: On the x-axis, we have the predicted
values, which represent the outcomes as forecasted by our model (with method 3). The
y-axis, on the other hand, displays the true labels for each data point.

presented for each class. Precision, recall, and F1-scores are provided, alongside the
’support’ figure, which denotes the actual number of samples for each respective class.
Classes 7 (participant looking straight down) and 9 (participant looking straight up) are
noteworthy, with F1-scores of 0.87 and 0.81 respectively, indicating a robust predictive
performance for these categories. However, there are classes with notably lower F1-
scores, such as class 13, indicating potential areas for model improvement. Similarly,
the confusion matrix in Figure 7 reveals that categories 7 and 9 closely match their
predictions with the true labels, while class 13 has the least number of matched predic-
tions. The high number of matched predictions in category 5 is attributed to its larger
sample size in the dataset. Notably, the central category, represented three times more
frequently than others, may skew the model’s predictive distribution. Future iterations
of the model could benefit from a more targeted approach in feature engineering and
class-specific parameter tuning to uplift the predictive accuracy for underperforming
classes.
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Furthermore, our team evaluated samples that were predicted with high confidence
scores by EEGViT. We hypothesised this would uncover patterns detected by EEGViT
model that are also interpretable with the human eye. We discovered there are similar-
ities in samples classified with high confidence using EEG-ViT. As shown in Figure 8
there are obvious similarities in the EEG samples. The cause of the similarities in these
data are undetermined. It could be leakage from ocular artifacts or valuable data which
requires insight for neuroscientists.

Fig. 8: Heat Map of EEG Data Samples Predicted with High Confidence by EEG-
ViT Model: This figure shows samples with high confidence from class 7 (left) and
class 9 (right). Class 7 displays similar bright spot in the upper left corner. Class 9
displays a similar, larger, dark spot in the upper left.

These visual tools not only facilitated a deeper understanding of the model’s per-
formance but also provided insights into the complex interplay of data features and
model predictions. Visuals like this could be useful also as a communication tool be-
tween computer and neuroscientists. However, there is still a vast scope for innovation
in this domain. Future research can focus on developing more advanced visualization
techniques and tools that can provide even deeper insights into the workings of EEG
data analysis models. This direction holds the promise of not only enhancing the in-
terpretability of complex models but also fostering a more collaborative and intuitive
approach to understanding neuroscience data.

Our investigation applied enhanced pre-processing strategies and architectural im-
provements to a pre-trained EEG-ViT model, resulting in notable performance enhance-
ments. The integration of Vision Transformers with EEG data analysis in our EEG-
ViT model has demonstrated a powerful synergy. Importantly, the potential of these
pre-processing techniques, when applied to Convolutional Neural Networks (CNNs),
should not be overlooked. Future studies could explore how these strategies might el-
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evate the performance of CNNs in EEG data analysis without the addition of a Vi-
sion Transformer model. This approach could offer valuable comparative insights be-
tween Transformer-based and convolutional architectures. Additionally, the further ex-
ploration of depthwise separable convolution’s potential to enhance performance war-
rants attention. Another promising avenue for research involves the use of Generative
Adversarial Networks (GANs) in generating synthetic EEG datasets. This could po-
tentially address the challenges of data scarcity and diversity in EEG analysis. Future
studies can also investigate other potential deep learning approaches on various datasets
for comparative analysis [3,2,18,14,25,6,41,26,27,40,31,49,50,51].

7 Conclusion

In conclusion, the deployment of pre-processing and using DS-CNNs has markedly
improved the performance of EEG-based predictive models. Our proposed model, in
particular, has established new state-of-the-art results, achieving a benchmark RMSE
of 51.5 mm. We are optimistic that the significant performance leap made by our model
will serve as a cornerstone for future developments in EEG-based brain-computer in-
terfaces and machine learning, inspiring continued innovation and research in the field.
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